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A chaotic system arising from double-diffusive convection in a fluid layer is investigated in this paper based on the theory of
dynamical systems. Afive-dimensionalmodel of chaotic system is obtained using theGalerkin truncated approximation.The results
showed that the transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be associated
with a homoclinic explosion at a slightly subcritical value of the Rayleigh number.

1. Introduction

The concept of sensitivity on initial conditions where a small
difference on initial conditions may produce large variations
in the long-term behaviour of the system is pivotal in chaos
theory. This behaviour is also known as the “butterfly effect”
related to work done by Lorenz [1] where it is already
described by Henri Poincare in 1890 in the literature in a
particular case of the three-body problem. Chaotic behaviour
has been studied intensively in various dynamical systems;
see, for example, [2–14].

The investigation of free convection in the Rayleigh-
Bénard problem is receiving much attention due to its wide
application in different disciplines such as biotechnology for
the description of the convection with the microorganisms
diffusion, in astrophysics for simulation of the influence of
the helium diffusion on convective motions in the stars, in
oceanography for the investigation of the salinity influence
on the convectivemotions in the seas, and in engineering and
geology. Research in double-diffusive convection begins after
the work done by sea-going oceanographers in order to mea-
sure the fluctuation of temperature and salinity as a function
of depth as stated in the paper of Huppert and Turner [15].
Then, Knobloch et al. [16] and Bhattacharjee [17] studied the

transition to chaos in double-diffusive convectionwith stress-
free boundary conditions where oscillatory solution exists.
They showed that the instability of fluid becomes oscillatory
when thermal Rayleigh number is raised and the truncated
model suggests that the appearance of chaos is associatedwith
heteroclinic bifurcations.

Two-dimensional thermosolutal convection between free
boundaries was studied numerically by Veronis [18]. From
their observation, they found that when the solutal Rayleigh
number is large enough, the oscillations underwent a bifur-
cation to asymmetry as thermal Rayleigh number increased
and, for the larger values of solutal Rayleigh number, the
transition from chaos to steady motion occurs.

Sibgatullin et al. [19] studied some properties of two-
dimensional stochastic regimes of double-diffusive convec-
tion in a plane layer. Using the Bubnov-Galerkin method,
they obtained that, with the growth of Rayleigh numbers
of heat and salinity, the structure of one-dimensional curve
becomes more irregular and sophisticated. Transition to
chaos in double-diffusive Marangoni convection was studied
by Li et al. [20]. It was found that the supercritical solution
branch takes a quasiperiodicity and phase locking route
to chaos while the subcritical branch follows the Ruelle-
Takens-Newhouse scenario. The transitions from regular to
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chaotic dynamics and analysis of the hyper, hyper-hyper,
and spatial-temporal chaos using the Lyapunov exponents
of continuous mechanical systems have been studied in [21–
24]; they found the Sharkovskii windows of periodicity in the
systems investigated.

The objective of the present paper is to study the weak
turbulence and chaos in double-diffusive convection involv-
ing temperature and concentration as the thermal Rayleigh
number increases with rigid, no-slip horizontal boundary
condition. Applying the truncated Galerkin approximation
to the governing equations yields an autonomous system
with five ordinary differential equations which can be used
to understand low-dimensional dynamics before moving to
studying more complex systems.

2. Mathematical Formulation

Consider a two-dimensional layer of fluid of depth𝐻 subject
to gravity and heated from below as shown in Figure 1. A
Cartesian coordinate system is used such that the vertical
axis 𝑧 is collinear with gravity, that is, êg = −êz. The two
long walls are maintained at temperatures 𝑇

𝐻
and 𝑇

𝐶
and

solute concentrations 𝑆
𝐻
and 𝑆
𝐶
, respectively. A relationship

between density, temperature, and solute concentration is
assumed linear and can be presented by the following form
𝜌 = 𝜌

0
[1 − 𝛼(𝑇 − 𝑇

𝐶
) + 𝛼
𝑠
(𝑆 − 𝑆

𝐶
)], where 𝛼 and 𝛼

𝑠
are

volume expansion coefficients due to variations of thermal
and solute concentrations. The Boussinesq approximation is
applied for the effects of density variations for the gravity
term in momentum equation. Therefore, the set of equations
governing the conservation of mass, momentum, energy, and
concentration for fluid flow is given by the following:

∇ ⋅ V = 0, (1)

𝜌
0
[
𝜕V
𝜕𝑡

+ V ⋅ V] = −∇𝑝 + ∇
2V + 𝜌êz, (2)

𝜕𝑇

𝜕𝑡
+ V ⋅ ∇𝑇 = 𝜂∇

2
𝑇, (3)

𝜕𝑆

𝜕𝑡
+ V ⋅ ∇𝑆 = 𝜂

𝑠
∇
2
𝑆. (4)

We nondimensionalize (1)–(4) using the following transfor-
mations:

V
∗
=
𝐻
∗

𝜂
∗

V, 𝑝
∗
=

𝐻
2

∗

𝜌
0
𝜂2
∗

𝑝,

𝑇
∗
=
(𝑇 − 𝑇

𝐶
)

Δ𝑇
𝑐

, 𝑆
∗
=
(𝑆 − 𝑆

𝐶
)

Δ𝑆
𝑐

,

(𝑥
∗
, 𝑦
∗
, 𝑧
∗
) = 𝐻

∗
(𝑥, 𝑦, 𝑧) , 𝑡

∗
=
𝑡𝐻
2

∗

𝜂
∗

,

(5)

where V
∗
= (𝑢
∗
, 𝑣
∗
, 𝑤
∗
) is the velocity component, 𝑝

∗
is

the pressure, (𝑇 − 𝑇
𝐶
) and (𝑆 − 𝑆

𝐶
) are the temperature and

solute concentration variations, 𝜂
∗
is the effective thermal

diffusivity, and 𝜈
∗
is fluid’s viscosity.

𝐻∗

𝑍

𝑋
Hot: 𝑇 = 1

Cold: 𝑇 = 0

𝑔∗

Figure 1: Physical model.

In thismodel, all the boundaries are rigid and the solution
must follow the impermeability conditions there, that is,
V ⋅ ên = 0 on the boundaries, where ên is a unit vector normal
to the boundary. The temperature and solute concentration
boundary conditions are 𝑇 = 𝑆 = 1 at 𝑧 = 0 and 𝑇 = 𝑆 = 0 at
𝑧 = 1.

For convective rolls having axes parallel to the shorter
dimension (i.e., 𝑦 = 0) 𝑣 = 0, by applying the curl operator
on (2) to eliminate the pressure and introducing the stream
function defined by 𝑢 = 𝜕𝜓/𝜕𝑧 and 𝑤 = −𝜕𝜓/𝜕𝑥, we get

[
1

Pr
(
𝜕

𝜕𝑡
+
𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑧
) − ∇

2
]∇
2
𝜓 = −Ra𝜕𝑇

𝜕𝑥
+ 𝑅
𝑠

𝜕𝑆

𝜕𝑥
,

𝜕𝑇

𝜕𝑡
+
𝜕𝜓

𝜕𝑧

𝜕𝑇

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑧
=
𝜕
2
𝑇

𝜕𝑥2
+
𝜕
2
𝑇

𝜕𝑧2
,

𝜕𝑆

𝜕𝑡
+
𝜕𝜓

𝜕𝑧

𝜕𝑆

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑆

𝜕𝑧
=

1

Le
(
𝜕
2
𝑆

𝜕𝑥2
+
𝜕
2
𝑆

𝜕𝑧2
) ,

(6)

where

Pr = 𝜈
∗

𝜂
∗

, Ra =
𝛼
∗
Δ𝑇
𝑐
𝑔
∗
𝐻
3

∗

𝜂
∗
𝜈
∗

,

𝑅
𝑠
=
𝛼
𝑠∗
Δ𝑆
𝑐
𝑔
∗
𝐻
3

∗

𝜂
∗
𝜈
∗

, Le =
𝜂
∗

𝜂
𝑠∗

(7)

which are, respectively, the Prandtl number, the Rayleigh
number, the solutal Rayleigh number, and the Lewis number.
The boundary conditions for the stream function are 𝜓 = 0

on the horizontal boundaries. Equation (6) forms a nonlin-
ear coupled system which together with the corresponding
boundary conditions allows for a basic motionless conduc-
tion solution.

3. Diminished Set of Equation

In order to obtain the solution to (6), we represent the
stream function, temperature, and solutal distributions in the
following form:

𝜓 = 𝐴
11
sin (𝜅𝑥) sin (𝜋𝑧) ,

𝑇 = 1 − 𝑧 + 𝐵
11
cos (𝜅𝑥) sin (𝜋𝑧) + 𝐵02 sin (2𝜋𝑧) ,

𝑆 = 1 − 𝑧 + 𝐶
11
cos (𝜅𝑥) sin (𝜋𝑧) + 𝐶02 sin (2𝜋𝑧) .

(8)
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Substituting (8) into (6), multiplying the equations by the
orthogonal eigenfunctions corresponding to (8), and then
integrating them over the spatial domain yield a set of five
ordinary differential equations for the time evolution of the
following amplitudes:

𝑑𝐴
11

𝑑𝜏
= Pr [𝐵

11
− 𝐴
11
+ 𝐶
11
] ,

𝑑𝐵
11

𝑑𝜏
= −𝐵
11
+ 𝑅𝐴
11
− 𝐴
11
𝐵
02
,

𝑑𝐵
02

𝑑𝜏
= 𝐴
11
𝐵
11
− 𝜆𝐵
02
,

𝑑𝐶
11

𝑑𝜏
= −

𝐶
11

Le
+ 𝑅
𝑠
𝐴
11
− 𝐴
11
𝐶
02
,

𝑑𝐶
02

𝑑𝜏
= 𝐴
11
𝐶
11
−

𝜆

Le
𝐶
02
.

(9)

In (9), the time, the amplitudes, the Rayleigh number, and
the solutal Rayleigh number were rescaled, and the following
notations are introduced as follows:

𝐴
11
=

(𝜅/𝜅cr)

[(𝜅/𝜅cr)
2
+ 2]

𝐴
11
, 𝐵

11
= 𝜅cr𝑅𝐵11,

𝐵
02
= 𝜋𝑅𝐵

02
, 𝐶

11
= 𝜅cr𝑅𝑠𝐶11,

𝐶
02
= 𝜋𝑅
𝑠
𝐶
02
, 𝑅 =

Ra
Ra
𝑐

, 𝑅
𝑠
=
𝑅
𝑠

𝑅
𝑠𝑐

,

𝜏 = (𝜅
2
+ 𝜋
2
) 𝑡, 𝜆 =

8

[(𝜅/𝜅cr)
2
+ 2]

,

Ra
𝑐
= 𝑅
𝑠𝑐
=

(𝜅
2
+ 𝜋
2
)
3

𝜅2
, 𝜅cr =

𝜋

√2

.

(10)

Rescaling the equation again in the forms

𝑋 =
𝐴
11

√𝜆 (𝑅 − 1)

, 𝑌 =
𝐵
11

√𝜆 (𝑅 − 1)

, 𝑍 =
𝐵
02

(𝑅 − 1)
,

𝑈 =
𝐶
11

√𝜆 (𝑅 − 1)

, 𝑊 =
𝐶
02

(𝑅 − 1)
,

(11)

gives the following set of scaled equations which are equiva-
lent to (9):

�̇� = Pr (𝑌 − 𝑋 − 𝑈) ,

�̇� = 𝑅𝑋 − 𝑌 − (𝑅 − 1)𝑋𝑍,

�̇� = 𝜆 (𝑋𝑌 − 𝑍) ,

�̇� = 𝑅
𝑠
𝑋 −

𝑈

Le
− (𝑅 − 1)𝑋𝑊,

�̇� = 𝜆 (𝑋𝑈 −
𝑊

Le
) ,

(12)

where the dots (⋅) denote time derivatives 𝑑()/𝑑𝜏.

4. Linear Stability Analysis

In this paper, we investigate the chaotic behaviour with low
Prandtl number in double-diffusive convection. We obtained
system (12) that provides a set of nonlinear equations with
five parameters. The value of 𝜆 has to be consistent with
the wave number at the convection threshold, a requirement
for the convection cells to fit into the domain and fulfill
the boundary conditions. However, the Lorenz equations
have been extensively analyzed and solved for parameter
values corresponding to convection in pure fluids and, even
there, the parameter values most regularly used correspond
to Pr = 10 and 𝜆 = 8/3. Therefore, it is of interest to
analyze and solve the corresponding equations for parameter
values corresponding to the problem under investigation.
We employ the MATLAB ODE45 routine for obtaining the
numerical solutions.

Before attempting the numerical solution of system (12),
it is useful to examine the local stability of equilibriumpoints.
System (12) has the three basic properties which we will
discuss in the following: dissipation, fixed points, and stability
of fixed points.

4.1. Dissipation. System (12) is dissipative since

∇ ⋅ �̂� =
𝜕�̇�

𝜕𝑋
+
𝜕�̇�

𝜕𝑌
+
𝜕�̇�

𝜕𝑍
+
𝜕�̇�

𝜕𝑈
+
𝜕�̇�

𝜕𝑊

= − (1 + Pr + 1 + 𝜆

Le
+ 𝜆)

< 0.

(13)

Therefore, if the set of initial points in the phase space
occupies region �̂�(0) at 𝜏 = 0, then, after some time, 𝜏, the
endpoints of the corresponding trajectories will fill a volume

�̂� (𝜏) = �̂� (0) exp [−(1 + Pr + (1 + 𝜆)

Le
+ 𝜆)] . (14)

The expression indicates that the volume decreasesmonoton-
ically with time.

4.2. Fixed Points. The fixed points for velocity, temperature,
and solute concentration can be obtained by setting the
derivatives of system (12) to zero:

Pr (𝑌 − 𝑋 − 𝑈) = 0,

𝑅𝑋 − 𝑌 − (𝑅 − 1)𝑋𝑍 = 0,

𝜆 (𝑋𝑌 − 𝑍) = 0,

𝑅
𝑠
𝑋 −

𝑈

Le
− (𝑅 − 1)𝑋𝑊 = 0,

𝜆 (𝑋𝑈 −
𝑊

Le
) = 0.

(15)

There is one trivial solution, that is, the origin in the phase
space

𝑋
1
= 𝑌
1
= 𝑍
1
= 𝑈
1
= 𝑊
1
= 0, (16)
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which corresponds to the motionless solution. The other
nonzero fixed points are given by the following:

𝑋
2,3

= ±
ℎ
2

√2

,

𝑌
2,3

= ±

(−1 + Le2 (𝑅 + 1) − Le𝑅
𝑠
+ ℎ
1
)𝑋
2,3

2 (Le2 − 1)
,

𝑍
2,3

=

(1 − 2𝑅 + Le2 (𝑅 − 1) + Le𝑅
𝑠
− ℎ
1
)

2 (Le2 − 1) (𝑅 − 1)
,

𝑈
2,3

= ±

(1 + Le2 (𝑅 − 1) − Le𝑅
𝑠
+ ℎ
1
)𝑋
2,3

2 (Le2 − 1)
,

𝑊
2,3

= −

(1 + Le2 (𝑅 − 1) + Le𝑅
𝑠
− 2Le3𝑅

𝑠
+ ℎ
1
)

2Le (Le2 − 1) (𝑅 − 1)
,

𝑋
4,5

= ±
ℎ
3

√2

,

𝑌
4,5

= ±

(−1 + Le2 (𝑅 + 1) − Le𝑅
𝑠
− ℎ
1
)𝑋
4,5

2 (Le2 − 1)
,

𝑍
4,5

=

(1 − 2𝑅 + Le2 (𝑅 − 1) + Le𝑅
𝑠
+ ℎ
1
)

2 (Le2 − 1) (𝑅 − 1)
,

𝑈
4,5

= ±

(1 + Le2 (𝑅 − 1) − Le𝑅
𝑠
− ℎ
1
)𝑋
4,5

2 (Le2 − 1)
,

𝑊
4,5

=

(−1 + Le2 (1 − 𝑅) − Le𝑅
𝑠
+ 2Le3𝑅

𝑠
+ ℎ
1
)

2Le (Le2 − 1) (𝑅 − 1)
,

(17)

where

ℎ
1

= √((1 + Le2 (𝑅 − 1))2 − 2Le𝑅𝑠 (Le2 (𝑅 + 1) − 1) + Le2𝑅2
𝑠
),

ℎ
2
= √−

(1 + Le2 (1 − 𝑅) + Le𝑅
𝑠
+ ℎ
1
)

Le2 (𝑅 − 1)
,

ℎ
3
= √

(−1 + Le2 (𝑅 − 1) − Le𝑅
𝑠
+ ℎ
1
)

Le2 (𝑅 − 1)
.

(18)

The system has five fixed points. When 𝑅 = 0, the five fixed
points are all real. Thus, when (𝑅 − 1) > 0, ℎ

1
is always

real and ℎ
2
and ℎ

3
are always complex; therefore, the three

fixed points (𝑋
𝑖
, 𝑌
𝑖
, 𝑈
𝑖
) are all complex and the other two

fixed points, (𝑍
𝑖
,𝑊
𝑖
), are all real for 𝑖 = 2, . . . , 5. The fixed

point (𝑋
1
, 𝑌
1
, 𝑍
1
, 𝑈
1
,𝑊
1
) corresponds tomotionless solution

and (𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, 𝑈
𝑖
,𝑊
𝑖
), where 𝑖 = 2, . . . , 5 corresponds to the

convective solution.

4.3. Stability of the Fixed Points. The Jacobian matrix of (12)
can be written as follows:

𝐽 =

[
[
[
[
[
[
[
[
[
[

[

−Pr Pr 0 −Pr 0

𝑅 − (𝑅 − 1)𝑍 −1 − (𝑅 − 1)𝑋 0 0

𝜆𝑌 𝜆𝑋 −𝜆 0 0

𝑅
𝑠
− (𝑅 − 1)𝑊 0 0 −

1

Le
(𝑅 − 1)𝑋

𝜆𝑈 0 0 𝜆𝑋 −
𝜆

Le

]
]
]
]
]
]
]
]
]
]

]

.

(19)

Since the matrix is 5 × 5, it is hard to obtain the eigenvalues
in a closed form. Hence, the numerical calculation can
be performed to discuss the stability at the fixed point.
The motionless solution loses stability and the convection
solution takes over at the fixed point {𝑋

1
, 𝑌
1
, 𝑍
1
, 𝑈
1
,𝑊
1
}

with the critical value, 𝑅
𝑐1
. Numerical results for the value

of 𝑅
𝑐1
, which corresponds to the onset of convection, is

obtained for various values of Le and 𝑅
𝑠
with the value of

parameters Pr = 10 and 𝜆 = 8/3 as shown in Figure 2.
Increasing the values of Le and 𝑅

𝑠
increases the value of

𝑅
𝑐1
.
The stability of the fixed points (𝑋

𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, 𝑈
𝑖
,𝑊
𝑖
)

(𝑖 = 2, . . . , 5) is associated with the convective
solution. The evolution of the complex eigenvalues
of 𝐽 in the case Pr = 10, 𝜆 = 8/3, and Le = 0.1

is plotted as shown in Figure 3(a) for the fixed point
(𝑋
4,5
, 𝑌
4,5
, 𝑍
4,5
, 𝑈
4,5
,𝑊
4,5
). These two roots become a

complex conjugate at 𝑅 ≃ 3.32, 3.97, 4.63, and 5.28 for
the case 𝑅

𝑠
= 15, 20, 25, and 30, respectively. At these

points exactly, they still have negative real parts; therefore,
the convection fixed points are stable, that is, spiral nodes.
Of all the cases, both the imaginary and real parts of these
two complex conjugate eigenvalues increase as 𝑅 increases
and they cross the imaginary axis on the complex plane, so
as a result their real part becomes nonnegative at a value
of 𝑅
𝑐2

≃ 46.37, 57.34, 69.33, 82.18. At these points, the
convective fixed points lose their stability and another
periodic, quasiperiodic or chaotic solution takes over.
Figure 3(b) shows the evolution of the complex eigenvalues
of 𝐽 for the case Pr = 10, 𝜆 = 8/3 and 𝑅

𝑠
for the fixed

point (𝑋
4,5
, 𝑌
4,5
, 𝑍
4,5
, 𝑈
4,5
,𝑊
4,5
). These two roots become

a complex conjugate at 𝑅 ≃ 3.33, 5.23, 7.03, 8.73 for the
case of Le = 0.1, 0.2, 0.3, 0.4, respectively. As mentioned
before, the convection fixed points are stable and become
spiral nodes. Their real part becomes nonnegative at a value
of 𝑅
𝑐2

≃ 31.71, 34.96, 40.05, 46.37. Therefore, at these
points, the convective fixed points lose their stability and
another periodic, quasiperiodic, or chaotic solution takes
over.

While for the fixed point (𝑋
2,3
, 𝑌
2,3
, 𝑍
2,3
, 𝑈
2,3
,𝑊
2,3
), the

evolution of the complex eigenvalues of 𝐽 with the same
parameter values is always on the positive side of Re(Λ), does
not cross the zero axis for Re(Λ), and is not of interest in this
study.
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Figure 2: The critical Rayleigh number 𝑅
𝑐1
as function of (a) Le and (b) 𝑅
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Figure 3: The evolution of the complex eigenvalues with increasing Rayleigh number for Pr = 10, 𝜆 = 8/3, (a) Le = 0.1, and (b) 𝑅
𝑠
= 15.

5. Results and Discussion

5.1. Bifurcations and Transition to Chaos. In this study, we
focused on the dynamic behaviour of thermal convection
in double-diffusive fluid layer. The values of Pr and 𝜆 used
in all computations are 10 and 8/3, respectively, which are
consistent with the critical Rayleigh number (𝑅

𝑐
≃ 24.74) and

the critical wave number at marginal stability in fluid layer
convection. All solutions were obtained using the same initial
conditions, which were selected to be in the neighborhood
of the positive convection fixed point. The initial conditions
are at 𝜏 = 0 : 𝑋, 𝑌, 𝑍, 𝑈,𝑊 = 0.9. All computations were
carried out with the value of maximum time, 𝜏max = 210, and
a step size Δ𝜏 = 0.001 using the built-in ODE45 method in
MATLAB R2010a.

The bifurcation diagrams illustrated in Figure 4 show the
peaks and valleys in the posttransient values of𝑍 versus 𝑅. In
Figure 4(a), for 0 < 𝑅 < 46.37 we have one-point attractors,
but the “attracted” value of𝑍 increases as 𝑅 increases, at least
to 𝑅 ≃ 46.37. Bifurcation occurs at 𝑅 ≃ 46.37, 48 until
just beyond 𝑅 = 50, where the system is chaotic. However,

the system is not chaotic for all values of 𝑅 > 50, and we
will discuss it using phase-portrait diagram. When we fix
Le = 0.1 and increase 𝑅

𝑠
from 15 to 30, the range of one-

point attractor changes to 0 < 𝑅 < 82.31; this is shown in
Figure 4(b), while in Figure 4(c), one-point attractor dropped
to 0 < 𝑅 < 31.86 in the case of Le = 0.4 and 𝑅

𝑠
= 15. Here we

can conclude that increasing the value of the solutal Rayleigh
number (with fixed value of Lewis number) will delay the
convection process. But increasing the value of Lewis number
(with fixed value of solutal Rayleigh number)will enhance the
onset of chaos.

Figure 5 shows the projections of the trajectory’s data
points on the 𝑋-𝑌-𝑍 plane for Le = 0.1 and 𝑅

𝑠
= 15.

From Figure 5(a), we obtain a solitary limit cycle signifying
the loss of stability of the steady convective fixed points.
The subcritical value for this transition is 𝑅

𝑐2
= 46.37.

Figure 5(b) shows the projections of the trajectory’s data
points for 𝑅 = 48. At this point, the homoclinic explosion
occurs and the chaotic regime with the strange attractor takes
over. The homoclinic explosion behaviour giving birth to a
stable periodic orbit with period-8 at 𝑅 = 250 is presented
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Figure 4: Bifurcation diagrams for (a) Le = 0.1, 𝑅
𝑠
= 15, (b) Le = 0.1, 𝑅

𝑠
= 30, and (c) Le = 0.4, 𝑅

𝑠
= 15.

in Figure 5(c). This corresponds to the first wide periodic
window within the chaotic regime. In Figure 5(d) we can
observe that the data points do align in such a way as to
produce an almost clear projection of unconnected points on
the projected plane. Increasing the value of 𝑅 further shows
the dynamical behaviour’s return to being chaotic again at
𝑅 = 300 as shown in Figure 5(e). At 𝑅 = 360 and 𝑅 = 400,
we have a period-8 and period-4 periodic solutions as shown
in Figures 5(f) and 5(g). Figure 5(h) shows that a period-
2 periodic solution takes over at 𝑅 = 500 and a period-2
periodic type remains when the solutions at higher values of
𝑅 are obtained. We conclude the observation around these
regimes of periodic windowswithin the broadband of chaotic
solutions by pointing out a sequence of period-halving as one
increases the Rayleigh number.

Figure 6 shows the projections of the trajectory’s data
points on the 𝑋-𝑌-𝑍 plane for Le = 0.1 and 𝑅

𝑠
= 30. The

subcritical values for limit cycle and homoclinic explosion
occur at 𝑅

𝑐2
= 82.18 and 𝑅 = 98 as shown in Figures 6(a)

and 6(b), respectively, while period-8 is observed at 𝑅 = 364

and 370 as presented in Figures 6(c) and 6(d).The dynamical
behaviour returns to being chaotic again as 𝑅 increases; this
happens at 𝑅 = 400 as shown in Figure 6(e). Figures 5(f)
and 5(g) show a period-8 and period-4 periodic solutions at
𝑅 = 490 and 𝑅 = 500. Figure 6(h) shows that a period-2
periodic solution takes over at 𝑅 = 600 and remains the
same behaviour when the solutions at higher values of 𝑅 are
continued.

5.2. Lyapunov Exponents. The convergence plot of the Lya-
punov spectrum for system (12) is shown in Figure 7. The
alogrithm as proposed by [24] was employed for this purpose.
The values of the Lyapunov exponents for system (12) are
tabulated in Table 1. From these results, we can conclude that
for eigenvalue 𝜆

1
the system is always unstable and chaotic

with the increasing 𝑅. For 𝜆
2
, the system alternates between

being stable and dissipative to unstable and chaotic when the
value of 𝑅 is increased. For eigenvalues 𝜆

3
, 𝜆
4
, and 𝜆

5
, the

system is always stable and dissipative with the increasing 𝑅.
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Figure 5: Phase portraits for (a) 𝑅 ≃ 46.37, (b) 𝑅 = 48, (c) 𝑅 = 250, (d) 𝑅 = 260, (e) 𝑅 = 300, (f) 𝑅 = 360, (g) 𝑅 = 400, and (h) 𝑅 = 500 for
the case where Le = 0.1, 𝑅

𝑠
= 15.

Table 1: Lyapunov exponents for system (12) computed from 10,000 data points for the case where Le = 0.1 and 𝑅
𝑠
= 15.

𝑅 𝜆
1

𝜆
2

𝜆
3

𝜆
4

𝜆
5

46.37 2.674585 −3.572664 −7.683913 −12.847196 −28.904144

48 2.612254 −3.302684 −7.921422 −12.710783 −29.010697

260 6.350478 0.626358 −4.509057 −13.941471 −38.856433

300 7.469197 −0.458284 −4.653033 −14.610687 −38.076093

360 8.589279 0.219833 −4.754681 −15.043590 −39.338205

400 8.404066 −0.611687 −4.530720 −12.889258 −40.698489

500 4.451812 4.442320 −3.196173 −12.386501 −43.632794
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Figure 6: Phase portraits for (a) 𝑅 = 82, (b) 𝑅 = 98, (c) 𝑅 = 364, (d) 𝑅 = 370, (e) 𝑅 = 400, (f) 𝑅 = 490, (g) 𝑅 = 500, and (h) 𝑅 = 600 for the
case where Le = 0.1, 𝑅

𝑠
= 30.
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Figure 7: Dynamics of Lyapunov exponents for (a) 𝑅 = 46.37, (b) 𝑅 = 48, (c) 𝑅 = 250, (d) 𝑅 = 260, (e) 𝑅 = 300, (f) 𝑅 = 360, (g) 𝑅 = 400,
and (h) 𝑅 = 500 for the case where Le = 0.1, 𝑅

𝑠
= 15.
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6. Conclusion

In this work, chaotic behaviour in double-diffusive convec-
tion in a fluid layer has been investigated. A five-dimensional
model of chaotic system was obtained using the Galerkin
truncated approximation.The transition from steady convec-
tion to chaos via a Hopf bifurcation produced a limit cycle
which may be associated with a homoclinic explosion at a
slightly subcritical value of the thermal Rayleigh number.
Both the solutal Rayleigh number and Lewis number affect
the stability of the system. Increasing the Rayleigh number
shows that the trajectory of the data points pointing out a
sequence of period-halving and the behaviour remains the
same at a higher Rayleigh number. The different transitions
of the system, can be implied by the different values of the
Lyapunov exponents. Negative eigenvalues lead to a stable
and dissipative system and positive eigenvalues show that
the system is always unstable and chaotic, while alternate
eigenvalues suggest different transitions of the system (i.e.,
stable and dissipative to unstable and chaotic) as the value of
the Rayleigh number is increased.
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