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The purpose of this paper is to study a class of discrete nonlinear Schrödinger equations. Under a weak superlinearity condition at
infinity instead of the classical Ambrosetti-Rabinowitz condition, the existence of standing waves of the equations is obtained by
using the Nehari manifold approach.

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation was
first derived in the context of nonlinear optics by Christo-
doulides and Joseph [1]; see also [2–5]. DNLS equation
is one of the most important inherently discrete models,
having a crucial role in the modeling of a great variety
of phenomena, ranging from solid state and condensed
matter physics to biology [6–10]. For example, Davydov [6]
studied the equation in molecular biology and Su et al. [10]
considered the equation in condensedmatter physics. Eilbeck
et al. [11] firstly pointed out the universal nature of the discrete
nonlinear Schrödinger equation and reported a number of
applications.

For the analytical study, many authors studied the exis-
tence results of standing wave solutions for DNLS equa-
tions. Much of the works concerns the periodic DNLS
equations [12–14]. Recently, some authors considered the
DNLS equations with infinitely growing potential. Zhang and
Pankov [15, 16] devoted their efforts to the case of infinitely
growing potential and power-like nonlinearity. In all these
results, the nonlinearity is supposed to be either positive
(self-focusing), or negative (defocusing). Pankov [17] studied
the DNLS equatifvons with infinitely growing potential and
sign-changing nonlinearity (a mixture of self-focusing and
defocusing ones). Pankov and Zhang were concerned with
the DNLS equations with infinitely growing potential and
saturable nonlinearity in [18].

In this paper, we consider higher-dimensional generaliza-
tions of DNLS equation
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and 𝜎 = ±1. The parameter 𝜎 characterizes the focusing
properties of the following equation: if 𝜎 = 1, the equation
is self-focusing, while 𝜎 = −1 corresponds to the defocusing
equation.

We assume that the nonlinearity 𝑓(𝑛, 𝑢) is gauge invari-
ant, that is,

𝑓 (𝑛, 𝑒
𝑖𝜃

𝑢) = 𝑒
𝑖𝜃

𝑓 (𝑛, 𝑢) , 𝜃 ∈ R. (3)

Then we can consider the special solutions of the form
𝜙
𝑛
= 𝑒
−𝑖𝜔𝑡

𝑢
𝑛
, for any 𝜔 ∈ R. These solutions are called

breather solutions or standing waves, due to their periodic
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time behavior. Inserting the ansatz of a breather solution into
(1), it follows that𝜙

𝑛
satisfies the nonlinear systemof algebraic

equations

−(A𝑢)
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. (4)

We need the following assumptions.

(𝑉
1
)The discrete potential 𝑉 = {V

𝑛
}
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multi-index 𝑛.
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such that

󵄨󵄨󵄨󵄨𝑓 (𝑛, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝑎 (1 + |𝑢|

𝑝−1

) , ∀𝑛 ∈ Z
𝑚

, 𝑢 ∈ R. (6)

(𝑓
2
) lim
|𝑢|→0

𝑓(𝑛, 𝑢)/𝑢 = 0 uniformly for 𝑛 ∈ Z𝑚.

(𝑓
3
) lim

|𝑢|→∞
𝐹(𝑛, 𝑢)/𝑢

2

= +∞ uniformly for 𝑛 ∈ Z𝑚,
where𝐹(𝑛, 𝑢) is the primitive function of𝑓(𝑛, 𝑢), that
is,
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4
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(0,∞).

We are concerned with the existence of ground state
solutions, that is, solutions corresponding to the least pos-
itive critical value of the variational functional. To obtain
the existence of ground states, usually besides the growth
condition on the nonlinearity and a Nehari type condition,
the following classical Ambrosetti-Rabinowitz superlinear
condition (see, e.g., [19]) is assumed:

0 < 𝜇𝐹 (𝑛, 𝑢) ≤ 𝑓 (𝑛, 𝑢) 𝑢, for some 𝜇 > 2, 𝑢 ̸= 0. (8)

It is easy to see that (8) implies that 𝐹(𝑛, 𝑢) ≥ 𝐶|𝑢|𝜇, for some
constant 𝐶 > 0 and |𝑢| ≥ 1.

In this paper, instead of (8) we assume the super-
quadratic condition (𝑓

3
). It is easy to see that (8) implies (𝑓

3
).

It is well known that many nonlinearities such as

𝑓 (𝑛, 𝑢) = 𝑢 ln(1 + |𝑢|) , (9)

do not satisfy (8). A crucial role that (8) plays is to ensure the
boundedness of Palais-Smale sequences.

This paper is organized as follows. In Section 2, we
establish the variational framework associated with (4). We
then present themain results of this paper and compare them
with the existing ones. Section 3 is devoted to prove some
useful lemmas, and the proof of themain results is completed
in Section 4.

2. Preliminaries

In order to apply the critical point theory, wewill establish the
corresponding variational framework associated with (4).

For some positive integer 𝑚, we consider the real
sequence spaces
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Then the following embedding between 𝑙𝑝 spaces holds:

𝑙
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𝑙
𝑞 , 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞. (11)

Let

𝐿 = −A + 𝑉, (12)

which is a self-adjoint operator defined on 𝑙𝑝(Z𝑚) (see [20]).
Define the space
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Then 𝐸 is a Hilbert space equipped with the norm
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Now we consider the variational functional 𝐽 defined on
𝐸 by

𝐽 (𝑢) =
1

2
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where (⋅, ⋅) is the inner product in 𝑙2. Then 𝐽 ∈ 𝐶1(𝐸,R). And
for the derivative of 𝐽, we have the following formula:

(𝐽
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𝑛
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(16)

Equation (16) implies that (4) is the corresponding Euler-
Lagrange equation for 𝐽. Thus, we have reduced the problem
of finding a nontrivial solution of (4) to that of seeking a
nonzero critical point of the functional 𝐽 on 𝐸.

The following lemma plays an important role in this
paper; it was established in [20].

Lemma 1. If 𝑉 satisfies the condition (𝑉
1
), then

(1) for any 2 ≤ 𝑝 ≤ ∞, the embedding map from E into
𝑙
𝑝

(Z𝑚) is compact,
(2) the spectrum 𝜎(𝐿) is discrete and consists of simple

eigenvalues accumulating to +∞.

By Lemma 1, we may assume that 𝜆
1
is the smallest

eigenvalue of 𝐿, that is

𝜆
1
= inf 𝜎 (𝐿) . (17)

Now we are ready to state the main results.
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Theorem 2. Suppose that conditions (V
1
) and (f

1
)–(f
4
) are

satisfied. Then one has the following conclusions.

(1) If 𝜎 = −1, 𝜔 ≤ 𝜆
1
, (4) has no nontrivial solution.

(2) If 𝜎 = 1, 𝜔 < 𝜆
1
, (4) has a nontrivial ground state

solution.

(3) If 𝜎 = 1, 𝜔 < 𝜆
1
, and 𝑓(𝑛, 𝑢) is odd in 𝑢 for each

𝑛 ∈ Z𝑚, (4) has infinitely many pairs of solutions ±𝑢(𝑘)
in 𝐸.

Remark 3. In [20], the author considered the followingDNLS
equation:

𝐿𝑢
𝑛
− 𝜔𝑢
𝑛
− 𝜎𝛾
𝑛
𝑓 (𝑢
𝑛
) = 0, (18)

where there exists a positive constant 𝛾, such that for any
𝑛 ∈ Z𝑚, 0 < 𝛾

𝑛
≤ 𝛾. Clearly, (18) corresponds (4) if we let

𝑓(𝑛, 𝑢) = 𝛾
𝑛
𝑓(𝑢). Therefore, (18) is a special case of (4).

In [20], the nonlinearity𝑓 ∈ 𝐶1(R) satisfies the following
condition:

0 < (𝑞 − 1) 𝑓 (𝑢) 𝑢 ≤ 𝑓
󸀠

(𝑢) 𝑢
2

, ∀𝑢 ̸= 0, 2 < 𝑞 < ∞, (19)

which implies (8). So it is a stronger condition than (𝑓
3
).

Therefore, our results generalize the corresponding ones.

Remark 4. In [16], the authors also considered (18) and
assumed that the nonlinearity𝑓 ∈ 𝐶1(R) satisfies the classical
Ambrosetti-Rabinowitz superlinear condition (8). Clearly, it
is a stronger condition than (𝑓

3
).

Since 𝜔 < 𝜆
1
, we may introduce an equivalent norm in 𝐸

by setting

‖𝑢‖
2

:= ((𝐿 − 𝜔) 𝑢, 𝑢) , (20)

and then the functional 𝐽 can be rewritten as

𝐽 (𝑢) =
1

2
‖𝑢‖
2

− 𝜎 ∑

𝑛∈Z𝑚

𝐹 (𝑛, 𝑢
𝑛
) . (21)

To prove the multiplicity results, we need the following
lemma.

Lemma 5 (see [21]). Let 𝑆 = {𝑤 ∈ 𝐸 : ‖𝑤‖ = 1}. If 𝐸 is a
infinite-dimensional Hilbert space, Φ ∈ 𝐶1(𝑆,R) is even and
bounded below and satisfies the Palais-Smale condition. Then
Φ has infinitely many pairs of critical points.

3. Some Lemmas

In this section, we always assume that 𝜎 = 1.
We define the Nehari manifold

N = {𝑢 ∈ 𝐸 \ {0} : 𝐽
󸀠

(𝑢) 𝑢 = 0} . (22)

To prove the main results, we need some lemmas.

Lemma 6. Suppose that conditions (V
1
) and (f

1
)–(f
4
) are

satisfied. Then one has

(1) 𝐹(𝑛, 𝑢) > 0 and (1/2)𝑓(𝑛, 𝑢)𝑢 > 𝐹(𝑛, 𝑢) for all 𝑢 ̸= 0,
(2) 𝐽(𝑢) > 0, for all 𝑢 ∈N.

Proof. (1) From (𝑓
2
) and (𝑓

4
), it is easy to get that

𝐹 (𝑛, 𝑢) > 0, ∀𝑢 ̸= 0. (23)

By (𝑓
4
), we have

𝑢

2
𝑓 (𝑛, 𝑢) − ∫

𝑢

0

𝑓 (𝑛, 𝑠) 𝑑𝑠 >
𝑢

2
𝑓 (𝑛, 𝑢) −
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𝑢
∫

𝑢

0

𝑠𝑑𝑠 = 0.

(24)

So (1/2)𝑓(𝑛, 𝑢)𝑢 > 𝐹(𝑛, 𝑢) for all 𝑢 ̸= 0.
(2) For all 𝑢 ∈N, by (1), we have

𝐽 (𝑢) = 𝐽 (𝑢) −
1

2
𝐽
󸀠

(𝑢) 𝑢

= 𝜎 ∑

𝑛∈Z𝑚

(
1

2
𝑓 (𝑛, 𝑢) 𝑢 − 𝐹 (𝑛, 𝑢)) > 0.

(25)

Lemma 7. Suppose that conditions (𝑉
1
) and (𝑓

1
)–(𝑓
4
) are

satisfied, and let 𝐼(𝑢) = ∑
𝑛∈Z𝑚 𝐹(𝑛, 𝑢𝑛). Then one has the

following.

(1) 𝐼󸀠(𝑢) = 𝑜(‖𝑢‖) as 𝑢 → 0.
(2) 𝑠 󳨃→ 𝐼

󸀠

(𝑠𝑢)𝑢/𝑠 is strictly increasing for all 𝑢 ̸= 0 and
𝑠 > 0.

(3) 𝐼(𝑠𝑢)/𝑠2 → ∞ uniformly for 𝑢 on the weakly compact
subsets of 𝐸 \ {0}, as 𝑠 → ∞.

Proof. (1) and (2) are easy to be shown from (𝑓
2
) and (𝑓

4
),

respectively. Next, we verify (3). Let𝑊 ⊂ 𝐸 \ {0} be weakly
compact and let {𝑢(𝑘)} ⊂ 𝑊. It suffices to show that if
𝑠
(𝑘)

→ ∞ as 𝑘 → ∞, then so does a subsequence
of 𝐼(𝑠(𝑘)𝑢(𝑘))/(𝑠(𝑘))2. Passing to a subsequence if necessary,
𝑢
(𝑘)

⇀ 𝑢 ∈ 𝐸 \ {0} and 𝑢(𝑘)
𝑛
→ 𝑢
𝑛
for every 𝑛, as 𝑘 → ∞.

Since |𝑠(𝑘)𝑢(𝑘)
𝑛
| → ∞ and 𝑢(𝑘) ̸= 0, by (𝑓

3
) and (23), we

have

𝐼 (𝑠
(𝑘)

𝑢
(𝑘)

)

(𝑠(𝑘))
2
= ∑

𝑛∈Z𝑚

𝐹 (𝑛, 𝑠
(𝑘)

𝑢
𝑘

𝑛
)

(𝑠(𝑘)𝑢
(𝑘)

𝑛
)
2
(𝑢
(𝑘)

𝑛
)
2

󳨀→ ∞ as 𝑘 󳨀→ ∞.

(26)

Lemma8. Under the assumptions (𝑉
1
) and (𝑓

1
)–(𝑓
4
), for each

𝑤 ∈ 𝐸 \ {0}, there exists a unique 𝑠
𝑤
> 0 such that 𝑠

𝑤
𝑤 ∈N.

Proof. Let 𝑔(𝑠) := 𝐽(𝑠𝑤), 𝑠 > 0. Note that

𝑔
󸀠

(𝑠) = 𝐽
󸀠

(𝑠𝑤)𝑤 = 𝑠 (‖𝑤‖
2

− 𝑠
−1

𝐼
󸀠

(𝑠𝑤)𝑤) , (27)

and from (2) of Lemma 7, then there exists a unique 𝑠
𝑤
, such

that 𝑔󸀠(𝑠) > 0 whenever 0 < 𝑠 < 𝑠
𝑤
, 𝑔󸀠(𝑠) < 0 whenever

𝑠 > 𝑠
𝑤
, and 𝑔󸀠(𝑠

𝑤
) = 𝐽
󸀠

(𝑠
𝑤
𝑤)𝑤 = 0. So 𝑠

𝑤
𝑤 ∈N.
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Remark 9. By (1) and (3) of Lemma 7, 𝑔(𝑠) > 0 for 𝑠 > 0
small and 𝑔(𝑠) < 0 for 𝑠 > 0 large. Together with Lemma 8,
we have that 𝑠

𝑤
is a unique maximum of 𝑔(𝑠) and 𝑠

𝑤
𝑤 is the

unique point on the ray 𝑠 󳨃→ 𝑠𝑤 (𝑠 > 0) which intersects with
N. That is, 𝑢 ∈ N is the unique maximum of 𝐽 on the ray.
Therefore, we may define the mapping 𝑚̂ : 𝐸 \ {0} → N and
𝑚 : 𝑆 → N by setting

𝑚̂ (𝑤) := 𝑠
𝑤
𝑤, 𝑚 := 𝑚̂ |

𝑆
, (28)

where 𝑆 = {𝑢 ∈ 𝐸 : ‖𝑢‖ = 1}.

Lemma 10. For each compact subset V ⊂ 𝑆, there exists a
constant 𝐶V such that 𝑠

𝑤
≤ 𝐶V for all 𝑤 ∈V.

Proof. Suppose that, by contradiction, 𝑠(𝑘)
𝑤
→ ∞ as 𝑘 →

∞. By Lemma 6 and (𝑓
3
), we have

0 <

𝐽 (𝑠
(𝑘)

𝑤
𝑤)

(𝑠
(𝑘)

𝑤
)
2
=
1

2
‖𝑤‖
2

− ∑

𝑛∈Z𝑚

𝐹 (𝑛, 𝑠
(𝑘)

𝑤
𝑤
𝑛
)

(𝑠
(𝑘)

𝑤
)
2

𝑤2
𝑛

𝑤
2

𝑛
󳨀→ −∞, as 𝑘 󳨀→ ∞.

(29)

This is a contradiction.

Lemma 11. (1) The mapping 𝑚̂ is continuous.
(2)Themapping𝑚 is a homeomorphism between 𝑆 andN,

and the inverse of𝑚 is given by𝑚−1(𝑢) = 𝑢/‖𝑢‖.

Proof. (1) Suppose that 𝑤
𝑛
→ 𝑤 ̸= 0. Since 𝑚̂(𝑡𝑢) = 𝑚̂(𝑢)

for each 𝑡 > 0, we may assume that 𝑤
𝑛
∈ 𝑆 for all 𝑛. Write

𝑚̂(𝑤
𝑛
) = 𝑠

𝑤
𝑛

𝑤
𝑛
. By Lemmas 8 and 10, {𝑠

𝑤
𝑛

} is bounded,
and hence 𝑠

𝑤
𝑛

→ 𝑠 > 0 after passing to a subsequence if
needed. SinceN is closed and 𝑚̂(𝑤

𝑛
) = 𝑠
𝑤
𝑛

𝑤
𝑛
→ 𝑠𝑤, 𝑠𝑤 ∈

N. Hence 𝑠𝑤 = 𝑠
𝑤
𝑤 = 𝑚̂(𝑤) by the uniqueness of 𝑠

𝑤
of

Lemma 8. (2) This is an immediate consequence of (1).

Lemma 12. 𝐽 satisfies the Palais-Smale condition onN.

Proof. Let {𝑢(𝑘)} ⊂ N be a sequence such that 𝐽(𝑢(𝑘)) ≤ 𝑑 for
some 𝑑 > 0 and 𝐽󸀠(𝑢(𝑘)) → 0 as 𝑘 → ∞.

Firstly, we prove that {𝑢(𝑘)} is bounded. In fact, if not, we
may assume by contradiction that ‖𝑢(𝑘)‖ → ∞ as 𝑘 → ∞.
Let V(𝑘) = 𝑢(𝑘)/‖𝑢(𝑘)‖. Then there exists a subsequence, still
denoted by the samenotation, such that V(𝑘) ⇀ V in 𝐸 as 𝑘 →
∞.

Suppose that V = 0. For every 𝑠 > 0, from Remark 9, we
have

𝑑 ≥ 𝐽 (𝑢
(𝑘)

) ≥ 𝐽 (𝑠V(𝑘)) =
1

2
𝑠
2
󵄩󵄩󵄩󵄩󵄩
V(𝑘)
󵄩󵄩󵄩󵄩󵄩

2

− 𝐼 (𝑠V(𝑘)) 󳨀→
1

2
𝑠
2

.

(30)

This is a contradiction if 𝑠 ≥ √2𝑑. Therefore, V ̸= 0.

According to Lemma 7(3), we have

0 ≤

𝐽 (𝑢
(𝑘)

)

󵄩󵄩󵄩󵄩𝑢
(𝑘)
󵄩󵄩󵄩󵄩

2

=
1

2
−

𝐼 (
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)
󵄩󵄩󵄩󵄩󵄩
V(𝑘))

󵄩󵄩󵄩󵄩𝑢
(𝑘)
󵄩󵄩󵄩󵄩

2
󳨀→ −∞, 𝑘 󳨀→ ∞,

(31)

a contradiction again. Thus, {𝑢(𝑘)} is bounded.
Finally, we show that there exists a convergent subse-

quence of {𝑢(𝑘)}. Actually, there exists a subsequence, still
denoted by the same notation, such that 𝑢(𝑘) ⇀ 𝑢. By
Lemma 1, for any 2 ≤ 𝑞 ≤ ∞, then

𝑢
(𝑘)

󳨀→ 𝑢 in 𝑙𝑞 (Z𝑚) . (32)

Note that
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)

− 𝑢
󵄩󵄩󵄩󵄩󵄩

2

− 𝜔
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)

− 𝑢
󵄩󵄩󵄩󵄩󵄩

2

2

= (𝐽
󸀠

(𝑢
(𝑘)

) − 𝐽
󸀠

(𝑢) , (𝑢
(𝑘)

− 𝑢))

+ ∑

𝑛∈Z𝑚

(𝑓 (𝑛, 𝑢
(𝑘)

𝑛
) − 𝑓 (𝑛, 𝑢

𝑛
)) (𝑢
(𝑘)

𝑛
− 𝑢
𝑛
) .

(33)

The first term (𝐽󸀠(𝑢(𝑘))−𝐽󸀠(𝑢), (𝑢(𝑘)−𝑢)) → 0 as 𝑘 → ∞
because of the weak convergence.

By (𝑓
1
) and (𝑓

2
), it is easy to show that for any 𝜀 > 0, there

exists 𝑐
𝜀
> 0, such that

󵄨󵄨󵄨󵄨𝑓 (𝑛, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝜀 |𝑢| + 𝑐𝜀|𝑢|

𝑝−1

, |𝐹 (𝑛, 𝑢)| ≤ 𝜀|𝑢|
2

+ 𝑐
𝜀
|𝑢|
𝑝

.

(34)

Then,

∑

𝑛∈Z𝑚

(𝑓 (𝑛, 𝑢
(𝑘)

𝑛
) − 𝑓 (𝑛, 𝑢

𝑛
)) (𝑢
(𝑘)

𝑛
− 𝑢
𝑛
)

≤ ∑

𝑛∈Z𝑚

[𝜀 (
󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑘)

𝑛

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨)

+𝑐
𝜀
(
󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑘)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝−1

+
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝−1

)]
󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑘)

𝑛
− 𝑢
𝑛

󵄨󵄨󵄨󵄨󵄨

≤ 𝜀 (
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)
󵄩󵄩󵄩󵄩󵄩𝑙2
+ ‖𝑢‖
𝑙
2)
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)

− 𝑢
󵄩󵄩󵄩󵄩󵄩𝑙2

+ 𝑐
𝜀
(
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)
󵄩󵄩󵄩󵄩󵄩

𝑝−1

𝑙
𝑝
+ ‖𝑢‖
𝑝−1

𝑙
𝑝 )
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)

− 𝑢
󵄩󵄩󵄩󵄩󵄩𝑙𝑝
.

(35)

Combining (32) and the boundedness of {𝑢(𝑘)}, the above
inequality implies

∑

𝑛∈Z𝑚

(𝑓 (𝑛, 𝑢
(𝑘)

𝑛
) − 𝑓 (𝑛, 𝑢

𝑛
))

× (𝑢
(𝑘)

𝑛
− 𝑢
𝑛
) 󳨀→ 0 as 𝑘 󳨀→ ∞.

(36)

It follows from (33) that 𝑢(𝑘) → 𝑢 in 𝐸; that is, 𝐽 satisfies
Palais-Smale condition.

The proof is complete.
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Now we define the functional Ψ̂ : 𝐸 \ {0} → R and Ψ :
𝑆 → R by

Ψ̂ (𝑤) := 𝐽 (𝑚̂ (𝑤)) , Ψ (𝑤) := Ψ̂|
𝑆
. (37)

Lemma 13. (1) Ψ̂ ∈ 𝐶1(𝐸 \ {0},R), and

Ψ̂
󸀠

(𝑤) 𝑧 =
‖𝑚̂ (𝑤)‖

‖𝑤‖
𝐽
󸀠

(𝑚̂ (𝑤)) 𝑧 ∀𝑤, 𝑧 ∈ 𝐸, 𝑤 ̸= 0. (38)

(2) Ψ ∈ 𝐶1(𝑆,R), and

Ψ
󸀠

(𝑤) =‖ 𝑚 (𝑤) ‖ 𝐽
󸀠

(𝑚 (𝑤)) 𝑧

∀𝑧 ∈ 𝑇
𝑤
(𝑆) = {V ∈ 𝐸 : (𝑤, V) = 0} .

(39)

(3) {𝑤
𝑛
} is a Palais-Smale sequence for Ψ if and only if

{𝑚(𝑤
𝑛
)} is a Palais-Smale sequence for 𝐽.

(4) 𝑤 is a critical point of Ψ if and only if 𝑚(𝑤) is
a nontrivial critical point of 𝐽. Moreover, the corresponding
values of Ψ and 𝐽 coincide and inf

𝑆
Ψ = infN𝐽.

Proof. (1) Let 𝑤 ∈ 𝐸 \ {0} and 𝑧 ∈ 𝐸. By Remark 9 and the
mean value theorem, we obtain

Ψ̂ (𝑤 + 𝑡𝑧) − Ψ̂ (𝑤) = 𝐽 (𝑠
𝑤+𝑡𝑧
(𝑤 + 𝑡𝑧)) − 𝐽 (𝑠

𝑤
𝑤)

≤ 𝐽 (𝑠
𝑤+𝑡𝑧
(𝑤 + 𝑡𝑧)) − 𝐽 (𝑠

𝑤+𝑡𝑧
(𝑤))

= 𝐽
󸀠

(𝑠
𝑤+𝑡𝑧
(𝑤 + 𝜏

𝑡
𝑡𝑧)) 𝑠
𝑤+𝑡𝑧
𝑡𝑧,

(40)

where |𝑡| is small enough and 𝜏
𝑡
∈ (0, 1). Similarly,

Ψ̂ (𝑤 + 𝑡𝑧) − Ψ̂ (𝑤) = 𝐽 (𝑠
𝑤+𝑡𝑧
(𝑤 + 𝑡𝑧)) − 𝐽 (𝑠

𝑤
𝑤)

≥ 𝐽 (𝑠
𝑤
(𝑤 + 𝑡𝑧)) − 𝐽 (𝑠

𝑤
(𝑤))

= 𝐽
󸀠

(𝑠
𝑤
(𝑤 + 𝜂

𝑡
𝑡𝑧)) 𝑠
𝑤
𝑡𝑧,

(41)

where 𝜂
𝑡
∈ (0, 1). From the proof of Lemma 11, the function

𝑤 󳨃→ 𝑠
𝑤
is continuous, combining these two inequalities that

lim
𝑡→0

Ψ̂ (𝑤 + 𝑡𝑧) − Ψ̂ (𝑤)

𝑡

= 𝑠
𝑤
𝐽
󸀠

(𝑠
𝑤
𝑤) 𝑧

=
‖𝑚̂ (𝑤)‖

‖𝑤‖
𝐽
󸀠

(𝑚̂ (𝑤)) 𝑧.

(42)

Hence the Gâteaux derivative of Ψ̂ is bounded linear in 𝑧 and
continuous in 𝑤. It follows that Ψ̂ is a class of 𝐶1 (see [19,
Proposition 1.3]).

(2) follows from (1). Note only that since 𝑤 ∈ 𝑆, 𝑚(𝑤) =
𝑚̂(𝑤).

(3) Let {𝑤
𝑛
} be a Palais-Smale sequence forΨ, and let 𝑢

𝑛
=

𝑚(𝑤
𝑛
) ∈ N. Since for every 𝑤

𝑛
∈ 𝑆 we have an orthogonal

splitting 𝐸 = 𝑇
𝑤
𝑛

𝑆 ⊕R𝑤
𝑛
, using (2) we have

󵄩󵄩󵄩󵄩󵄩
Ψ
󸀠

(𝑤
𝑛
)
󵄩󵄩󵄩󵄩󵄩
= sup
𝑧∈𝑇
𝑤𝑛
𝑆

‖𝑧‖=1

Ψ
󸀠

(𝑤
𝑛
) 𝑧

=
󵄩󵄩󵄩󵄩𝑚 (𝑤𝑛)

󵄩󵄩󵄩󵄩 sup
𝑧∈𝑇
𝑤𝑛
𝑆

‖𝑧‖=1

𝐽
󸀠

(𝑚 (𝑤
𝑛
)) 𝑧

=
󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 sup
𝑧∈𝑇
𝑤𝑛
𝑆

‖𝑧‖=1

𝐽
󸀠

(𝑢
𝑛
) 𝑧.

(43)

Using (2) again, then
󵄩󵄩󵄩󵄩󵄩
Ψ
󸀠

(𝑤
𝑛
)
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐽
󸀠

(𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 sup
𝑧∈𝑇
𝑤𝑛
𝑆,𝑡∈R

𝑧+𝑡𝑤 ̸= 0

𝐽
󸀠

(𝑢
𝑛
) (𝑧 + 𝑡𝑤)

‖𝑧 + 𝑡𝑤‖

≤
󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 sup
𝑧∈𝑇
𝑤𝑛
𝑆\{0}

𝐽
󸀠

(𝑢
𝑛
) (𝑧)

‖𝑧‖
=
󵄩󵄩󵄩󵄩󵄩
Ψ
󸀠

(𝑤
𝑛
)
󵄩󵄩󵄩󵄩󵄩
.

(44)

Therefore,
󵄩󵄩󵄩󵄩󵄩
Ψ
󸀠

(𝑤
𝑛
)
󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐽
󸀠

(𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩
. (45)

According to Lemma 6, for 𝑢
𝑛
∈ N, 𝐽(𝑢

𝑛
) > 0, so there

exists a constant 𝑐 > 0 such that 𝐽(𝑢
𝑛
) > 𝑐. And since

𝑐 ≤ 𝐽(𝑢
𝑛
) = (1/2)‖𝑢

𝑛
‖
2

− 𝐼(𝑢
𝑛
) ≤ (1/2)‖𝑢

𝑛
‖
2, ‖𝑢
𝑛
‖ ≥ √2𝑐.

Together with Lemma 12, √2𝑐 ≤ ‖𝑢
𝑛
‖ ≤ sup

𝑛
‖𝑢
𝑛
‖ < ∞.

Hence {𝑤
𝑛
} is a Palais-Smale sequence for Ψ if and only if

{𝑢
𝑛
} is a Palais-Smale sequence for 𝐽.
(4) By (45), Ψ󸀠(𝑤) = 0 if and only if 𝐽󸀠(𝑚(𝑤)) = 0. The

other part is clear.

4. Proof of Main Results

Proof of Theorem 2. (1) If 𝜎 = −1,𝜔 ≤ 𝜆
1
, we suppose that (4)

has a nontrivial solution 𝑢 ∈ 𝐸. Then 𝑢 is a nonzero critical
point of 𝐽 in 𝐸 and 𝐽󸀠(𝑢) = 0. But

(𝐽
󸀠

(𝑢) , 𝑢) = ((𝐿 − 𝜔) 𝑢, 𝑢) − 𝜎 ∑

𝑛∈Z𝑚

𝑓 (𝑛, 𝑢
𝑛
) 𝑢
𝑛

≥ ∑

𝑛∈Z𝑚

𝑓 (𝑛, 𝑢
𝑛
) 𝑢
𝑛
> 0.

(46)

This is a contradiction.
(2) If 𝜎 = 1, 𝜔 < 𝜆

1
. We firstly show that Ψ satisfies the

Palais-Smale condition.
Let {𝑤(𝑘)} be a Palais-Smale sequence for Ψ; then {𝑢(𝑘)} is

a Palais-Smale sequence for 𝐽 by Lemma 13(3), where 𝑢(𝑘):=
𝑚(𝑤
(𝑘)

) ∈ N. From Lemma 12, 𝑢(𝑘) → 𝑢 after passing to a
subsequence and 𝑤(𝑘) → 𝑚

−1

(𝑢), so Ψ satisfies the Palais-
Smale condition.

Let {𝑤(𝑘)} ⊂ 𝑆 be a minimizing sequence for Ψ. By Eke-
land’s variational principle, we may assume that Ψ󸀠(𝑤(𝑘)) →
0 as 𝑘 → ∞, so {𝑤(𝑘)} is a Palais-Smale sequence for Ψ.
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By Palais-Smale condition, 𝑤(𝑘) → 𝑤 after passing to a
subsequence if needed. Hence 𝑤 is a minimizer for Ψ and
therefore a critical point of Ψ, and then 𝑢 = 𝑚(𝑤) is a
critical point of 𝐽 and is also a minimizer for 𝐽 by Lemma 13.
Therefore, 𝑢 is a ground state solution of (4).

(3) If 𝜎 = 1, 𝜔 < 𝜆
1
, and 𝑓(𝑛, 𝑢) is odd in 𝑢 for each 𝑛 ∈

Z𝑚, then 𝐽 is even and so is Ψ. Since inf
𝑆
Ψ = infN𝐽 > 0 and

Ψ satisfies the Palais-Smale condition, Ψ has infinitely many
pairs of critical points by Lemma 5. It follows that (4) has
infinitely many pairs of solutions ±𝑢(𝑘) in 𝐸 from Lemma 13.

This completes Theorem 2.
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