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We consider the existence, uniqueness, and asymptotic behavior of a classical solution to the initial and Neumann boundary value
problem for a class nonlinear parabolic equation of Monge-Ampère type. We show that such solution exists for all times and is
unique. It converges eventually to a solution that satisfies a Neumann type problem for nonlinear elliptic equation of Monge-
Ampère type.

1. Introduction

Historically, the study of Monge-Ampère is motivated by the
following two problems:Minkowski andWeyl problems. One
is of prescribing curvature type, and the other is of embedding
type. The development of Monge-Ampère theory in PDE is
closely related to that of fully nonlinear equations. Generally
speaking, there are two ways to tackle the problems. One is
via continuity method involving some appropriate a priori
estimates, and the other is weak solution theory. Monge-
Ampère equations have many applications. In recent years
new applications have been found in affine geometry and
optimal transportation problem.

Many scholars have studied this kind of equations (see,
e.g., [1–5] and the references given therein). Their main work
is directed at the first or the third boundary value problem.
But concerning Neumann boundary value problem, there is
lack of research. In this paper, we consider the existence,
uniqueness, and asymptotic behavior of a classical solution to
the initial and Neumann boundary value problem for a class
parabolic equation of Monge-Ampère type as follows:

�̇� = det1/𝑛 (𝐷2
𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) in Ω × (0, 𝑇] ,

𝑢] = 𝜑 (𝑥, 𝑢) on 𝜕Ω × [0, 𝑇] ,

𝑢|𝑡=0
= 𝑢

0
in Ω,

(1)

where �̇� = 𝜕𝑢/𝜕𝑡 and Ω is a bounded, uniformly convex
domain in 𝑅

𝑛 with the boundary 𝜕Ω ∈ 𝐶

4+𝛼. ] denotes the
unit inner normal on 𝜕Ω which has been extended on 𝑄

𝑇
to

become a properly smooth vector field independent of 𝑡. For
some 𝑇

0
, 𝑇
0
∈ (0, 𝑇), when 𝑡 ∈ (0, 𝑇

0
], 𝑔
𝜎
(𝑥, 𝑢) = 𝑔

1
(𝑥, 𝑢),

and when 𝑡 ∈ (𝑇

0
, 𝑇], 𝑔

𝜎
(𝑥, 𝑢) = 𝑔

2
(𝑥, 𝑢). The function 𝑔

𝜎
∈

𝐶

2+𝛼,2+𝛼
(Ω×𝑅),𝜎=1, 2. For each𝑥∈Ω, lim

𝑡→𝑇
+

0

𝑔

2
(𝑥, 𝑢(𝑥, 𝑡))=

𝑔

1
(𝑥, 𝑢(𝑥, 𝑇

0
)). Here 𝜑 ∈ 𝐶

3+𝛼,3+𝛼
(Ω × 𝑅) and 𝑢

0
∈ 𝐶

4+𝛼
(Ω).

The initial value 𝑢
0
is a strictly convex function on Ω. In the

sequel we assume for simplicity that 0 ∈ Ω.
To guarantee the existence of the classical solutions for (1)

and convergence to a solution with prescribed curvature, we
have to assume several structure conditions analogous to [6].
These are

𝜑

𝑧
≡

𝜕𝜑 (𝑥, 𝑧)

𝜕𝑧

≥ 𝑐

𝜑
> 0,

(2)

𝑔

𝜎
> 0, (𝑔

𝜎
)

𝑧
≡

𝜕𝑔

𝜎
(𝑥, 𝑧)

𝜕𝑧

≥ 0, for 𝜎 = 1, 2,
(3)

det1/𝑛 (𝐷2
𝑥
𝑢

0
) − 𝑔 (𝑥, 𝑢

0
) ≥ 0. (4)

Moreover, we will always assume the following compati-
bility conditions to be fulfilled on 𝜕Ω × {𝑡 = 0}:
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(𝑢

0
)] = 𝜑 (𝑥, 𝑢

0
) ,

(det1/𝑛 (𝐷2
𝑥
𝑢

0
) − 𝑔

1
(𝑥, 𝑢

0
))

]

= 𝜑

𝑧
(𝑥, 𝑢

0
) (det1/𝑛 (𝐷2

𝑥
𝑢

0
) − 𝑔

1
(𝑥, 𝑢

0
)) .

(5)

Elliptic equations of Monge-Ampère type have been
explored in [7–10] by using the continuity method. Some of
the techniques used there will be applied in our paper as well.
For the parabolic case, Schnürer and Smoczyk [6] consider
the flow of a strictly convex hypersurface driven by the
Gauss curvature. For the Neumann boundary value problem
and for the second boundary value problem, they show that
such a flow exists for all times and converges eventually
to a solution of the prescribed Gauss curvature equation.
Zhou and Lian [11] proved the existence and uniqueness of
classical solutions to the third initial and boundary value
problem for equation of parabolicMonge-Ampère type of the
form −𝜕𝑢/𝜕𝑡 + det1/𝑛(𝐷2

𝑥
𝑢) = 𝑓(𝑥, 𝑡). In this paper we will

consider more general case than [11] under the structure and
compatibility conditions analogous to [6] and extend some
results in [7] from elliptic case to parabolic case.

The organization of this paper is as follows. In Section 2,
we will review some notations, definitions, and results. In
Section 3, we will obtain the uniqueness of the strictly convex
classical solutions by the comparison principle. In Section 4,
we shall prove uniform estimates for |�̇�|. This will be used
in Section 5 to derive 𝐶0-estimates. 𝐶1-estimates then follow
from [7]. In Section 6, we shall derive 𝐶2-estimates and the
𝐶

2+𝛽,1+𝛽/2-estimates. In Section 7, we will give the proof of
Theorem 1.

Our main result is as follows.

Theorem 1 (the main theorem). Assume thatΩ is a bounded,
uniformly convex domain in 𝑅

𝑛 with the boundary 𝜕Ω ∈

𝐶

4+𝛼. ] denotes the unit inner normal on 𝜕Ω which has been
extended on 𝑄

𝑇
to become a properly smooth vector field

independent of t. Let 𝑔
𝜎
∈ 𝐶

2+𝛼,2+𝛼
(Ω × 𝑅), 𝜎 = 1, 2, and

𝜑 ∈ 𝐶

3+𝛼,3+𝛼
(Ω × 𝑅) that satisfy (2)-(3). Let 𝑢

0
∈ 𝐶

4+𝛼
(Ω)

be a strictly convex function that satisfies (4). Moreover, the
compatibility conditions (5) are fulfilled. Then there exists a
unique strictly convex solution of (1) in 𝐾

4+𝛼 for some 𝛼 ∈

(0, 1), where

𝐾

4+𝛼
:= {V (𝑥, 𝑡) | V (𝑥, 𝑡) ∈ 𝐶2,1 (𝑄

𝑇
) ∩ 𝐶

1,0
(𝑄

𝑇
)

𝑎𝑛𝑑 V (⋅, 𝑡) 𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒

𝑡 ∈ [0, 𝑇] } ∩ 𝐶

4+𝛼,2+𝛼/2
(𝑄

𝑇
) ,

𝑄

𝑇
= Ω × (0, 𝑇] .

(6)

As 𝑡 → ∞, the functions 𝑢|
𝑡
converge to a limit function

𝑢

∞ such that 𝑢∞ is of class 𝐶4(Ω) and satisfies the Neumann
boundary value problem

det1/𝑛 (𝐷2
𝑥
𝑢

∞
) = 𝑔

2
(𝑥, 𝑢

∞
) in Ω

𝑢

∞

] (𝑥) = 𝜑 (𝑥, 𝑢

∞
) on 𝜕Ω,

(7)

where ] is the inward ponting unit normal of 𝜕Ω.

Proof. Uniqueness of the strictly convex classical solution is
given byTheorem 5. From the estimates obtained in Sections
4–6, we get the existence and the asymptotic behavior of the
classical solution in Section 7.

2. Review of Some Notations, Definitions,
and Results

We first review some notations and definitions as follows:

𝑅

𝑛 is the 𝑛-dimensional Euclidean space with 𝑛 ≥ 2;
Ω is a bounded, uniformly convex domain in 𝑅𝑛, and
𝜕Ω denotes the boundary ofΩ;
𝑄

𝑇
= Ω × (0, 𝑇], and 𝜕

𝑃
𝑄

𝑇
denotes the parabolic

boundary of 𝑄
𝑇
, 𝜕
𝑃
𝑄

𝑇
= 𝑄

𝑇
− 𝑄

𝑇
;

�̇� = 𝜕𝑢/𝜕𝑡, �̈� = 𝜕

2
𝑢/𝜕𝑡

2;
𝑢

𝑖
= 𝐷

𝑖
𝑢 = 𝜕𝑢/𝜕𝑥

𝑖
,𝐷𝑢 = (𝐷

1
𝑢, . . . , 𝐷

𝑛
𝑢);

|𝐷𝑢|

2
:= ∑

𝑛

𝑖=1
|𝐷

𝑖
𝑢|

2,𝐷
𝑖𝑗
:= 𝜕

2
/𝜕𝑥

𝑖
𝑥

𝑗
;

(𝑢

𝑖𝑗
) denotes the inverse of (𝑢

𝑖𝑗
);

tr(𝐷2
𝑥
𝑢) denotes the trace of the Hessian matrix (𝑢

𝑖𝑗
);

det(𝐷2
𝑥
𝑢) denotes the determinant of the Hessian

matrix (𝑢
𝑖𝑗
);

𝐶

𝑙,𝑘
(𝑄

𝑇
) := {𝑢(𝑥, 𝑡) | 𝐷

𝑖

𝑥
𝑢 and𝐷𝑗

𝑡
𝑢 are all continuous

in 𝑄
𝑇
(0 ≤ 𝑖 ≤ 𝑙, 0 ≤ 𝑗 ≤ 𝑘)};

𝐶

2𝑙+𝛼,𝑙+𝛼/2
:= {𝑢;𝐷

𝛽
𝐷

𝑟

𝑡
𝑢 ∈ 𝐶

𝛼,𝛼/2
(𝑄

𝑇
), for all 𝛽 and 𝑟

that satisfy |𝛽| + 2𝑟 ≤ 2𝑙} with the norm

|𝑢|2𝑙+𝛼,𝑙+𝛼/2;𝑄
𝑇

= ∑

|
𝛽
|
+2𝑟≤2𝑙











𝐷

𝛽
𝐷

𝑟

𝑡
𝑢









𝛼,𝛼/2;𝑄
𝑇

. (8)

Indices 𝑧 and 𝑝

𝑖
denote partial derivatives with respect

to the argument used for the function 𝑢 and for its gradi-
ent, respectively. This paper adopts the Einstein summation
convention and sums over repeated Latin indices from 1 to 𝑛.
For example, 𝑢

𝑖
V𝑖 means ∑𝑛

𝑖=1
𝑢

𝑖
V𝑖. We will say “a constant 𝐶

under control” or “a controllable constant𝐶” if the constant𝐶
(independent of 𝑇) depends only on the known or estimated
quantities, for example, the 𝐶

4 normal of 𝑢
0
and 𝑛-the

dimension of 𝑅𝑛. We point out that the inequalities remain
valid when 𝐶 is enlarged.

Now, we state existence results.

Lemma 2 (see [11]). Let 𝐹(𝐷2
𝑥
𝑢) = det1/𝑛(𝐷2

𝑥
𝑢), 𝐹𝑖𝑗(𝐷2

𝑥
𝑢) =

𝜕𝐹(𝐷

2

𝑥
𝑢)/𝜕𝑢

𝑖𝑗
; then 𝐹(𝐷2

𝑥
𝑢) is a concave function, (𝐹𝑖𝑗(𝐷2

𝑥
𝑢))

is a positive matrix, and tr(𝐹𝑖𝑗(𝐷2
𝑥
𝑢)) = ∑

𝑛

𝑖=1
𝐹

𝑖𝑖
(𝐷

2

𝑥
𝑢) ≥ 1.

Lemma 3 (see [12]). If 𝑓 ∈ 𝐶

2
([0, 1]), then there exists a

constant𝑀 which is independent of 𝑓, such that











𝑓










≤ 𝑀









𝑓









(









𝑓









+











𝑓










) , (9)

where ||𝑓|| = max{|𝑓(𝑥)| : 0 ≤ 𝑥 ≤ 1}.
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3. Comparison Principle and Uniqueness

This section is concerned with the uniqueness of the strictly
convex classical solution for (1). First of all, we will prove a
comparison principle as follows.

Lemma 4. Assume that 𝑢, 𝑣 ∈ 𝐶

2,1
(𝑄

𝑇
) and 𝑢(⋅, 𝑡), 𝑣(⋅, 𝑡) are

all convex for every time 𝑡 ∈ (0, 𝑇]. For some 𝑇
0
, 𝑇
0
∈ (0, 𝑇),

when 𝑡 ∈ (0, 𝑇

0
], 𝑔
𝜎
(𝑥, 𝑢) = 𝑔

1
(𝑥, 𝑢), and when 𝑡 ∈ (𝑇

0
, 𝑇],

𝑔

𝜎
(𝑥, 𝑢) = 𝑔

2
(𝑥, 𝑢). Let𝑔

𝜎
∈ 𝐶

2,2
(Ω×𝑅),𝜎 = 1, 2, and (𝑔

𝜎
)

𝑧
=

𝜕𝑔

𝜎
(𝑥, 𝑧)/𝜕𝑧 ≥ 0. Moreover, assume that

(1) −�̇� + det1/𝑛(𝐷2
𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) ≥ −V̇ + det1/𝑛(𝐷2

𝑥
V) −

𝑔

𝜎
(𝑥, V) in Ω × (0, 𝑇],

(2) if 𝑢 > V, then 𝑢] > V] on 𝜕Ω × [0, 𝑇],
(3) 𝑢 ≤ V on Ω × {𝑡 = 0},

where ] is the inward pointing unit normal of 𝜕Ω; then 𝑢 ≤ V
in 𝑄
𝑇
.

Proof. Consider

− �̇�+det1/𝑛 (𝐷2
𝑥
𝑢)−𝑔

𝜎
(𝑥, 𝑢)−(−�̇�+det1/𝑛 (𝐷2

𝑥
𝑣)−𝑔

𝜎
(𝑥, 𝑣))

= − (�̇� − V̇)

+ ∫

1

0

𝜕det1/𝑛 [𝑠𝐷2
𝑥
𝑢 + (1 − 𝑠)𝐷

2

𝑥
V]

𝜕 (𝑠𝑢

𝑖𝑗
+ (1 − 𝑠) V

𝑖𝑗
)

𝑑𝑠(𝑢 − V)
𝑖𝑗

− ∫

1

0

𝜕𝑔

𝜎
(𝑥, 𝑠𝑢 + (1 − 𝑠) V)

𝜕 (𝑠𝑢 + (1 − 𝑠) V)
𝑑𝑠 (𝑢 − V)

= − (�̇� − V̇) + 𝑎𝑖𝑗(𝑢 − V)
𝑖𝑗
− 𝑏 (𝑢 − V) ,

(10)

where 𝑎𝑖𝑗 = ∫

1

0
(𝜕det1/𝑛[𝑠𝐷2

𝑥
𝑢 + (1 − 𝑠)𝐷

2

𝑥
V]/𝜕(𝑠𝑢

𝑖𝑗
+ (1 −

𝑠)V
𝑖𝑗
))𝑑𝑠, 𝑏 = ∫

1

0
(𝜕𝑔

𝜎
(𝑥, 𝑠𝑢 + (1 − 𝑠)V)/𝜕(𝑠𝑢 + (1 − 𝑠)V))𝑑𝑠.

From the assumptions and Lemma 2, we obtain that (𝑎𝑖𝑗)
is a positive matrix and 𝑏 ≥ 0.

Combining (10) with condition (1), we infer that

− (�̇� − V̇) + 𝑎𝑖𝑗(𝑢 − V)
𝑖𝑗
− 𝑏 (𝑢 − V) ≥ 0 in Ω × (0, 𝑇] ;

(11)

an application of the weak parabolic maximum principle
gives max

𝑄
𝑇

(𝑢 − V) ≤ max
𝜕
𝑃
𝑄
𝑇

(𝑢 − V)+. In addition, from
condition (2), 𝑢 − V cannot admit a positive maximum on
𝜕Ω × [0, 𝑇]. And from condition (3), 𝑢 ≤ V onΩ× {𝑡 = 0}. So
we obtain that 𝑢 ≤ V in 𝑄

𝑇
.

Theorem 5. Under the assumptions of Theorem 1, there exists
a unique classical solution of (1).

Proof. Assume that 𝑢, V ∈ 𝐶2,1(𝑄
𝑇
) are two classical solutions

of (1). Then we have

�̇� = det1/𝑛 (𝐷2
𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) in Ω × (0, 𝑇] ,

𝑢 = 𝑢

0
(𝑥) on Ω × {𝑡 = 0} ;

(12)

meanwhile,

V̇ = det1/𝑛 (𝐷2
𝑥
V) − 𝑔

𝜎
(𝑥, V) in Ω × (0, 𝑇] ,

V = 𝑢

0
(𝑥) on Ω × {𝑡 = 0} .

(13)

Thus,

− �̇� + det1/𝑛 (𝐷2
𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢)

= −V̇ + det1/𝑛 (𝐷2
𝑥
V) − 𝑔

𝜎
(𝑥, V) in Ω × (0, 𝑇] ,

𝑢 = V on Ω × {𝑡 = 0} .

(14)

It follows that conditions (1) and (3) in Lemma 4 are satisfied.
From 𝑢] = 𝜑(𝑥, 𝑢) on 𝜕Ω × [0, 𝑇] and the structure

condition (2), we obtain that condition (2) in Lemma 4 is
satisfied.

Since 𝑔
𝜎
∈ 𝐶

2+𝛼,2+𝛼
(Ω × 𝑅) and the structure condition

(3) is satisfied, we obtained from Lemma 4 that 𝑢 = V for all
(𝑥, 𝑡) ∈ 𝑄

𝑇
.

4. �̇�-Estimates

The proof of the �̇�-estimates can be carried out as in [6]. For
a constant 𝜆 we define the function 𝑟 = 𝑒

𝜆𝑡
(�̇�)

2; thus

̇𝑟 = 𝜆𝑒

𝜆𝑡
(�̇�)

2
+ 2𝑒

𝜆𝑡
�̇��̈�

= 𝜆𝑟 + 2𝑒

𝜆𝑡
�̇�

𝑑

𝑑𝑡

(det1/𝑛 (𝐷2
𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢))

= 𝜆𝑟 +

2

𝑛

𝑒

𝜆𝑡
�̇��̇�

𝑖𝑗
𝑢

𝑖𝑗
⋅ det1/𝑛 (𝐷2

𝑥
𝑢) − 2𝑟(𝑔

𝜎
)

𝑧

= 𝜆𝑟 +

1

𝑛

(𝑟

𝑖𝑗
− 2𝑒

𝜆𝑡
�̇�

𝑖
�̇�

𝑗
) 𝑢

𝑖𝑗
⋅ det1/𝑛 (𝐷2

𝑥
𝑢) − 2𝑟(𝑔

𝜎
)

𝑧

=

1

𝑛

det1/𝑛 (𝐷2
𝑥
𝑢) 𝑢

𝑖𝑗
𝑟

𝑖𝑗
−

2

𝑛

𝑒

𝜆𝑡det1/𝑛 (𝐷2
𝑥
𝑢) 𝑢

𝑖𝑗
�̇�

𝑖
�̇�

𝑗

+ (𝜆 − 2(𝑔

𝜎
)

𝑧
) 𝑟.

(15)

So (1) implies the following evolution equation for 𝑟:

̇𝑟 =

1

𝑛

det1/𝑛 (𝐷2
𝑥
𝑢) 𝑢

𝑖𝑗
𝑟

𝑖𝑗
−

2

𝑛

𝑒

𝜆𝑡det1/𝑛 (𝐷2
𝑥
𝑢) 𝑢

𝑖𝑗
�̇�

𝑖
�̇�

𝑗

+ (𝜆 − 2(𝑔

𝜎
)

𝑧
) 𝑟.

(16)

Theorem 6. As long as a strictly convex solution of (1) exists,
one obtains the estimates

|�̇�|

0,𝑄
𝑇

≤ 𝑀, (17)

where𝑀 is a controllable constant.

Proof. If (�̇�)2 admits a positive local maximum in 𝑥 ∈ 𝜕Ω for
a positive time, then we differentiate the Neumann boundary
condition and obtain from (2) that

((�̇�)

2
)

]
= 2�̇�(�̇�)] = 2�̇� (�̇�]) = 2(�̇�)

2
𝜑

𝑧
> 0 (18)

which contradicts the maximality of (�̇�)2 at 𝑥.
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Now we choose 𝜆 = 0 in (16) and get

𝑑(�̇�)

2

𝑑𝑡

=

1

𝑛

𝑢

𝑖𝑗det1/𝑛 (𝐷2
𝑥
𝑢) ((�̇�)

2
)

𝑖𝑗

−

2

𝑛

𝑢

𝑖𝑗det1/𝑛 (𝐷2
𝑥
𝑢) �̇�

𝑖
�̇�

𝑖
− 2(𝑔

𝜎
)

𝑧
(�̇�)

2

≤

1

𝑛

det1/𝑛 (𝐷2
𝑥
𝑢) 𝑢

𝑖𝑗
((�̇�)

2
)

𝑖𝑗
− 2(𝑔

𝜎
)

𝑧
(�̇�)

2
.

(19)

Since det 𝐷2
𝑥
𝑢 > 0, (𝑔

𝜎
)

𝑧
≥ 0, we obtain from the parabolic

maximum principle that

max
𝑄
𝑇

(�̇�)

2
≤ max
𝜕
𝑃
𝑄
𝑇

((�̇�)

2
)

+

. (20)

From the aforementioned a positive local maximum of (�̇�)2
cannot occur at a point of 𝜕Ω for a positive time, so

(�̇�)

2
≤ max
𝑡=0

(�̇�)

2
⇒ |�̇�| ≤ max

𝑡=0

|�̇�| . (21)

From the fact that the solution is smooth up to the initial time
𝑡 = 0, we get

�̇� = det1/𝑛 (𝐷2
𝑥
𝑢

0
) − 𝑔

1
(𝑥, 𝑢

0
) on Ω × {𝑡 = 0} . (22)

By (21) and (22), there exists a controllable constant𝑀 such
that |�̇�|

0,𝑄
𝑇

≤ 𝑀. Here we have used the fact that 𝑢
0
∈ 𝐶

4
(Ω).

Lemma 7. If 0 ≤ �̇�(𝑥, 0) ̸≡ 0 for 𝑡 = 0, then a solution of (1)
satisfies �̇� > 0 or equivalently det1/𝑛(𝐷2

𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) > 0 for

𝜎 = 1, 2 and 𝑡 > 0.

Proof. We use the methods known from [6]. Differentiating
the equation

�̇� = det1/𝑛 (𝐷2
𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) (23)

yields

�̈� =

1

𝑛

det1/𝑛 (𝐷2
𝑥
𝑢) 𝑢

𝑖𝑗
�̇�

𝑖𝑗
− (𝑔

𝜎
)

𝑧
�̇�. (24)

From (24) and parabolic maximum principle, we see that

inf
𝑄
𝑇

(�̇�) ≥ inf
𝜕
𝑃
𝑄
𝑇

(�̇�)

−
, (25)

where (�̇�)
−
= min{�̇�, 0}.

If �̇� admits a negative local minimum in 𝑥 ∈ 𝜕Ω for a
positive time, then we differentiate the Neumann boundary
condition and get from (2) that

(�̇�)] = (�̇�]) = 𝜑

𝑧
�̇� < 0 (26)

which contradicts the minimum of (�̇�) at 𝑥. Since 0 ≤ �̇�(𝑥, 0),
it follows that inf

𝜕
𝑃
𝑄
𝑇

(�̇�)

−
= 0. That is,

inf
𝑄
𝑇

(�̇�) ≥ inf
𝜕
𝑃
𝑄
𝑇

(�̇�)

−
= 0. (27)

So �̇� ≥ 0 or equivalently det1/𝑛(𝐷2
𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) ≥ 0 for 𝜎 =

1, 2 and 𝑡 > 0.
From (24) and the strong parabolic maximum principle

[13], we obtain that �̇� has to vanish identically if it vanishes in
(𝑥

0
, 𝑡

0
) ∈ Ω × (0, 𝑇], contradicting �̇� ̸≡ 0 for 𝑡 = 0. If �̇� = 0

for 𝑥
0
∈ 𝜕Ω, the Neumann boundary condition implies that

(�̇�)] = (�̇�) 𝜑

𝑧
= 0, (28)

but this is impossible in view of the Hopf lemma applied to
(24).

Consequently, if 0 ≤ �̇�(𝑥, 0) ̸≡ 0 for 𝑡 = 0, then a solution
of (1) satisfies �̇� > 0 or equivalently det1/𝑛(𝐷2

𝑥
𝑢)−𝑔

𝜎
(𝑥, 𝑢) > 0

for 𝜎 = 1, 2 and 𝑡 > 0.

5. 𝐶0- and 𝐶

1-Estimates

In this section we derive the 𝐶

0- and 𝐶

1-estimates of the
solution to problem (1).

Theorem 8. LetΩ be a bounded, uniformly convex domain in
𝑅

𝑛. Also, 𝑢 ∈ 𝐶

2,1
(𝑄

𝑇
) ∩ 𝐶

1,0
(𝑄

𝑇
) is a strictly convex solution

of (1). Then there exists a controllable constant 𝑀
0
, such that

|𝑢|

0,𝑄
𝑇

≤ 𝑀

0
.

Proof. Since (4) is satisfied, we obtained from Lemma 7 that
�̇� ≥ 0 in𝑄

𝑇
. So𝑢(𝑥, 𝑡) ≥ 𝑢(𝑥, 0) = 𝑢

0
(𝑥). As𝑢

0
(𝑥) ∈ 𝐶

4+𝛼
(Ω),

then there exists a controllable constant𝑁
1
such that

𝑢 (𝑥, 𝑡) ≥ 𝑁

1
in 𝑄

𝑇
. (29)

Next we will prove that 𝑢 is uniformly a priori bounded
from above.

At amaximumof 𝑢, which necessarily occurs on 𝜕Ω since
𝑢 is convex, we have 𝑢] ≤ 0. Since 𝑢] = 𝜑(𝑥, 𝑢) on 𝜕Ω×[0, 𝑇],
then

𝜑 (𝑥, 𝑢) ≤ 0 (𝑥, 𝑡) ∈ 𝜕Ω × [0, 𝑇] . (30)

From (2) we get that 𝜑(⋅, 𝑧) → ∞ uniformly as 𝑧 → ∞.
Then we can deduce that 𝜑(𝑥, 𝑧) > 0 for all 𝑥 ∈ 𝜕Ω and 𝑧 >

𝑁

2
, where𝑁

2
is controllable constant. Combining (30) yields

𝑢 ≤ 𝑁

2
. (31)

This completes the proof of the theorem.

Theorem 9. LetΩ be a bounded, uniformly convex domain in
𝑅

𝑛, and 𝑢 ∈ 𝐶4,2(𝑄
𝑇
) ∩𝐶

1,0
(𝑄

𝑇
) is a strictly convex solution of

(1). Then one has

sup
𝑄
𝑇

|𝐷𝑢| ≤ 𝑀

∗
, (32)

where𝑀∗ is a controllable constant.

Proof. For any 𝑡

0
∈ [0, 𝑇], 𝑢(𝑥, 𝑡

0
) is a continuous differ-

entiable, convex function. From 𝑢] = 𝜑(𝑥, 𝑢) and the 𝐶0-
estimates, we get

𝑢] ≥ −𝑀, (33)
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where𝑀 is a controllable constant. Then using Theorem 2.2
in [7], we have









𝐷𝑢 (𝑥, 𝑡

0
)









≤ 𝑀

1
on Ω. (34)

Since 𝑡
0
is arbitrary, we obtain that

|𝐷𝑢| ≤ 𝑀

∗
, (35)

where𝑀∗ is a controllable constant.This completes the proof
of the theorem.

6. 𝐶2- and 𝐶

2+𝛽,1+𝛽/2-Estimates

This section is concerned with the 𝐶

2-estimates and the
𝐶

2+𝛽,1+𝛽/2-estimates of the solution to problem (1).

Theorem 10. Assume that Ω is a 𝐶

4 bounded, uniformly
convex domain in 𝑅

𝑛 and 𝑢 ∈ 𝐶

4,2
(𝑄

𝑇
) is a strictly convex

solution of (1). Let 𝑔
𝜎
∈ 𝐶

2,2
(Ω×𝑅), 𝜎 = 1, 2, 𝜑 ∈ 𝐶

3,3
(Ω×𝑅).

Then one has

sup
𝑄
𝑇











𝐷

2

𝑥
𝑢











≤ 𝑀


, (36)

where𝑀 is a controllable constant.

Proof. Let 𝜉 ∈ 𝑆𝑛−1. First we observe that𝐷
𝜉𝜉
𝑢 > 0, since 𝑢 is

strictly convex. So we only need to prove the fact that𝐷
𝜉𝜉
𝑢 is

a priori bounded from above.
We define for (𝑥, 𝑡, 𝜉) ∈ Ω × [0, 𝑇] × 𝑆

𝑛−1 that

𝜔 (𝑥, 𝑡, 𝜉) = 𝐷

𝜉𝜉
𝑢 − 𝑉 (𝑥, 𝑡, 𝜉) + 𝐾|𝑥|

2
, (37)

where 𝑉(𝑥, 𝜉, 𝑡) is given by

𝑉 (𝑥, 𝜉, 𝑡) = 2 ⟨𝜉, ]⟩ 𝜉
𝑖
(𝐷

𝑖
𝜑 − 𝐷

𝑘
𝑢𝐷

𝑖
]
𝑘
) . (38)

Here ] is a smooth extension of the inner unit normal on 𝜕Ω
that is independent of 𝑡. 𝜉 is given by

𝜉


= 𝜉 − ⟨𝜉, ]⟩ ], (39)

𝐾 is a constant to be chosen, and 𝐷 indicates that the chain
rule has not yet been applied to the respective terms.

Let

𝑎

𝑘
= 2 ⟨𝜉, ]⟩ (𝜑

𝑧
𝜉



𝑘
− 𝜉



𝑖
𝐷

𝑖
]
𝑘
) ,

𝑏 = 2 ⟨𝜉, ]⟩ 𝜉
𝑖
𝜑

𝑖
,

(40)

then
𝑉 (𝑥, 𝜉, 𝑡) = 𝑎

𝑘
𝑢

𝑘
+ 𝑏,

𝜔 (𝑥, 𝑡, 𝜉) = 𝐷

𝜉𝜉
𝑢 − 𝑎

𝑘
𝑢

𝑘
− 𝑏 + 𝐾|𝑥|

2
.

(41)

We compute that

−

𝜕𝜔

𝜕𝑡

+ 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝜔 = − 𝐷

𝜉𝜉𝑡
𝑢 + 𝑎

𝑘
𝐷

𝑡𝑘
𝑢 + 𝐷

𝑡
𝑎

𝑘
⋅ 𝑢

𝑘
+ 𝐷

𝑡
𝑏

+ 𝐹

𝑖𝑗
𝐷

𝑖𝑗𝜉𝜉
𝑢 − 𝑎

𝑘
𝐹

𝑖𝑗
⋅ 𝑢

𝑖𝑗𝑘
− 2𝐹

𝑖𝑗
𝐷

𝑖
𝑎

𝑘
⋅ 𝑢

𝑘𝑗

− 𝐹

𝑖𝑗
⋅ 𝑢

𝑘
𝐷

𝑖𝑗
𝑎

𝑘
− 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝑏 + 2𝐾𝐹

𝑖𝑗
𝛿

𝑖𝑗
.

(42)

Next, we estimate the right-hand side of (42), respectively.
Let 𝐹(𝐷2

𝑥
𝑢) = det1/𝑛(𝐷2

𝑥
𝑢). From Lemma 2, we have that

𝐹(𝐷

2

𝑥
𝑢) is a concave function, (𝐹𝑖𝑗(𝐷2

𝑥
𝑢)) is a positive matrix,

and tr(𝐹𝑖𝑗(𝐷2
𝑥
𝑢)) = ∑

𝑛

𝑖=1
𝐹

𝑖𝑖
(𝐷

2

𝑥
𝑢) ≥ 1.

Differentiating the equation

�̇� = 𝐹 (𝐷

2

𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) (43)

twice in the direction 𝜉, 𝜉 ∈ 𝑆𝑛−1, we therefore obtain

−𝐷

𝑡𝜉𝜉
𝑢 + 𝐹

𝑖𝑗
𝐷

𝑖𝑗𝜉𝜉
𝑢 + 𝐹

𝑖𝑗,𝑘𝑙
𝐷

𝑖𝑗𝜉
𝑢𝐷

𝑘𝑙𝜉
𝑢 = 𝐷

𝜉𝜉
𝑔

𝜎
(𝑥, 𝑢) .

(44)

Using the concavity of 𝐹, we have

𝐹

𝑖𝑗,𝑘𝑙
𝐷

𝑖𝑗𝜉
𝑢𝐷

𝑘𝑙𝜉
𝑢 ≤ 0; (45)

then

−𝐷

𝑡𝜉𝜉
𝑢 + 𝐹

𝑖𝑗
𝐷

𝑖𝑗𝜉𝜉
𝑢 ≥ 𝐷

𝜉𝜉
𝑔

𝜎
(𝑥, 𝑢) . (46)

Differentiating the equation

�̇� = 𝐹 (𝐷

2

𝑥
𝑢) − 𝑔

𝜎
(𝑥, 𝑢) (47)

in the 𝑘th coordinate direction, we obtain

−𝐷

𝑡𝑘
𝑢 + 𝐹

𝑖𝑗
𝐷

𝑖𝑗𝑘
𝑢 = 𝐷

𝑘
𝑔

𝜎
. (48)

From (𝐹

𝑖𝑗
) = 𝜕𝐹(𝐷

2

𝑥
𝑢)/𝜕𝑢

𝑖𝑗
= (𝐹(𝐷

2

𝑥
𝑢)/𝑛)𝑢

𝑖𝑗, where (𝑢𝑖𝑗) is
the inverse of (𝑢

𝑖𝑗
), we have

𝐹

𝑖𝑗
𝐷

𝑖
𝑎

𝑘
⋅ 𝑢

𝑘𝑗
=

𝐹 (𝐷

2

𝑥
𝑢)

𝑛

𝑢

𝑖𝑗
𝑢

𝑘𝑗
⋅ 𝐷

𝑖
𝑎

𝑘
=

𝐹 (𝐷

2

𝑥
𝑢)

𝑛

𝐷

𝑖
𝑎

𝑖
.

(49)

Using the estimates of �̇� and𝑢, we obtain that𝐹(𝐷2
𝑥
𝑢) = �̇�+𝑔

𝜎

is bounded. From

𝐷

𝑗
𝑎

𝑗
= 2𝜉

𝑙
𝐷

𝑗
]
𝑙
(𝜑

𝑧
𝜉



𝑗
− 𝜉



𝑖
𝐷

𝑖
]
𝑗
)

+ 2 ⟨𝜉, ]⟩ [(𝜑
𝑧𝑗
+ 𝜑

𝑧𝑧
𝐷

𝑗
𝑢) 𝜉



𝑗
− 𝜉



𝑖
𝐷

𝑗𝑖
]
𝑗
] ,

(50)

as well as 𝐶

0- and 𝐶

1-estimates, it follows that |𝐷
𝑗
𝑎

𝑗
| is

bounded.Thus there exists a controllable constant𝐶 such that










𝐹

𝑖𝑗
𝐷

𝑖
𝑎

𝑘
⋅ 𝑢

𝑘𝑗











≤ 𝐶. (51)

Since (𝐹𝑖𝑗) is positive definite, we can get that










𝐹

𝑖𝑗








≤

1

2

(𝐹

𝑖𝑖
+ 𝐹

𝑗𝑗
) . (52)

Applying (52), 𝐶1-estimates, and the following equality:

𝐷

𝑗ℎ
𝑎

𝑘
= 2𝜉

𝑙
𝐷

𝑗ℎ
]
𝑙
(𝜑

𝑧
𝜉



𝑘
− 𝜉



𝑖
𝐷

𝑖
]
𝑘
)

+ 2𝜉

𝑙
𝐷

𝑗
]
𝑙
[(𝜑

𝑧ℎ
+ 𝜑

𝑧𝑧
𝑢

ℎ
) 𝜉



𝑘
− 𝜉



𝑖
𝐷

𝑖ℎ
]
𝑘
]

+ 2𝜉

𝑠
𝐷

ℎ
]
𝑠
[(𝜑

𝑧𝑗
+ 𝜑

𝑧𝑧
𝑢

𝑗
) 𝜉



𝑘
− 𝜉



𝑖
𝐷

𝑖𝑗
]
𝑘
]

+ 2 ⟨𝜉, ]⟩ { [(𝜑
𝑧𝑗ℎ

+ 𝜑

𝑧𝑗𝑧
𝑢

ℎ
) + (𝜑

𝑧𝑧ℎ
+ 𝜑

𝑧𝑧𝑧
𝑢

ℎ
) 𝑢

𝑗

+𝜑

𝑧𝑧
𝑢

𝑗ℎ
] 𝜉



𝑘
− 𝜉



𝑖
𝐷

𝑖𝑗ℎ
]
𝑘
} ,

(53)
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we obtain that










𝐹

ℎ𝑗
⋅ 𝑢

𝑘
𝐷

ℎ𝑗
𝑎

𝑘











≤











𝑢

𝑘
𝐹

ℎ𝑗
2 ⟨𝜉, ]⟩ 𝜑

𝑧𝑧
𝑢

𝑗ℎ
𝜉



𝑘











+ 𝐶











𝐹

ℎ𝑗








=























2𝑢

𝑘
⟨𝜉, ]⟩ 𝜑

𝑧𝑧
𝜉



𝑘

𝐹 (𝐷

2

𝑥
𝑢)

𝑛

𝑢

ℎ𝑗
𝑢

𝑗ℎ























+ 𝐶











𝐹

ℎ𝑗








≤ 𝐶

1
+ 𝐶

2
tr (𝐹𝑖𝑗) ,

(54)

where 𝐶
1
and 𝐶

2
are positive controllable constants.

From (51), (54), and the estimates like these, it follows that











𝐷

𝑡
𝑎

𝑘
⋅ 𝑢

𝑘
+ 𝐷

𝑡
𝑏 − 2𝐹

𝑖𝑗
𝐷

𝑖
𝑎

𝑘
⋅ 𝑢

𝑘𝑗
− 𝐹

𝑖𝑗
⋅ 𝑢

𝑘
𝐷

𝑖𝑗
𝑎

𝑘
− 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝑏











≤ 𝑐

1
tr (𝐹𝑖𝑗) + 𝑐

2
,

(55)

where 𝑐
1
and 𝑐
2
are positive controllable constants.Then using

(46) and (48), we can obtain

−

𝜕𝜔

𝜕𝑡

+ 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝜔 ≥ 𝐷

𝜉𝜉
𝑔

𝜎
− 𝑎

𝑘
𝐷

𝑘
𝑔

𝜎

− (𝑐

1
tr (𝐹𝑖𝑗) + 𝑐

2
) + 2𝐾𝐹

𝑖𝑗
𝛿

𝑖𝑗

= (𝑔

𝜎
)

𝜉𝜉
+ 2(𝑔

𝜎
)

𝜉𝑧
𝑢

𝜉
+ (𝑔

𝜎
)

𝑧𝑧
𝑢

𝜉
𝑢

𝜉

+ (𝑔

𝜎
)

𝑧
𝑢

𝜉𝜉
− 𝑎

𝑘
((𝑔

𝜎
)

𝑘
+ (𝑔

𝜎
)

𝑧
𝑢

𝑘
)

− (𝑐

1
tr (𝐹𝑖𝑗) + 𝑐

2
) + 2𝐾𝐹

𝑖𝑗
𝛿

𝑖𝑗

≥ (𝑔

𝜎
)

𝜉𝜉
+ 2(𝑔

𝜎
)

𝜉𝑧
𝑢

𝜉
+ (𝑔

𝜎
)

𝑧𝑧
𝑢

𝜉
𝑢

𝜉

− 𝑎

𝑘
((𝑔

𝜎
)

𝑘
+ (𝑔

𝜎
)

𝑧
𝑢

𝑘
)

− (𝑐

1
tr (𝐹𝑖𝑗) + 𝑐

2
) + 2𝐾𝐹

𝑖𝑗
𝛿

𝑖𝑗
,

(56)

where we have used the structure condition (3) and the
convexity of 𝑢. Using 𝐶

0- and 𝐶

1-estimates, there exist
positive controllable constants 𝑐

3
and 𝑐
4
such that

−

𝜕𝜔

𝜕𝑡

+ 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝜔 ≥ (2𝐾 − 𝑐

3
) tr (𝐹𝑖𝑗) − 𝑐

4
.

(57)

Since tr(𝐹𝑖𝑗) ≥ 1, we fix𝐾 ≥ (1/2)(𝑐

3
+ 𝑐

4
+ 1) and deduce

that

−

𝜕𝜔

𝜕𝑡

+ 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝜔 ≥ 1.

(58)

Thus by the parabolic maximum principle, we have

𝜔 ≤ sup
𝜕
𝑃
𝑄
𝑇

𝜔. (59)

As 𝜔 is known onΩ×{𝑡 = 0}×𝑆

𝑛−1, we need only to estimate
𝜔 on 𝜕Ω × [0, 𝑇] × 𝑆

𝑛−1.

The estimation of 𝜔 on 𝜕Ω × [0, 𝑇] × 𝑆

𝑛−1 splits into
four stages according to the direction 𝜉. The first three stages:
(i) the mixed tangential normal second derivatives of 𝑢 on
𝜕Ω × [0, 𝑇] × 𝑆

𝑛−1, (ii) 𝜉 tangential, and (iii) 𝜉 nontangential,
can be carried out as in [7].Thedetails of this procedure could
be seen in [7]. Stage (i) is readily estimated. Stages (ii) and
(iii) are reduced to the purely normal case. So we only give
the proof of the fourth stage: (iv) 𝜉 normal. We extend the
argument given in [2] and modified for the parabolic case.

Set ℎ(𝑥, 𝑡) = ]
𝑘
𝐷

𝑘
𝑢 − 𝜑(𝑥, 𝑢) = 𝐷]𝑢 − 𝜑(𝑥, 𝑢). By (48), a

direct calculation yields

𝐿ℎ = −𝐷

𝑡
ℎ + 𝐹

𝑖𝑗
𝐷

𝑖𝑗
ℎ

= −]
𝑘
𝐷

𝑘𝑡
𝑢 + 𝜑

𝑧
𝐷

𝑡
𝑢 + ]
𝑘
𝐹

𝑖𝑗
𝐷

𝑖𝑗𝑘
𝑢

+ 2𝐹

𝑖𝑗
𝐷

𝑖
]
𝑘
𝐷

𝑗𝑘
𝑢 + 𝐹

𝑖𝑗
𝐷

𝑖𝑗
]
𝑘
𝐷

𝑘
𝑢 − 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝜑

= ]
𝑘
((𝑔

𝜎
)

𝑘
+ (𝑔

𝜎
)

𝑧
𝑢

𝑘
) + 𝜑

𝑧
𝐷

𝑡
𝑢

+ 2𝐹

𝑖𝑗
𝐷

𝑖
]
𝑘
𝐷

𝑗𝑘
𝑢 + 𝐹

𝑖𝑗
𝐷

𝑖𝑗
]
𝑘
𝐷

𝑘
𝑢

− 𝐹

𝑖𝑗
(𝜑

𝑖𝑗
+ 2𝜑

𝑖𝑧
𝑢

𝑗
+ 𝜑

𝑧𝑧
𝑢

𝑖
𝑢

𝑗
+ 𝜑

𝑧
𝑢

𝑖𝑗
) .

(60)

Thus, using (𝐹

𝑖𝑗
) = (𝐹(𝐷

2

𝑥
𝑢)/𝑛)𝑢

𝑖𝑗, (52), and our a priori
estimates, we have

|𝐿ℎ| =











−𝐷

𝑡
ℎ + 𝐹

𝑖𝑗
𝐷

𝑖𝑗
ℎ











≤ 𝐶

0
(1 + tr (𝐹𝑖𝑗)) ≤ 𝐶 tr (𝐹𝑖𝑗) ,

(61)

where 𝐶 is a controllable constant.
Let (𝑥

0
, 𝑡

0
) ∈ 𝜕Ω × [0, 𝑇], and (𝑥

0
, 𝑡

0
) is arbitrary. We

observe thatΩ is a bounded, uniformly convex domain in𝑅𝑛,
so there exists a uniformly closed ball 𝐵

𝑅
(𝑥

∗
) such that

Ω ⊂ 𝐵

𝑅
(𝑥

∗
) ⊂ 𝑅

𝑛
,

𝜕𝐵

𝑅
(𝑥

∗
) ∩ 𝜕Ω = {𝑥

0
} .

(62)

Meanwhile, we assume that |𝑥 − 𝑥∗| > 1 for all 𝑥 ∈ Ω.
We consider the auxiliary function in 𝐵

𝑅
(𝑥

∗
) × [0, 𝑇]

𝑞 (𝑥, 𝑡) = 𝑒

𝐾
1
𝑅
2

− 𝑒

𝐾
1
|𝑥−𝑥
∗
|
2

,

(63)

where𝐾
1
is a positive constant to be determined.

If we choose 𝐾
1
sufficiently large, it is easy to see that

𝑞(𝑥, 𝑡) ≥ ℎ(𝑥, 𝑡) on 𝜕
𝑃
𝑄

𝑇
. For sufficiently large 𝐾

1
, we have

−

𝜕𝑞

𝜕𝑡

+ 𝐹

𝑖𝑗
𝐷

𝑖𝑗
𝑞 = −2𝐾

1
tr (𝐹𝑖𝑗) 𝑒𝐾1|𝑥−𝑥

∗
|
2

− 4𝐾

2

1
𝐹

𝑖𝑗
(𝑥 − 𝑥

∗
)

𝑖
(𝑥 − 𝑥

∗
)

𝑗
𝑒

𝐾
1
|𝑥−𝑥
∗
|
2

≤ −2𝐾

1
tr (𝐹𝑖𝑗) 𝑒𝐾1|𝑥−𝑥

∗
|
2

≤ −𝐶 tr (𝐹𝑖𝑗) ,
(64)

where we have used the fact that (𝐹𝑖𝑗) is positive definite.
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By (61) and (64), we get

−

𝜕 (𝑞 − ℎ)

𝜕𝑡

+ 𝐹

𝑖𝑗
𝐷

𝑖𝑗
(𝑞 − ℎ) ≤ 0;

(65)

thus we obtain 𝑞−ℎ ≥ inf
𝜕
𝑃
𝑄
𝑇

(𝑞−ℎ) ≥ 0 on𝑄
𝑇
in view of the

parabolic maximum principle. Since 𝑞(𝑥
0
, 𝑡

0
) = ℎ(𝑥

0
, 𝑡

0
) = 0,

it follows that

(𝑞 − ℎ) (𝑥

0
+ 𝜌]) − (𝑞 − ℎ) (𝑥

0
, 𝑡

0
)

𝜌

≥ 0 (66)

thus

lim
𝜌→0

+

(𝑞 − ℎ) (𝑥

0
+ 𝜌]) − (𝑞 − ℎ) (𝑥

0
, 𝑡

0
)

𝜌

≥ 0. (67)

Therefore,

𝐷] (𝑞 − ℎ) (𝑥0, 𝑡0) ≥ 0. (68)

Hence,

ℎ] (𝑥0, 𝑡0) ≤ 𝑞] (𝑥0, 𝑡0) ≤ 𝑐

1
, (69)

where 𝑐
1
is a controllable constant.

For −𝑞, in a similar fashion we can obtain

ℎ] (𝑥0, 𝑡0) ≥ −𝑐

2
, (70)

where 𝑐
2
is a controllable constant.

Since (𝑥
0
, 𝑡

0
) ∈ 𝜕Ω × [0, 𝑇] is arbitrary, we obtain

sup
𝜕Ω×[0,𝑇]

𝐷]]𝑢 ≤ 𝐶, (71)

where 𝐶 is a controllable constant.
Combining the estimates of the four stages, we obtain that

there exists a controllable constant 𝐶 such that 𝐷
𝜉𝜉
𝑢 ≤ 𝐶 on

𝑄

𝑇
.
Since 𝜉 is an arbitrary direction in 𝑆

𝑛−1, now let 𝜉 =

𝑒

𝑖
± 𝑒

𝑗
/2

1/2, where 𝑒
𝑖
= (0, 0 . . . , 1, . . . 0) = 𝑖th standard coor-

dinate vector. Thus we can get the required bounded for𝐷2
𝑥
𝑢

immediately. This completes the proof of the theorem.

From the uniform 𝐶

0-estimates, �̇�-estimates, and the
assumptions on 𝑔

𝜎
, 𝜎 = 0, 1, we can conclude that 𝐹(𝐷2𝑢)

has a priori positive bound from below. And using the
uniform 𝐶

2-estimates for 𝑢, we obtain that (1) is uniformly
parabolic. So we can apply the method of [14] to obtain
the 𝐶2+𝛽,1+𝛽/2 interior estimates and the estimates near the
bottom. Using the estimates near the side in [15], we can get
the Hölder seminorm estimates for �̇� and𝐷2

𝑥
𝑢. Thus we have

the 𝐶2+𝛽,1+𝛽/2-estimates.

7. The Proof of Theorem 1

In Section 3 we proved the uniqueness of the strictly convex
solution for (1). The existence of the strictly convex solution
for (1) is obtained by using the continuity method. Applying

Theorem 5.3 in [16], the implicit function theorem, and the
Arzela-Ascoli theorem, we can get the desired result. Then
the standard regularity of parabolic equation implies that 𝑢 ∈
𝐶

4+𝛽,2+𝛽/2
(𝑄

𝑇
). Since there are sufficient a priori estimates,

we can extend a solution of (1) on a time interval [0, 𝑇] to
[0, 𝑇 + 𝜖) for a small 𝜖 > 0. In this way we obtain existence
for all 𝑡 ≥ 0 from the a priori estimates. We then need
the following lemma to prove the asymptotic behavior of a
classical solution of (1).

Lemma 11. If a solution of (1) exists for all 𝑡 ≥ 0 and (4)
is satisfied, then as 𝑡 → ∞, the functions 𝑢|

𝑡
converge to a

limit function 𝑢

∞
(𝑥) such that 𝑢∞(𝑥) satisfies the Neumann

boundary value problem

det1/𝑛 (𝐷2
𝑥
𝑢

∞
) = 𝑔

2
(𝑥, 𝑢

∞
) 𝑥 ∈ Ω,

𝑢

∞

] = 𝜑 (𝑥, 𝑢

∞
) 𝑥 ∈ 𝜕Ω,

(72)

where ] is the unit inner normal on 𝜕Ω. Moreover, 𝑢(𝑥, 𝑡) →

𝑢

∞
(𝑥) in 𝐶3-norm.

Proof. Wemay assume that �̇�(⋅, 0) ̸≡ 0 and proceed as in [17].
Integrating the equation

�̇� = det1/𝑛 (𝐷2
𝑥
𝑢) − 𝑔

2
(𝑥, 𝑢) (73)

with respect to 𝑡 yields

𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑇

0
)

= ∫

𝑡

𝑇
0

(det1/𝑛 (𝐷2
𝑥
𝑢 (𝑥, 𝜏)) − 𝑔

2
(𝑥, 𝑢 (𝑥, 𝜏))) 𝑑𝜏.

(74)

The left-hand side is uniformly bounded in view of the
𝐶

0-estimates. By applying Lemma 7, det1/𝑛(𝐷2
𝑥
𝑢) − 𝑔

2
is

nonnegative, and we can find that 𝑡
𝑘
= 𝑡

𝑘
(𝑥) → ∞ such

that

(det1/𝑛 (𝐷2
𝑥
𝑢) − 𝑔

2
)









𝑡=𝑡
𝑘

→ 0. (75)

On the other hand, 𝑢(𝑥, ⋅) is monotone, and therefore

lim
𝑡→∞

𝑢 (𝑥, 𝑡) =: 𝑢

∞
(𝑥) (76)

exists and is of class 𝐶4(Ω) in view of the a priori estimates.
Fromdifferential interpolation inequality in Lemma 3,we

can obtain the interpolation inequality of the form

‖𝐷�̃�‖ ≤ 𝐶 ‖�̃�‖ ⋅ (











𝐷

2

𝑥
�̃�











+ ‖�̃�‖) (77)

for �̃� = 𝑢 − 𝑢

∞, where ‖ ⋅ ‖ denotes the sup-norm.
Dini’s theorem and interpolation inequalities of the form

(77) yield 𝑢(𝑥, 𝑡) → 𝑢

∞
(𝑥) in 𝐶

3-norm. We finally, obtain
in view of (75) that 𝑢∞ is a solution of the problem (72). This
complete, the proof of the lemma.

Now we completed the proof of Theorem 1.
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