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The initial-boundary value problem for a class of nonlinear wave equations system in bounded domain is studied. The existence
of global solutions for this problem is proved by constructing a stable set and obtain the asymptotic stability of global solutions
through the use of a difference inequality.

1. Introduction

In this paper, we are concernedwith the global solvability and
decay stabilization for the following nonlinear wave equa-
tions system:

𝑢
𝑡𝑡

− div (|∇𝑢|
𝑝−2

∇𝑢) +




𝑢
𝑡






𝑞−2

𝑢
𝑡
− Δ𝑢
𝑡

= |V|𝑟+2|𝑢|𝑟𝑢, (𝑥, 𝑡) ∈ Ω × 𝑅
+
,

(1)

V
𝑡𝑡

− div (|∇V|𝑝−2∇V) +




V
𝑡






𝑞−2V
𝑡
− ΔV
𝑡

= |𝑢|
𝑟+2

|V|𝑟V, (𝑥, 𝑡) ∈ Ω × 𝑅
+

(2)

with the initial-boundary value conditions

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ∈ 𝑊

1,𝑝

0
(Ω) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ∈ 𝐿

2
(Ω)

𝑥 ∈ Ω,

(3)

V (𝑥, 0) = V
0
(𝑥) ∈ 𝑊

1,𝑝

0
(Ω) , V

𝑡
(𝑥, 0) = V

1
(𝑥) ∈ 𝐿

2
(Ω)

𝑥 ∈ Ω,

(4)

𝑢(𝑥, 𝑡)= 0, V (𝑥, 𝑡)=0, (𝑥, 𝑡)∈𝜕Ω × 𝑅
+
, (5)

where Ω is a bounded open domain in 𝑅
𝑛 with a smooth

boundary 𝜕Ω,𝑝, 𝑞 ≥ 2, 𝑟 > 0 and𝑝 < 2(𝑟+2) ≤ 𝑛𝑝/(𝑛−𝑝) for
𝑛 ≥ 𝑝 and 𝑝 < 2(𝑟 + 2) < +∞ for 𝑛 < 𝑝.

When 𝑝 = 2, Medeiros and Miranda [1] proved the exis-
tence and uniqueness of global weak solutions. Cavalcanti
et al. in [2–4] considered the asymptotic behavior for wave
equation and an analogous hyperbolic-parabolic system with
boundary damping and boundary source term. In paper [5,
6], the authors dealt with the existence, uniform decay rates,
and blowup for solutions of systems of nonlinear wave equa-
tions with damping and source terms.

Rammaha and Wilstein [7] and Yang [8] are concerned
with the initial boundary value problem for a class of quasilin-
ear evolution equations with nonlinear damping and source
terms. Under appropriate conditions, by a Galerkin approx-
imation scheme combined with the potential well method,
they proved the existence and asymptotic behavior of global
weak solutions when 𝑚 < 𝑝, where 𝑚 ≥ 0 and 𝑝 are, respec-
tively, the growth orders of the nonlinear strain terms and the
source term.

Ono [9] considers the following initial-boundary value
problem for nonlinear wave equations with nonlinear dissi-
pative terms:

𝑢
𝑡𝑡

− Δ𝑢 + 𝛿
1
𝑢
𝑡
+ 𝛿
2





𝑢
𝑡






𝛽

𝑢
𝑡
− 𝛿
3
Δ𝑢
𝑡
= |𝑢|
𝛼
𝑢,

(𝑥, 𝑡) ∈ Ω × 𝑅
+
,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0,

(6)
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where 𝛿
𝑖

≥ 0, 𝑖 = 1, 2, 3, and 𝛼, 𝛽 > 0 are constants. The
author mainly investigates on the blowup phenomenon to
problem (6). On the other hand, in the case of 𝛿

1
+𝛿
2
+𝛿
3
> 0,

he shows that the problem (6) admits a unique global solu-
tion, and its energy has some decay properties under some
assumptions on 𝑢

0
and initial energy𝐸(0) ≡ 𝐸(𝑢

0
, 𝑢
1
). In par-

ticular, when 𝛿
2
> 0 and 𝛿

1
+ 𝛿
3
> 0 in (6), the energy 𝐸(𝑡) ≡

𝐸(𝑢(𝑡), 𝑢
𝑡
(𝑡)) has some polynomial and exponential decay

rates, respectively.
For the following strongly damped nonlinear wave equa-

tion

𝑢
𝑡𝑡

− Δ𝑢
𝑡
− Δ𝑢 + 𝑓 (𝑢

𝑡
) + 𝑔 (𝑢) = ℎ, (7)

Dell’Oro and Pata [10] obtain the long-time behavior of the
related solution semigroup, which is shown to possess the
global attractor in the natural weak energy space. In addition,
the existence of global and local solutions, decay estimates,
and blowup for solutions of nonlinear wave equation with
source and damping terms and exponential nonlinearities are
studied in [11–14].

In this paper, we prove the global existence for the prob-
lem (1)–(5) by applying the potential well theory introduced
by Sattinger [15] and Payne and Sattinger [16]. Meanwhile,
we obtain the asymptotic stabilization of global solutions by
using a difference inequality [17].

For simplicity of notations, hereafter we denote by ‖ ⋅ ‖
𝑝

the norm of 𝐿𝑝(Ω); ‖ ⋅ ‖ denotes 𝐿
2
(Ω) norm, and we write

equivalent norm ‖ ⋅ ∇‖
𝑝
instead of 𝑊1,𝑝

0
(Ω) norm ‖ ⋅ ‖

𝑊
1,𝑝

0
(Ω)

.
Moreover,𝐶 denotes various positive constants depending on
the known constants andmay be different at each appearance.

2. Local Existence

In this section, we investigate the local existence and unique-
ness of the solutions of the problem (1)–(5). For this purpose,
we list up two useful lemmas which will be used later and give
the definition of weak solutions.

Lemma 1. Let 𝑢 ∈ 𝑊
1,𝑝

0
(Ω), then 𝑢 ∈ 𝐿

𝑠
(Ω); and the inequal-

ity ‖𝑢‖
𝑠

≤ 𝐶‖𝑢‖
𝑊
1,𝑝

0
(Ω)

holds with a constant 𝐶 > 0 depending
on Ω, 𝑝, and 𝑠, provided that 2 ≤ 𝑠 < +∞, 2 ≤ 𝑛 ≤ 𝑝 and
2 ≤ 𝑠 ≤ 𝑛𝑝/(𝑛 − 𝑝), 2 < 𝑝 < 𝑛.

Lemma 2 (Young inequality). Let 𝑎, 𝑏 ≥ 0 and 1/𝑝 + 1/𝑞 = 1

for 1 < 𝑝, 𝑞 < +∞; then one has the inequality

𝑎𝑏 ≤ 𝛿𝑎
𝑝
+ 𝐶 (𝛿) 𝑏

𝑞
, (8)

where 𝛿 > 0 is an arbitrary constant, and𝐶(𝛿) is a positive con-
stant depending on 𝛿.

Definition 3. A pair of functions (𝑢, V) is said to be a weak
solution of (1)–(5) on [0, 𝑇] if 𝑢, V ∈ 𝐶([0, 𝑇],𝑊

1,𝑝

0
(Ω)),

𝑢
𝑡
, V
𝑡
∈ 𝐶([0, 𝑇], 𝐿

2
(Ω)), [𝑢(0), V(0)] = [𝑢

0
, V
0
] ∈ 𝑊

1,𝑝

0
(Ω) ×

𝑊
1,𝑝

0
(Ω), [𝑢

𝑡
(0), V
𝑡
(0)] = [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω) × 𝐿

2
(Ω), and [𝑢, V]

satisfies
⟨𝑢
𝑡
(𝑡) , 𝜙⟩

𝐿
2
(Ω)

− ⟨𝑢
1
, 𝜙⟩
𝐿
2
(Ω)

+ ∫

𝑡

0

⟨(|∇𝑢|
𝑝−2

∇𝑢) , ∇𝜙⟩
𝐿
2
(Ω)

𝑑𝜏

+ ∫

𝑡

0

⟨




𝑢
𝑡






𝑞−2

𝑢
𝑡
, 𝜙⟩
𝐿
2
(Ω)

𝑑𝜏 + ∫

𝑡

0

⟨∇𝑢
𝑡
, ∇𝜙⟩
𝐿
2
(Ω)

= ∫

𝑡

0

⟨|V|𝑟+2|𝑢|𝑟𝑢, 𝜙⟩
𝐿
2
(Ω)

𝑑𝜏,

⟨V
𝑡
(𝑡) , 𝜓⟩

𝐿
2
(Ω)

− ⟨V
1
, 𝜓⟩
𝐿
2
(Ω)

+ ∫

𝑡

0

⟨(|∇V|𝑝−2∇V) , ∇𝜓⟩
𝐿
2
(Ω)

𝑑𝜏

+ ∫

𝑡

0

⟨




V
𝑡






𝑞−2V
𝑡
, 𝜓⟩
𝐿
2
(Ω)

𝑑𝜏 + ∫

𝑡

0

⟨∇V
𝑡
, ∇𝜓⟩
𝐿
2
(Ω)

= ∫

𝑡

0

⟨|𝑢|
𝑟+2

|V|𝑟V, 𝜓⟩
𝐿
2
(Ω)

𝑑𝜏,

(9)

for all test functions 𝜙, 𝜓 ∈ 𝑊
1,𝑝

0
(Ω) and for almost all 𝑡 ∈

[0, 𝑇].

The local existence and uniqueness of solutions for prob-
lem (1)–(5) can be proved through the use of Galerkin
method. The result reads as follows.

Theorem 4 (local solution). Supposed that [𝑢
0
, V
0
] ∈

𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω), [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω) × 𝐿

2
(Ω), and 𝑝 < 2(𝑟 +

2) ≤ 𝑛𝑝/(𝑛−𝑝) if 𝑛 ≥ 𝑝 and 𝑝 < 2(𝑟+2) < +∞ for 𝑛 < 𝑝, then
there exists 𝑇 > 0 such that the problem (1)–(5) has a unique
local solution [𝑢(𝑡), V(𝑡)] satisfying

[𝑢, V] ∈ 𝐿
∞

([0, 𝑇) ; 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω)) ;

[𝑢
𝑡
, V
𝑡
] ∈ 𝐿
∞

([0, 𝑇) ; 𝐿
2
(Ω) × 𝐿

2
(Ω)) ,

(10)

𝐸 (𝑡) + ∫

𝑡

0

(




∇𝑢
𝜏
(𝜏)






2

+




∇V
𝜏
(𝜏)






2

+‖𝑢 (𝜏)‖
𝑞

𝑞
+ ‖V (𝜏)‖

𝑞

𝑞
) 𝑑𝜏 = 𝐸 (0) ,

(11)

where

𝐸 (𝑡) =

1

2

(




𝑢
𝑡






2

+




V
𝑡






2

) +

1

𝑝

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
)

−

1

𝑟 + 2

‖𝑢V‖𝑟+2
𝑟+2

.

(12)

Proof. Let {𝜔
𝑖
}
∞

𝑖=1
be a basis for 𝑊

1,𝑝

0
(Ω). Supposed that 𝑉

𝑘
is

the subspace of𝑊1,𝑝
0

(Ω) generated by {𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑘
}, 𝑘 ∈ 𝑁.

We are going to look for the approximate solution

𝑢
𝑘
(𝑡) =

𝑘

∑

𝑖=1

𝑔
𝑖𝑘
(𝑡) 𝜔
𝑖
, V

𝑘
(𝑡) =

𝑘

∑

𝑖=1

ℎ
𝑖𝑘
(𝑡) 𝜔
𝑖

(13)
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which satisfies the following Cauchy problem:

∫

Ω

(𝑢


𝑘
− div (





∇𝑢
𝑘






𝑝−2

∇𝑢
𝑘
) +






𝑢


𝑘







𝑞−2

𝑢


𝑘
− Δ𝑢


𝑘
)𝜔
𝑖
𝑑𝑥

= ∫

Ω





V
𝑘






𝑟+2



𝑢
𝑘






𝑟

𝑢
𝑘
𝜔
𝑖
𝑑𝑥,

(14)

∫

Ω

(V
𝑘
− div (





∇V
𝑘






𝑝−2

∇V
𝑘
) +






V
𝑘







𝑞−2

V
𝑘
− ΔV
𝑘
)𝜔
𝑖
𝑑𝑥

= ∫

Ω





𝑢
𝑘






𝑟+2



V
𝑘






𝑟V
𝑘
𝜔
𝑖
𝑑𝑥,

(15)

𝑢
𝑘
(0) = 𝑢

0𝑘
=

𝑘

∑

𝑖=1

(𝑢
0
, 𝜔
𝑖
) 𝜔
𝑖
→ 𝑢
0
, in 𝑊

1,𝑝

0
(Ω) ,

𝑘 → ∞,

(16)

V
𝑘
(0) = V

0𝑘
=

𝑘

∑

𝑖=1

(V
0
, 𝜔
𝑖
) 𝜔
𝑖
→ V
0

in 𝑊
1,𝑝

0
(Ω) ,

𝑘 → ∞,

(17)

𝑢


𝑘
(0) = 𝑢

1𝑘
=

𝑘

∑

𝑖=1

(𝑢
1
, 𝜔
𝑖
) 𝜔
𝑖
→ 𝑢
1

in 𝐿
2
(Ω) ,

𝑘 → ∞,

(18)

V
𝑘
(0) = V

1𝑘
=

𝑘

∑

𝑖=1

(V
1
, 𝜔
𝑖
) 𝜔
𝑖
→ V
1

in 𝐿
2
(Ω) ,

𝑘 → ∞.

(19)

Note that, we can solve the problem (14)–(19) by a Picard’s
iteration method in ordinary differential equations. Hence,
there exists a solution in [0, 𝑇

𝑘
) for some 𝑇

𝑘
> 0, and we can

extend this solution to the whole interval [0, 𝑇] for any given
𝑇 > 0 by making use of the a priori estimates below.

Multiplying (14) by 𝑔


𝑖𝑘
(𝑡) and (15) by ℎ



𝑖𝑘
(𝑡) and summing

over 𝑖 from 1 to 𝑘, we obtain
1

2

𝑑

𝑑𝑡

(






𝑢


𝑘
(𝑡)







2

+




∇𝑢
𝑘






𝑝

𝑝
) +






𝑢


𝑘
(𝑡)







𝑞

𝑞
+






∇𝑢


𝑘
(𝑡)







2

= ∫

Ω





V
𝑘






𝑟+2



𝑢
𝑘






𝑟

𝑢
𝑘
𝑢


𝑘
𝑑𝑥,

(20)

1

2

𝑑

𝑑𝑡

(






V
𝑘
(𝑡)







2

+




∇V
𝑘






𝑝

𝑝
) +






V
𝑘
(𝑡)







𝑞

𝑞
+






∇V
𝑘
(𝑡)







2

= ∫

Ω





𝑢
𝑘






𝑟+2



V
𝑘






𝑟V
𝑘
V
𝑘
𝑑𝑥.

(21)

By summing (20) and (21) and integrating the resulting iden-
tity over [0, 𝑡], we have

1

2

(






𝑢


𝑘
(𝑡)







2

+






V
𝑘
(𝑡)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝
)

+ ∫

𝑡

0

(






∇𝑢


𝑘
(𝑡)







2

+






∇V
𝑘
(𝑡)







2

+






𝑢


𝑘
(𝜏)







𝑞

𝑞
+






V
𝑘
(𝜏)







𝑞

𝑞
) 𝑑𝜏

≤ 𝐶
0
+ ∫

𝑡

0

∫

Ω

(




V
𝑘






𝑟+2



𝑢
𝑘






𝑟

𝑢
𝑘
𝑢


𝑘

+




𝑢
𝑘






𝑟+2



V
𝑘






𝑟V
𝑘
V
𝑘
) 𝑑𝑥 𝑑𝜏.

(22)

We estimate the right-hand terms of (22) as follows: we get
from Hölder inequality and Lemmas 1 and 2 that










∫

𝑡

0

∫

Ω

(




V
𝑘






𝑟+2



𝑢
𝑘






𝑟

𝑢
𝑘
𝑢


𝑘
+





𝑢
𝑘






𝑟+2



V
𝑘






𝑟V
𝑘
V
𝑘
) 𝑑𝑥 𝑑𝜏










≤ ∫

𝑡

0

(






𝑢


𝑘
(𝜏)







2

+






V
𝑘
(𝜏)







2

) 𝑑𝜏

+ ∫

𝑡

0

∫

Ω





𝑢
𝑘
V
𝑘






2(𝑟+1)

(




𝑢
𝑘






2

+




V
𝑘






2

) 𝑑𝑥 𝑑𝜏

≤ ∫

𝑡

0

(






𝑢


𝑘
(𝜏)







2

+






V
𝑘
(𝜏)







2

) 𝑑𝜏

+ 𝐶∫

𝑡

0

(




𝑢
𝑘






2(𝑟+2)

2(𝑟+2)
+





V
𝑘






2(𝑟+2)

2(𝑟+2)
) 𝑑𝜏

≤ 𝐶∫

𝑡

0

(






𝑢


𝑘
(𝜏)







2

+






V
𝑘
(𝜏)







2

+




∇𝑢
𝑘






2(𝑟+2)

𝑝
+





∇V
𝑘






2(𝑟+2)

𝑝
) 𝑑𝜏

≤ 𝐶∫

𝑡

0

(






𝑢


𝑘
(𝜏)







2

+






V
𝑘
(𝜏)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝
)

2(𝑟+2)/𝑝

𝑑𝜏.

(23)

It follows from (22) and (23) that






𝑢


𝑘
(𝑡)







2

+






V
𝑘
(𝑡)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝

+ 2∫

𝑡

0

(






𝑢


𝑘
(𝜏)







𝑞

𝑞
‖ +






V
𝑘
(𝜏)







𝑞

𝑞

+






∇𝑢


𝑘
(𝑡)







2

+






∇V
𝑘
(𝑡)







2

) 𝑑𝜏

≤ 2𝐶
0
+ 𝐶∫

𝑡

0

(






𝑢


𝑘
(𝜏)







2

+






V
𝑘
(𝜏)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝
)

2(𝑟+2)/𝑝

𝑑𝜏,

(24)

which implies that






𝑢


𝑘
(𝑡)







2

+






V
𝑘
(𝑡)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝

≤ 2𝐶
0
+ 𝐶∫

𝑡

0

(






𝑢


𝑘
(𝜏)







2

+






V
𝑘
(𝜏)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝
)

2(𝑟+2)/𝑝

𝑑𝜏.

(25)

We get from (25) and Gronwall type inequality that






𝑢


𝑘
(𝑡)







2

+






V
𝑘
(𝑡)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝

≤ [2𝐶
0
−

2 (𝑟 + 2) − 𝑝

𝑝

𝐶𝑡]

−𝑝/(2(𝑟+2)−𝑝)

.

(26)
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Thus, we deduce from (26) that there exists a time 𝑇 > 0 such
that





𝑢


𝑘
(𝑡)







2

+






V
𝑘
(𝑡)







2

+




∇𝑢
𝑘






𝑝

𝑝
+





∇V
𝑘






𝑝

𝑝
≤ 𝐶
1
, ∀𝑡 ∈ [0, 𝑇] ,

(27)

where 𝐶
1
is a positive constant independent of 𝑘.

We have from (24) and (26) that

2∫

𝑡

0

(






𝑢


𝑘
(𝜏)







𝑞

𝑞
+






V
𝑘
(𝜏)







𝑞

𝑞

+






∇𝑢


𝑘
(𝜏)







2

+






∇V
𝑘
(𝜏)







2

) 𝑑𝜏 ≤ 𝐶
2
, ∀𝑡 ∈ [0, 𝑇] .

(28)

It follows from (27) and (28) that





𝑢


𝑘
(𝑡)







2

≤ 𝐶
1
,






V
𝑘
(𝑡)







2

≤ 𝐶
1
,





∇𝑢
𝑘






𝑝

𝑝
≤ 𝐶
1
,





∇V
𝑘






𝑝

𝑝
≤ 𝐶
1
.

𝑢


𝑘
(𝑡) and V

𝑘
(𝑡) are bounded in 𝐿

2
([0, 𝑇] ; 𝐿

𝑞
(Ω))

and 𝐿
2
([0, 𝑇] ; 𝐻

1

0
(Ω)) .

(29)

Using the same process as the proof of Theorem 2.1 in paper
[18], we derive that [𝑢(𝑡), V(𝑡)] is a local solution of the pro-
blem (1)–(5). By (20) and (21), we conclude that (11) is valid.

3. Global Existence

In order to state our main results, we first introduce the fol-
lowing functionals:

𝐽 ([𝑢, V]) =

1

𝑝

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) −

1

𝑟 + 2

‖𝑢V‖𝑟+2
𝑟+2

, (30)

𝐾 ([𝑢, V]) = (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) − 2‖𝑢V‖𝑟+2

𝑟+2
(31)

for [𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω).

We put that

𝑑 = inf {sup
𝜆≥0

𝐽 (𝜆 [𝑢, V]) : [𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω)

×𝑊
1,𝑝

0
(Ω) / {[0, 0]} } .

(32)

Then, we are able to define the stable set as follows for prob-
lem (1)–(5):

𝑊 = {[𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω) | 𝐾 ([𝑢, V]) > 0,

𝐽 ([𝑢, V]) < 𝑑} ∪ {[0, 0]} .

(33)

We denote the total energy related to (1) and (2) by (12), and

𝐸 (0) =

1

2

(




𝑢
1






2

+




V
1






2

) +

1

𝑝

(




∇𝑢
0






𝑝

𝑝
+





∇V
0






𝑝

𝑝
)

−

1

𝑟 + 2





𝑢
0
V
0






𝑟+2

𝑟+2

(34)

is the total energy of the initial data.

Lemma 5. Let [𝑢, V] be a solution to problem (1)–(5); then,
𝐸(𝑡) is a nonincreasing function for 𝑡 > 0 and

𝑑

𝑑𝑡

𝐸 (𝑡) = − (




𝑢
𝑡






𝑞

𝑞
+





V
𝑡






𝑞

𝑞
+





∇𝑢
𝑡






2

2
+





∇V
𝑡






2

2
) . (35)

We have from (11) that 𝐸(𝑡) is the primitive of an inte-
grable function.Therefore, 𝐸(𝑡) is absolutely continuous, and
equality (35) is satisfied.

Lemma 6. Supposed that [𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω), and

𝑝 < 2(𝑟 + 2) ≤ 𝑛𝑝/(𝑛 − 𝑝) if 𝑛 ≥ 𝑝; 𝑝 < 2(𝑟 + 2) < +∞ if
𝑛 < 𝑝, then 𝑑 > 0.

Proof. Since

𝐽 (𝜆 [𝑢, V]) =

𝜆
𝑝

𝑝

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) −

𝜆
2(𝑟+2)

𝑟 + 2

‖𝑢V‖𝑟+2
𝑟+2

, (36)

so we get

𝑑

𝑑𝜆

𝐽 (𝜆 [𝑢, V]) = 𝜆
𝑝−1

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) − 2𝜆

2𝑟+3
‖𝑢V‖𝑟+2
𝑟+2

.

(37)

In case 𝑢V ̸= 0, let (𝑑/𝑑𝜆)𝐽(𝜆[𝑢, V]) = 0, which implies that

𝜆
1
= (

‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝𝑝

2‖𝑢V‖𝑟+2
𝑟+2

)

1/(2𝑟−𝑝+4)

. (38)

As 𝜆 = 𝜆
1
, an elementary calculation shows that

(𝑑
2
/𝑑𝜆
2
)𝐽(𝜆[𝑢, V])|

𝜆=𝜆
1

< 0. Therefore, we have that

sup
𝜆≥0

𝐽 (𝜆 [𝑢, V])

= 𝐽 (𝜆
1
[𝑢, V])

=

2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

(

‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝𝑝

2
𝑝/(2𝑟+4)

‖𝑢V‖𝑝/2
𝑟+2

)

(2𝑟+4)/(2𝑟−𝑝+4)

.

(39)

It follows from Hölder inequality and Lemma 1 that

‖𝑢V‖𝑝/2
𝑟+2

≤ ‖𝑢‖
𝑝/2

2(𝑟+2)
‖V‖𝑝/2
2(𝑟+2)

≤

1

2

(‖𝑢‖
𝑝

2(𝑟+2)
+ ‖V‖𝑝
2(𝑟+2)

)

≤ 𝐶 (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) .

(40)

We get from (39) and (40) that

sup
𝜆≥0

𝐽 (𝜆 [𝑢, V]) ≥

2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

(2
𝑝/(2𝑟+4)

𝐶)

−(2𝑟+4)/(2𝑟−𝑝+4)

> 0.

(41)

In case 𝑢V = 0 and 𝑢 = 0 or V = 0, then

𝐽 (𝜆 [𝑢, V]) =

𝜆
𝑝

𝑝

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) . (42)
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Therefore, we have

𝐽 (𝜆 [𝑢, V]) = +∞. (43)

We conclude from (41) and (43) that

𝑑 ≥

2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

(2
𝑝/(2𝑟+4)

𝐶)

−(2𝑟+4)/(2𝑟−𝑝+4)

> 0. (44)

Thus, we complete the proof of Lemma 6.

Lemma 7. Supposed that 𝑝 < 2(𝑟 + 2) ≤ 𝑛𝑝/(𝑛 − 𝑝) for 𝑛 ≥ 𝑝

and 𝑝 < 2(𝑟 + 2) < +∞ for 𝑛 < 𝑝, if [𝑢
0
, V
0
] ∈ 𝑊, [𝑢

1
, V
1
] ∈

𝐿
2
(Ω) × 𝐿

2
(Ω) and 𝐸(0) < 𝑑, then [𝑢, V] ∈ 𝑊 for ∀𝑡 ∈ [0, 𝑇).

Proof. Assume that there exists a number 𝑡∗ ∈ (0, 𝑇) such that
[𝑢(𝑡), V(𝑡)] ∈ 𝑊 on [0, 𝑡

∗
) and 𝑢(𝑡

∗
) ∉ 𝑊. Then, in virtue of

the continuity of 𝑢(𝑡), we see 𝑢(𝑡
∗
) ∈ 𝜕𝑊, where 𝜕𝑊 denotes

the boundary of domain𝑊. From the definition of𝑊 and the
continuity of 𝐽([𝑢(𝑡), V(𝑡)]) and 𝐾([𝑢(𝑡), V(𝑡)]) in 𝑡, we have
either

𝐽 ([𝑢 (𝑡
∗
) , V (𝑡

∗
)]) = 𝑑 (45)

or

𝐾([𝑢 (𝑡
∗
) , V (𝑡

∗
)]) = 0. (46)

It follows from (12) and (30) that

𝐽 ([𝑢 (𝑡
∗
) , V (𝑡

∗
)]) ≤ 𝐸 (𝑡

∗
) ≤ 𝐸 (0) < 𝑑. (47)

So, case (45) is impossible.
Assume that (46) holds; then, we get that

𝑑

𝑑𝜆

𝐽 (𝜆 [𝑢 (𝑡
∗
) , V (𝑡

∗
)])

= 𝜆
𝑝−1

(1 − 𝜆
2𝑟−𝑝+4

) (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) .

(48)

We obtain from (𝑑/𝑑𝜆)𝐽(𝜆[𝑢(𝑡
∗
), V(𝑡∗)]) = 0 that𝜆 = 1. Since

𝑑
2

𝑑𝜆
2
𝐽 (𝜆 [𝑢 (𝑡

∗
) , V (𝑡

∗
)])









𝜆=1

= − [(2 (𝑟 + 2) − 𝑝) + (2𝑟 + 3)] < 0.

(49)

Consequently, we get from (47) that

sup
𝜆≥0

𝐽 (𝜆 [𝑢 (𝑡
∗
) , V (𝑡

∗
)]) = 𝐽 ([𝑢 (𝑡

∗
) , V (𝑡

∗
)]) < 𝑑, (50)

which contradicts the definition of 𝑑. Hence, case (46) is
impossible as well. Thus we conclude that [𝑢(𝑡), V(𝑡)] ∈ 𝑊

on [0, 𝑇).

Theorem 8 (global solution). Supposed that 𝑝 < 2(𝑟 + 2) ≤

𝑛𝑝/(𝑛 − 𝑝) as 𝑛 ≥ 𝑝 and 𝑝 < 2(𝑟 + 2) < +∞ as 𝑛 < 𝑝,
and [𝑢(𝑡), V(𝑡)] is a local solution of problem (1)–(5) on [0, 𝑇).
If [𝑢
0
, V
0
] ∈ 𝑊, [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω) × 𝐿

2
(Ω) and 𝐸(0) < 𝑑, then

[𝑢(𝑡), V(𝑡)] is a global solution of problem (1)–(5).

Proof. It suffices to show that ‖𝑢
𝑡
‖
2
+ ‖V
𝑡
‖
2
+ ‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
is

bounded uniformlywith respect to 𝑡. Under the hypotheses in
Theorem 8,we get fromLemma 7 that [𝑢, V] ∈ 𝑊 on [0, 𝑇). So
the following formula holds on [0, 𝑇):

𝐽 ([𝑢, V]) =

1

𝑝

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) −

1

𝑟 + 2

‖𝑢V‖𝑟+2
𝑟+2

≥

2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) .

(51)

We have from (51) that

1

2

(




𝑢
𝑡






2

+




V
𝑡






2

) +

2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
)

≤

1

2

(




𝑢
𝑡






2

+




V
𝑡






2

) + 𝐽 ([𝑢 (𝑡) , V (𝑡)])

= 𝐸 (𝑡) ≤ 𝐸 (0) < 𝑑.

(52)

Hence, we get

(




𝑢
𝑡






2

+




V
𝑡






2

) + (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
)

≤ max(2,

2𝑝 (𝑟 + 2)

2 (𝑟 + 2) − 𝑝

)𝑑 < +∞.

(53)

The above inequality and the continuation principle lead to
the global existence of the solution [𝑢, V] for problem (1)–(5).

4. Asymptotic Behavior of Global Solutions

The following lemma plays an important role in studying the
decay estimate of global solutions for the problem (1)–(5).

Lemma 9 (see [9]). Suppose that 𝜑(𝑡) is a nonincreasing non-
negative function on [0, +∞) and satisfies

𝜑(𝑡)
𝑟+1

≤ 𝑘 (𝜑 (𝑡) − 𝜑 (𝑡 + 1)) , ∀𝑡 ≥ 0. (54)

Then, 𝜑(𝑡) has the decay property

𝜑 (𝑡) ≤ [

𝑟

𝑘

(𝑡 − 1) + 𝑀
−𝑟

]

−1/𝑟

, ∀𝑡 ≥ 1, (55)

where 𝑘, 𝑟 > 0 are constants and 𝑀 = max
𝑡∈[0,1]

𝜑(𝑡).

Lemma 10. Under the assumptions of Theorem 8, if initial
value [𝑢

0
, V
0
] ∈ 𝑊 and [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω)×𝐿

2
(Ω) are sufficiently

small such that

𝐶
2(𝑟+2)

(

2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝

𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

< 1, (56)

then

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) ≤

1

𝜃

𝐾 ([𝑢, V]) , (57)

where 𝜃 = 1 − 𝐶
2(𝑟+2)

((2𝑝(𝑟 + 2)/(2𝑝(𝑟 + 2) −

𝑝))𝐸(0))
(2(𝑟+2)−𝑝)/𝑝

> 0 is a positive constant and 𝐶 is the
optimal Sobolev’s constant from 𝑊

1,𝑝

0
(Ω) to 𝐿

2(𝑟+2)
(Ω).
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Proof. We have from Lemma 1 and (52) that

2‖𝑢V‖𝑟+2
𝑟+2

≤ 2‖𝑢‖
𝑟+2

2(𝑟+2)
‖V‖𝑟+2
2(𝑟+2)

≤ ‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ ‖V‖2(𝑟+2)
2(𝑟+2)

≤ 𝐶
2(𝑟+2)

(‖∇𝑢‖
2(𝑟+2)

𝑝
+ ‖∇V‖2(𝑟+2)

𝑝
)

≤ 𝐶
2(𝑟+2)

(‖∇𝑢‖
2(𝑟+2)−𝑝

𝑝
‖∇𝑢‖
𝑝

𝑝

+‖∇V‖2(𝑟+2)−𝑝
𝑝

‖∇V‖𝑝
𝑝
)

≤ 𝐶
2(𝑟+2)

(

2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝

𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

× (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) .

(58)

Therefore, we get from (58) and (31) that

[1 − 𝐶
2(𝑟+2)

(

2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝

𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

]

× (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) ≤ 𝐾 ([𝑢, V]) .

(59)

Let

𝜃 = 1 − 𝐶
2(𝑟+2)

(

2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝

𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

> 0; (60)

then, we have from (59) that

‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
≤

1

𝜃

𝐾 ([𝑢, V]) . (61)

Theorem 11. Under the assumptions of Theorem 8, if 𝑝 < 𝑞 <

𝑟 + 2 and (56) hold, then the global solution [𝑢, V] in 𝑊 of the
problem (1)–(5) has the following decay property:

𝐸 (𝑡) ≤ [

𝑝 − 2

𝑝𝐶

(𝑡 − 1) + 𝑀
(𝑝+𝑞−𝑝𝑞)/𝑝

]

𝑝/(𝑝+𝑞−𝑝𝑞)

, ∀𝑡 > 1,

(62)

where𝑀 = max
𝑡∈[0,1]

𝐸(𝑡) > 0 is some constant depending only
on [𝑢
0
, V
0
] and [𝑢

1
, V
1
].

Proof. Multiplying (1) by 𝑢
𝑡
and (2) by V

𝑡
and integrating over

Ω × [𝑡, 𝑡 + 1], and summing up together, we get

∫

𝑡+1

𝑡

(




𝑢
𝑡
(𝑠)






𝑞

𝑞
+





V
𝑡
(𝑠)






𝑞

𝑞
+





∇𝑢
𝑡
(𝑠)






2

2

+




∇V
𝑡
(𝑠)






2

2
) 𝑑𝑠 = 𝐸 (𝑡) − 𝐸 (𝑡 + 1) .

(63)

Thus, there exists 𝑡
1
∈ [𝑡, 𝑡+1/4], 𝑡

2
∈ [𝑡+3/4, 𝑡+1] such that

4 (




𝑢
𝑡
(𝑡
𝑖
)





𝑞

𝑞
+





V
𝑡
(𝑡
𝑖
)





𝑞

𝑞
+





∇𝑢
𝑡
(𝑡
𝑖
)





2

2
+





∇V
𝑡
(𝑡
𝑖
)





2

2
)

= 𝐸 (𝑡) − 𝐸 (𝑡 + 1) , 𝑖 = 1, 2.

(64)

On the other hand, we multiply (1) by 𝑢 and (2) by V and
integrate over Ω × [𝑡

1
, 𝑡
2
]. Adding them together, we obtain

∫

𝑡
2

𝑡
1

𝐾 ([𝑢, V]) 𝑑𝑠 = ∫

𝑡
2

𝑡
1





𝑢
𝑡






2

𝑑𝑠 + ∫

𝑡
2

𝑡
1





V
𝑡






2

𝑑𝑠

+ (𝑢
𝑡
(𝑡
1
) , 𝑢 (𝑡

1
)) − (𝑢

𝑡
(𝑡
2
) , 𝑢 (𝑡

2
))

+ (V
𝑡
(𝑡
1
) , V (𝑡

2
)) − (V

𝑡
(𝑡
2
) V (𝑡
2
))

− (∫

𝑡
2

𝑡
1

∫

Ω





𝑢
𝑡






𝑞−2

𝑢
𝑡
𝑢 𝑑𝑥 𝑑𝑠

+∫

𝑡
2

𝑡
1

∫

Ω





V
𝑡






𝑞−2V
𝑡
V 𝑑𝑥 𝑑𝑠)

−∫

𝑡
2

𝑡
1

∫

Ω

∇𝑢
𝑡
∇𝑢𝑑𝑥 𝑑𝑠−∫

𝑡
2

𝑡
1

∫

Ω

∇V
𝑡
∇V 𝑑𝑥 𝑑𝑠.

(65)

From (63), Sobolev inequality, andHölder inequality, we have

∫

𝑡
2

𝑡
1





𝑢
𝑡






2

𝑑𝑠 ≤ 𝐶∫

𝑡
2

𝑡
1





∇𝑢
𝑡






2

𝑑𝑠 ≤ 𝐶 (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) ,

∫

𝑡
2

𝑡
1





V
𝑡






2

𝑑𝑠 ≤ 𝐶∫

𝑡
2

𝑡
1





∇V
𝑡






2

𝑑𝑠 ≤ 𝐶 (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) .

(66)

We get from (52), (64), and Lemmas 1 and 2 that





𝑢
𝑡
(𝑡
𝑖
) , 𝑢 (𝑡

𝑖
)




≤




𝑢
𝑡
(𝑡
𝑖
)




⋅




𝑢 (𝑡
𝑖
)




≤𝐶





∇𝑢
𝑡
(𝑡
𝑖
)




⋅




∇𝑢(𝑡
𝑖
)



𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2 sup
𝑡≤𝑠≤𝑡+1

𝐸(𝑠)
1/𝑝

≤ 𝐶 (𝜀) (𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) , 𝑖 = 1, 2,





(V
𝑡
(𝑡
𝑖
) , V (𝑡

𝑖
))





≤




V
𝑡
(𝑡
𝑖
)




⋅




V (𝑡
𝑖
)




≤𝐶





∇V
𝑡
(𝑡
𝑖
)




⋅




∇V(𝑡
𝑖
)



𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2 sup
𝑡≤𝑠≤𝑡+1

𝐸(𝑠)
1/𝑝

≤ 𝐶 (𝜀) (𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) , 𝑖 = 1, 2.

(67)

From Hölder inequality and Lemma 2,we get











∫

𝑡
2

𝑡
1

∫

Ω





𝑢
𝑡






𝑞−2

𝑢
𝑡
𝑢 𝑑𝑥 𝑑𝑠











≤ ∫

𝑡
2

𝑡
1





𝑢
𝑡






𝑞−1

𝑞
‖𝑢‖
𝑞
𝑑𝑠

≤(∫

𝑡
2

𝑡
1





𝑢
𝑡






𝑞

𝑞
𝑑𝑠)

(𝑞−1)/𝑞

(∫

𝑡
2

𝑡
1

‖𝑢‖
𝑞

𝑞
𝑑𝑠)

1/𝑞

≤ 𝐶 (𝜀) ∫

𝑡
2

𝑡
1





𝑢
𝑡






𝑞

𝑞
𝑑𝑠 + 𝜀∫

𝑡
2

𝑡
1

‖𝑢‖
𝑞

𝑞
𝑑𝑠,

(68)
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∫

𝑡
2

𝑡
1

∫

Ω





V
𝑡






𝑞−2V
𝑡
V 𝑑𝑥 𝑑𝑠











≤ ∫

𝑡
2

𝑡
1





V
𝑡






𝑞−1

𝑞
‖V‖
𝑞
𝑑𝑠

≤(∫

𝑡
2

𝑡
1





V
𝑡






𝑞

𝑞
𝑑𝑠)

(𝑞−1)/𝑞

(∫

𝑡
2

𝑡
1

‖V‖𝑞
𝑞
𝑑𝑠)

1/𝑞

≤ 𝐶 (𝜀) ∫

𝑡
2

𝑡
1





V
𝑡






𝑞

𝑞
𝑑𝑠 + 𝜀∫

𝑡
2

𝑡
1

‖V‖𝑞
𝑞
𝑑𝑠.

(69)

Since 𝑝 < 𝑞 < 𝑟 + 2 and the property of the function
𝑓(𝑥) = 𝛼

𝑥
/𝑥, 𝛼 ≥ 0, 𝑥 > 0, we obtain

‖𝑢‖
𝑞

𝑞

𝑞

≤ 𝐶

‖𝑢‖
𝑝

𝑝

𝑝

+ 𝐶

‖𝑢‖
𝑟+2

𝑟+2

𝑟 + 2

,

‖V‖𝑞
𝑞

𝑞

≤ 𝐶

‖V‖𝑝𝑝
𝑝

+ 𝐶

‖V‖𝑟+2
𝑟+2

𝑟 + 2

.

(70)

We conclude from (69), (70), [𝑢, V] ∈ 𝑊, and Lemma 1
that

‖𝑢‖
𝑞

𝑞
+ ‖V‖𝑞
𝑞
≤ 𝐶 (‖𝑢‖

𝑝

𝑝
+ ‖𝑢‖
𝑟+2

𝑟+2
+ ‖V‖𝑝
𝑝
+ ‖V‖𝑟+2
𝑟+2

)

≤ 𝐶 (‖𝑢‖
𝑝

𝑝
+ ‖∇𝑢‖

𝑝

𝑝
+ ‖V‖𝑝
𝑝
+ ‖∇V‖𝑝

𝑝
)

≤ 𝐶 (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) ≤ 𝐶𝐸 (𝑡) .

(71)

It follows from (63), (68), (69), and (71) that










− (∫

𝑡
2

𝑡
1

∫

Ω





𝑢
𝑡






𝑞−2

𝑢
𝑡
𝑢 𝑑𝑥 𝑑𝑠+∫

𝑡
2

𝑡
1

∫

Ω





V
𝑡






𝑞−2V
𝑡
V 𝑑𝑥 𝑑𝑠)











≤ 𝐶 (𝜀) (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) + 𝜀𝐶∫

𝑡
2

𝑡
1

𝐸 (𝑠) 𝑑𝑠,

(72)

and we obtain from (63), Sobolev inequality, Hölder inequal-
ity, and Lemma 2 that










− ∫

𝑡
2

𝑡
1

∫

Ω

∇𝑢
𝑡
∇𝑢𝑑𝑠











≤ ∫

𝑡
2

𝑡
1





∇𝑢
𝑡





⋅ ‖∇𝑢‖ 𝑑𝑠

≤ (∫

𝑡
2

𝑡
1





∇𝑢
𝑡






2

𝑑𝑠)

1/2

(∫

𝑡
2

𝑡
1

‖∇𝑢‖
2
𝑑𝑠)

1/2

≤𝐶(𝐸 (𝑡)−𝐸 (𝑡 + 1))
1/2

(∫

𝑡
2

𝑡
1

‖∇𝑢‖
2

𝑝
𝑑𝑠)

1/2

≤𝐶(𝐸 (𝑡)−𝐸 (𝑡 + 1))
1/2

(∫

𝑡
2

𝑡
1

‖∇𝑢‖
𝑝

𝑝
𝑑𝑠)

1/𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀∫

𝑡
2

𝑡
1

‖∇𝑢‖
𝑝

𝑝
𝑑𝑠.

(73)

Similarly, we have the following formula:










− ∫

𝑡
2

𝑡
1

∫

Ω

∇V
𝑡
∇V𝑑𝑠











≤ ∫

𝑡
2

𝑡
1





∇V
𝑡





⋅ ‖∇V‖ 𝑑𝑠

≤ (∫

𝑡
2

𝑡
1





∇V
𝑡






2

𝑑𝑠)

1/2

(∫

𝑡
2

𝑡
1

‖∇V‖2𝑑𝑠)
1/2

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2

(∫

𝑡
2

𝑡
1

‖∇V‖2
𝑝
𝑑𝑠)

1/2

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2

(∫

𝑡
2

𝑡
1

‖∇V‖𝑝
𝑝
𝑑𝑠)

1/𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀∫

𝑡
2

𝑡
1

‖∇V‖𝑝
𝑝
𝑑𝑠.

(74)

We get from (57), (73), and (74) that











∫

𝑡
2

𝑡
1

∫

Ω

(∇𝑢
𝑡
∇𝑢 + ∇V

𝑡
∇V) 𝑑𝑠











≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀∫

𝑡
2

𝑡
1

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) 𝑑𝑠

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+

𝜀

𝜃

∫

𝑡
2

𝑡
1

𝐾 ([𝑢, V]) 𝑑𝑠.

(75)

Choosing small enough 𝜀, we have from (65), (66), (67),
(72), and (75) that

∫

𝑡
2

𝑡
1

𝐾 ([𝑢, V]) 𝑑𝑠 ≤ 𝐶 [ (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

+(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

]

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) + 𝜀∫

𝑡
2

𝑡
1

𝐸 (𝑠) 𝑑𝑠.

(76)

It follows from (30) and (31) that

𝐽 ([𝑢, V]) =

2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
)

+

1

2 (𝑟 + 2)

𝐾 ([𝑢, V]) .

(77)

On the other hand, from (12) and using (57) and (77), we
deduce that

𝐸 (𝑡) =

1

2

(




𝑢
𝑡






2

+




V
𝑡






2

) + 𝐽 ([𝑢, V])

=

1

2

(




𝑢
𝑡






2

+




V
𝑡






2

) +

2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

× (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
) +

1

2 (𝑟 + 2)

𝐾 ([𝑢, V])

≤

1

2

(




𝑢
𝑡






2

+




V
𝑡






2

) + (

2 (𝑟 + 2) − 𝑝

2𝜃𝑝 (𝑟 + 2)

+

1

2 (𝑟 + 2)

)

× 𝐾 ([𝑢, V]) .
(78)
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By integrating (78) over [𝑡
1
, 𝑡
2
], we obtain

∫

𝑡
2

𝑡
1

𝐸 (𝑠) 𝑑𝑠 ≤

1

2

∫

𝑡
2

𝑡
1

(




𝑢
𝑡






2

+




V
𝑡






2

) 𝑑𝑠

+ (

2 (𝑟 + 2) − 𝑝

2𝜃𝑝 (𝑟 + 2)

+

1

2 (𝑟 + 2)

)∫

𝑡
2

𝑡
1

𝐾 ([𝑢, V]) 𝑑𝑠.

(79)

For small enough 𝜀, we have from (76) and (79) that

∫

𝑡
2

𝑡
1

𝐸 (𝑠) 𝑑𝑠

≤ 𝐶 [(𝐸 (𝑡) − 𝐸 (𝑡 + 1)) + (𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/(2(𝑝−1))

]

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) .

(80)

Thus, there exists 𝑡∗ ∈ [𝑡
1
, 𝑡
2
], such that

𝐸 (𝑡
∗
) ≤ 𝐶 [(𝐸 (𝑡) − 𝐸 (𝑡 + 1)) + (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

𝑝/2(𝑝−1)
]

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) .

(81)

Multiplying (1) by 𝑢
𝑡
and (2) by V

𝑡
and integrating over Ω ×

[𝑡
∗
, 𝑡
2
], and summing up, we get

𝐸 (𝑡
2
) = 𝐸 (𝑡

∗
) − ∫

𝑡
2

𝑡
∗

(




𝑢
𝑡






𝑞

𝑞
+





V
𝑡






𝑞

𝑞
+





∇𝑢
𝑡






2

+




∇V
𝑡






2

) 𝑑𝑠.

(82)

Therefore, we obtain from (63), (81), and (82) that

sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) ≤ 𝐶 [ (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

+(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

] + 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) .

(83)

Choosing small enough 𝜀, we have from (83) that

sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) ≤ 𝐶 [ (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

+(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

] .

(84)

Since 𝑝 > 2 and 𝐸(𝑡) < 𝐸(0), we get

sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) ≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

. (85)

Consequently,

sup
𝑡≤𝑠≤𝑡+1

𝐸(𝑠)
(2(𝑝−1))/𝑝

≤ 𝐶 (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) . (86)

Thus, applying Lemma 9 to (86), we get

𝐸 (𝑡) ≤ [

𝑝 − 2

𝑝𝐶

(𝑡 − 1) + 𝑀
(𝑝−2)/𝑝

]

𝑝/(2−𝑝)

, ∀𝑡 > 1, (87)

where 𝑀 = max
𝑡∈[0,1]

𝐸(𝑡) > 0 is some constant depending
only on [𝑢

0
, V
0
] and [𝑢

1
, V
1
].
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