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We consider the model of a Caputo g-fractional boundary value problem involving p-Laplacian operator. By using the Banach
contraction mapping principle, we prove that, under some conditions, the suggested model of the Caputo g-fractional boundary
value problem involving p-Laplacian operator has a unique solution for both cases of 0 < p < 1 and p > 2. It is interesting that
in both cases solvability conditions obtained here depend on g, p, and the order of the Caputo g-fractional differential equation.

Finally, we illustrate our results with some examples.

1. Introduction

In this section we will give some basic definitions and results
that will be needed in the sequel. For more details about
the theory of g-calculus, fractional calculus, and g-fractional
calculus, we refer readers to [1-10].

Let g € (0, 1) be a fixed real number. Then for any « € R,

)

The g-binomial function is defined for all n € N as

n-1
(=9 =[1(e-d").
k=0
2)
B_ B -(s/t) q
S) =t H < — (s/t) qz+oc )

where f3 is not a positive integer. It is easy to see that

(at — as)s = aﬁ(t - s)s. (3)

The g-analog of Euler’s gamma function is denoted by I (¢)
and defined as
(1-q),
L,(t)= ——5, t>0. (4)

(1 @”’

The following theorem will be used to compare values of I'(t),
the usual gamma function, with values of I (¢) for a fixed q €
(0,1).

Theorem 1 (see [11]). For0 < r < g < 1, one has

F,(t)sl"q(t)sl“(t), forO<t<lort>2,

(5)
()< Fq(t) <L (), forl<t<2.
It is known that for 0 < g < 1,
={q"ine zlu{o},
(6)

T;X ={q""neztuio},

aeRYU{0}.
The nabla g-derivative of the function f: T, — R is defined

by

f) =~ f(as) T - (o}, @)

qu(s)— (=q)s seT,



The nabla g-integral of f is defined by

| F@ve=0-a)sY d'f (sa). ®)
0 k=0

Jackson in [12] and Thomae in [13] showed that the g-beta
function, which is defined by

L ()T, (s)
B (t,s)= +~91°°
7 (6s) L, (t+s) ©)
has the following g-integral representation:
1
t—1 s—1
B, (t,s) = .[0 T (1-qr), V. £5>0. (10)
The fundamental theorem of g-calculus states that
vqj FOVE=fs), ()
0
and if f is continuous at 0, then
L VF OVt =)~ f(0). 12)

Moreover,

t t
v, J fts)Vys = Jo V. f(ts)Vys+ f(qt.t), (13)

0

where the derivative is applied with respect to t.
The nabla g-fractional derivative of (¢ — s)‘; with respect
to t and for all « € R is given by

o

11_ L sy, (14)

o
Vq(t —5) 4=
Moreover, the g-fractional integral of order a #0,-1,-2,...
is defined by

1
T, (@

t
-1
Af 0= [ a9y 0V 09)
The a-order Caputo g-fractional derivative of a function f is
defined by

o 1 t n—o—1 n
Cof @)= —rq — L (t-gs) Vo f () Vs, (16)
where n = [a] + 1 and [«] denotes the greatest integer less
than or equal to «.
The following lemma enables us to transfer Caputo g-frac-

tional differential equations into an equivalent g-fractional
integral equation.

Lemma 2 (see [3]). Assume that « > 0 and f is defined on a
suitable domain. Then

. ~ n-1 tk .
lo,Cof (8) = f () - ZO quf(m (17)
and if 0 < o < 1, then
l0,Cof (8) = f (£) = £ (0). (18)
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On the other hand the operator gop(s) = |s|P™%s, where
p > lis called the p-Laplacian operator. It is easy to see that
(P;’l = ¢,, where (1/p)+(1/r) = 1. The following properties of
p-Laplacian operator will be used in the rest of the paper.
(PDifl < p < 2,xy > 0,and |x|,|y| = m > 0, then
l9,(x) = @M < (p = 1) mP|x = yl;
(P2)if p > 2 and [x], |yl < M then, |p,(x) — ¢,(y)| <
(p - DMP2|x - y).

2. A Model of Caputo g-Fractional
Boundary Value Problem Involving
p-Laplacian Operator

In this paper, our main aim is to prove the existence and uni-
queness of the solution for the following Caputo g-fractional
boundary value problem involving the p-Laplacian operator:

Y, (2, (,Cox 1)) = f (6x (1)),
VEx(0)=0, fork=23,..,n-1, )
x(0) = ayx (1),

Vx 0) = a,Vyx (1),

whereay, a, #1, 1 <a e R,and f € C([0,1] xR, R).

Note that, the boundary value problem given in (19) is
antiperiodic for a,, a, = -1.

In the following lemma we obtain a g-integral equation
which is equivalent to the Caputo g-fractional boundary
value problem given in (19).

Lemma 3. Assume that o > 1, ay, a, #1, and h € C([0,1]).
Then

Vo (2 (,Cox ) =h®),
v;‘x(O):o, fork=2,3,...,n-1, 00
x(0) =ayx (1),

Vyx 0) = aVyx (1)

are equivalent to the following g-integral equation:

x(t) =4 Lt (t- qr)Z_l(p, (JT h(s) Vqs> v, T

0

+ bl Ll (1- qr):71¢, (J: h(s) Vqs> v,T (21)
1 a2 T

+bl(t) L (1-q1), "o, <L h(s) Vqs) v,7,

where bg = 1/(Fq(oc)), blq = ao/(l"q(oc)(l - ay)), and bg(t) =
(ay(t + ay(1 = 1))/ (Ty(a = 1)(1 = ap) (1 — ay)).
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Proof. Using (20) and the fact that (pp( chx(O)) = 0, we have

?p (ch x (t)) = L h(s) Vs, (22)

or equivalently,

chx t) = ¢, (Lt h(s) Vqs> . (23)

Applying g-fractional integral operator I to both sides and
using Lemma 2, we get
n-1 k

t k
x(t) - ;) qux(O)

1 t o T
“T@ JO (t—q0)2 o, (L h(s) Vqs> v,T.

Using V(I;x(O) =0, fork=2,3,...,[«] — 1in (24), we obtain

(24)

aliewal[me

+x(0) + tVyx (0).

x(t) =

According to (13) and (14), we have

Vx () = ﬁ Lt (t- qT)?z‘Pr <LT h(s) Vqs> V,T

+Vx (0).
(26)

Taking t = 1 in both sides of (25) and (26), we get

x(1) = ! J-l (1 —q‘r)“_ltp <J1h(s)V s) V.1
I, (@) Jo 7 "\ Jo )1
+ x (0) +qu(0),
1 T
Vx(1) = AP J (1-4r1), ’0, <L h(s) Vqs> v,T
+qu(0).

(27)

Solving equations obtained by the given boundary value
conditions x(0) = a,x(1) and qu(O) = alvqx(l), it follows
that

_ 49
O e T a)
1 T
X JO (1-4q1), ’o, <L h(s) Vqs) V,7,
1 T
x(0) = m L (1- qT):_l(p, (L h(s) Vqs> v,T

+ %
L(e-1)(1-a)(1-a)

1 T
x L (1- qT)Z—chr (L h(s) Vqs> v,

(28)

Substituting (28) into (25) gives (21) which completes the
proof. O

3. Solvability of the Caputo g-Fractional
Boundary Value Problem

This section is devoted to the solvability of the Caputo g-
fractional boundary value problem given in (19). In the first
part we shall prove the existence and uniqueness of the solu-
tion, and then we shall illustrate our main results with some
examples.

Recall that C[0, 1] is a Banach space with the norm || x| =
max, o ;7|x(¢)|. Now consider T; : C[0,1] — C[0,1], i =
0, 1 with

Tox (t) = o, (Lt f(s,x(s) Vqs> ,

t
T,x(t) = bl L (t- qT)ZHx(T) v,T
(29)

1
+b] J (1- qT)ZHx (1) V,7
0

1
o=2
+bl(t) L (1- q‘r)q x (1) V7.
Then T =T, o T, is a continuous and compact operator.

Theorem 4. Suppose that1 < r < 2, a5, a,#1, q € (0,1)
is fixed, and the following conditions hold: 3A > 0, 0 < § <
2/(2 —r) and d with

0<d

Fq(6(r—2)+2+oc)
(r-1T,6(r-2)+2)

2-r

x[ |1 —ap| |1 -ay
(|1 - ay| + |a0|)(|1 —ay|+|a|[6(r-2)+a+ l]q)

(30)
such that
[0],A°7 < f(t.x), forany (t,x) € (0,11 xR,  (31)

|lf (tx) - f(ty) <d|x-y|, forte[0,1], x,y€R.
(32)

Then the boundary value problem (19) has a unique solution.



Proof. Inequality given in (31) implies that
t
A0 < J f(s,x)V,s, forany (tx) € [0,1] xR. (33)
0
On the other hand using (P1) and (32), we have

|T0x (1) - Toy (t)l

- @(j;f(s,x(s))vqs)—

<r-n()”

o[ £y @) vy)

t

L fsx(s) Vs = Jo fsy(9) Vs

<er-n()” L |f (5x(5) = f (57 (9))] Vs

<d(r-1) (At‘s)r_z Jo |x (s) - y(s)| Vs

<d(r-1) Ao = ¥|-
(34)

Similarly,
|Tx (t)-Ty (t)|

=T, (Tyx (£)) = Ty (Toy (1))

i [ -y () @ - (1) @) Ve
[ - () @ - () ),

1
6 0) | (1-q0)y (1) () (Toy) () Ve

(35)
Finally using (34) in (35), we get
|Tx t)-Ty (t)|
<d@r-1)A"? ==y
[ J (t—qT)a 1 8(1‘ 2)+1V -
(36)
|bq|j (1= qe)y
+ |6l (1) 1 - gr)* 220Dty o
p) q
Since
Jt( q‘[)“ 1 6(r 2)+1V -
0
(37)

_ Jl( qT)“ 1 6(r 2)+a+1 5(r 2)+1V T,
0
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we have
|Tx (t) = Ty (¢)|

<d@r-1)AN? x|

» [bgj (1 qr)“ 1 8(r-2) et 80 z)+1V .
el [ -gn e

][0
=d(r-1)A 7 |x -y
x [pdt? B (8 (r - 2) +2,0)
+ b B, (8 (r =2) +2,a)
+|6d ()| B, (8 (r—2) + 2, - 1) ]

=d(r-)A 7 |x -y
X bgts(r72)+“+qu b(r-2)+2,a)

+|b] B,(8(r-2)+2,a)+ v )

[6(r—2)+a+1]
[“_I]q

1B, (8(r—2)+2,a)]

<d(r-1)A"?|x-y|B,(8(r-2)+2,a)

S(r-2)+a+1
e o 22

=1,
(38)

In other words,
|Tx () = Ty (1)]
I, b(r-2)+2) I, (x)

<D A Ty
q

4

[ 1 (0(r=2) a1
T, () (1 - ap)

I, (@

a, (t+ay(1-1) [5(7’—2)+0‘+1]q]

L, (a-1)(1-ap)(1-ay) [a-1], ]
72 L, (8 (r-2)+2)T, ()
<dr-DA A T v
X[ Lo e
I () I (@) |1 - a0|

lay| (lao| + |1 = ao|) [6 (r =2) + a + 1],
I, (@) |1 = ay| |1 - ay]
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I, (8(r-2)+2)T, ()

<dr-DA sy
q

x [(|1—a0||1—a1|+|a0||1—a1|
+ |ay| (o] + |1~ ag]) [5(7—2)+a+1]q)

X(T, @)1 - a| |1 - ay]) ]

L,6(r-2)+2)

_ _ r=2
=dr-1A4 [,0(r-2)+2+a)

y (|1 - ay| + |a0|)(|1 —ay|+|ay|[6(r-2)+a+ l]q)]
|1 - a1l -a

e =yl = Klx =,
(39)

where K = d(r—1)/\7_2(Fq(6(r—2)+2)/l“q(6(r—2)+2+cx))[((Il—
aol +lagh (11 =a, |+ lay [[3(r = 2) + &+ 1)/ (1= ag 11—y ).

By condition (30), we get 0 < K < 1, which implies that T
is a contraction. As a consequence of the Banach contraction
mapping theorem and Lemma 3, the boundary value problem
given in (19) has a unique solution. O

Theorem 5. Suppose that 1 < r < 2, a,, a, # 1, and the fol-
lowing conditions hold for a fixed q € (0,1), 3IA > 0,0 < § <
2/(2 = 1), and d with

0<d
,r Fq(é(r—2)+2+(x)
(r— I)Fq(é(r—2)+2)
|1—a0||1—a1| ]
(|1 = ap| + |a0|)(|1 —ay| + |ay | [6(r—2) + a + l]q)
(40)
such that

ft.x) < -[8], M, forany (t,x) € (0,1] xR,

|f (tx) - f(ty) <d|x-y|, forte[0,1], x,y €R.
(41)

Then the boundary value problem (19) has a unique solution.

Remark 6. When q — 1, Theorems 4 and 5 reduce to
Theorems 3.1 and 3.2 of [14].

Theorem 7. Suppose thatr > 2, ay, a, 1, and the following
conditions hold for a fixed q € (0, 1). There exists a nonnegative

function g(x) € L[0, 1] with M := '[01 g()V,T 20 such that

|f (t, x)| <g(t), forany (t,x)€[0,1] xR, (42)

5
and there exists a constant d with
0<d
I, (a+2)
< e —
(r-1)M? (43)

[ 1~ af[1 -
(10— aol + ) (11~ ]+ e 11,)

lf (t.x)- f(ty) <d|x-y|, fortel0,1], x,y €R.
(44)

>

Then the boundary value problem (19) has a unique solution.

Proof. By (42), we can get that
t 1
J |f (7, x ()| V7 < J gOvVT=M (45)
0 0
for all t € [0, 1]. By the definition of T}, we have
|Tox (1) = Toy ()]

o, (L Flsx(5) vqs> ~ o, (L Fs.7) vqs)

(46)
Using (P2) and (45) gives
[Ty ()~ Toy 0)
<(r-1)M?
x L £ (5, (5)) Vs - jot F(57()V,s
<(r-1)M? (47)

t
x j 1f (5% () = £ (5,7 (5))]| Vs

<d(r-1) M Jot I%(5) = y (5)] Vs
<d(r-1)Mt|x-y].
Therefore,
|Tx () = Ty (1)]

= [T, (Tox (1) = Ty (Toy 1))

i [ (a0 (@) - (1) ) v,z

- (@ @ - ) @)Y,

1
W0 | (1-an)y (1) () (T0y) () e



<d@r-1)M? = |

1 f a
) [ T @ L (t =)y VT
q

|‘10| ! a-1
@ a0

|a, (t +ay (1 -1))]
T (=11 -a|[1-a]

1
a—2
L (1-9q7), TVqT] .

(48)

Since

t 1
a-1 _ atley a-1
L (t-qr), TV,7 = Jo (1 -qr), TV,T (49)

we have

|Tx () - Ty (1)

<dr-1)M? ||x - y||

1 ! o+l a—1
X [Fq @ Jo " (1-qr), TV,T
0|

1
a—1
—Tq @) L (1- qr)q TV, 7

|ay| (|ao| + |1 = ag])
L (a=1)[1-a|[1-a]

1
J.o (1- qT)Z_ZTVqT] .
(50)

Using g-Beta function and the fact that t € [0, 1], we get

|Tx (t) - Ty (¢)|
<dr-1)M? [x -y

|ao|

X [%Bq (2,(X) + mBq (2,0()
|| (lao| + |1 - a[) [OHI]qB 2 oc)]
L (a=D[1=ap| 1 -] [ 1], 1

<d(r- l)Mr_qu 2,a)|x -y
y [ L
I () I, (x) |1 - a0|

|y | (Jag| +[1 = ao) [or + l]q]
I, (@) |1 = ap| |1 - ay]
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<d(r-1)M"B,(2,a) |x-y|
x [ (1= a0l |1 = ] + |ag| [1 - a]
+ay| (|ag| + |1 = a]) [ + l]q)
-1
x(T, (@) [1 - ag] [1-a,]) ]

B dir-1) M2
[, (e +2)

y I:(|1—a0|+|a0|)(|1 —ay| +|ay| [a + 1]q)]

|1 - a1l -a

X[ =yl < Kllx =],
(51)

where

dir-1)M?
l"q (a+2)

K =

[(|1 —ao| + |a0|)(|1 —a1| + |a1| [ + 1]q>
|1 —a(,| |1 —a1|

By condition (43), we get K < 1 which implies that T'is a con-

traction; therefore boundary value problem given in (19) has
a unique solution. O

Next, we give some examples to illustrate our results.

Example 8. Consider the following Boundary value problem

(ACTAEeREI0))
=4t2<2+cos<ﬁx +w>>, te(0,1),
24
Vix(0)=0, fork=2,3,...,n-1, (53)

X = 3x(1),
Vx 0) = %qu(l),

where
(54)

Then r = 7/4, and take § = 4, A = 1, and d = /n/6. Using
Theorem 1and the fact that (3/2],>1 for any fixed g € (0, 1),
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we have Example 9. Consider the following boundary value problem:

I‘q(é(r—2)+2+¢x)
(r—l)Fq(S(r—2)+2)

2-r

\Z (‘P9/4 (9031/15 (qCZ/zx (t))))

x| (|1 = ao| 1 - )
[ ’ 1 =4t2(2+cos<\gﬁ4x+w>>, te(0,1),
x (|1 = ag| + |a])

., Vix(0)=0, fork=2,3,...,n-1, (58)
><(|1—a1|+|a1|[6(r—2)+oc+l]q)) ]

_z[w/z]qrq(a/z)} 2[ [3/21,T, (3/2) ]
- 2| PO BRIty G2)

x(0) = %x(l),

> —
(1+13/21) |~ 3 [(13/21,+13/21,) V,x(0) = %qu(l).
>1F<§):ﬁ:d>0,
3 \2 6
Then
S(r—
K=d(r-pr a2+
Fq(6(r—2)+2+¢x)
[ =@l a1 -] + ] (6 ¢ =)+ 11,) 9osa (@315 (5)) = @oga (1s1155) = [1s1"/15s] " 5111155
|1_a0||1_a1| — |5|(1/15)(1/4)|S|1/4|S|1/155
W <1 3 _ |5 /60N ¢ _ 173 ¢
4T, (5/2) [ " [EL)] o/sra
= |s] S =973 (s).
<L[<[§] +[§] )]s v = 1.
4[3/2],1,(3/2) I\L21g " 1214 2I (3/2)
(55) (59)

Moreover, it can be easily seen that

Therefore boundary value problem given in (58) reduces to
(81, At = [4]qt3 < 442 (2 + cos <@ + w>> the boundary value problem given in (53), and it has a unique
2 (56)  solution.

= 6%, Example 10. Now consider the following antiperiodic bound-
Finally, ary value problem:
|f (t.x) - f (£ )|
2 Jx Vo (974 (4G 2 )
= |4 NEA
t(2+cos< Y +w>> (e
= <sm <_4O +w>>, te(0,1),
—4t? <2+cos<@ +w)>‘ . (60)
24 V,x(0) =0, fork=23,...,n-1,
(57) )
= 4 cos<gx+w>—cos(%+w> x(0) = —x (1),
qu (0) = —qu (1),
<4 (@ +w)—<@ +w>
- 24 24
N where
e o

Therefore as a consequence of Theorem 4, boundary value

3
> o=, a, = -1, a, =-1. 61
problem given in (53) has a unique solution. 2 0 ! (61



Then r = 7/3, and take d = +/m/20. Using Theorem 1 and
taking g(¢) = 1, we get that

M=1,
I (a+2)
(r-1)M2

x[ |1—a0||1—a1| ]
(|1 - a0| + |a0|) (|1 —a1| + |a1| [ + l]q)
[ gwm>]>[wnMwngﬂwm]
(2+(5/2],) (215/2], + [5/2],)

372113 3/2)  TG/2) _ Vr V7 _
3 3 6 20

d.

(62)
On the other hand,

If tx) - f(t.y) <

sin’ (@ +w> — sin® (ﬂ +w>|
40 40

S%|x—y|, fort € [0,1], x,y € R,

d(r-1)M?
I (a+2)

X[ql — ag| +lag|)(|1 - @] +]ay |l + llq)]

[1-a|]1-a

} W% [“ BL]

i 5

* 2005/21,[3/21,T, 3/2) qu

= 3Vm < AL 3 <1

20[3/2],T,(3/2) 20T (3/2) 10
(63)

Therefore by Theorem 7, the antiperiodic boundary value
problem given in (60) has a unique solution.
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