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The problem of bounded-input bounded-output (BIBO) stabilization in mean square for a class of discrete-time stochastic
control systems with mixed time-varying delays and nonlinear perturbations is investigated. Some novel delay-dependent stability
conditions for the previously mentioned system are established by constructing a novel Lyapunov-Krasovskii function. These
conditions are expressed in the forms of linearmatrix inequalities (LMIs), whose feasibility can be easily checked by usingMATLAB
LMI Toolbox. Finally, a numerical example is given to illustrate the validity of the obtained results.

1. Introduction

Many dynamical systems not only depend on the present
states but also involve the past ones, generally called the time-
delay systems. Generally, as a source of poor or significantly
deteriorated performance and instability for the concerned
closed-loop system, the time delays are unavoidable in
technology and nature. Many works have been done on the
stability of time-delay systems; one can see [1–23] and the
references therein. The dynamics analysis of continuous-
time systems with distributed delay has been well studied
in [9–12, 20]. The aspect of simulation and application in
control systems, whereas, discrete-time control systems play a
more important role than their continuous-time counterparts
in the practical digital world. If one wants to simulate
or compute the continuous-time systems, it is essential to
formulate the discrete-time analogue so as to investigate the
dynamical characteristics. It is necessary to take continuous
distributed delays into account formodeling realistic systems,
for example, neural networks; due to the presence of an
amount of parallel pathways of a variety of axon sizes and
lengths, a neural network usually has a spatial nature. Very
recently, Liu et al. introduced the infinite distributed delay
and distributed delay in the form of constant delay into the
delay neural networks. See [17–19].

In order to track out the reference input signal in real
world, the bounded-input bounded-output stabilization has
been investigated by many researchers, one can see [20–
32] and the references therein. In [22, 23], the sufficient
conditions for BIBO stabilization of control systems with no
delays were proposed by the Bihari type inequality. In [9, 10],
by employing the parameters technique and the Gronwall
inequality, the authors investigated the BIBO stability of
the systems without distributed time delays. In [20, 27, 29],
based on Riccati equations and by constructing appropriate
Lyapunov functions, someBIBO stabilization conditions for a
class of delayed control systems with nonlinear perturbations
were established. In [30], the BIBO stabilization problem
of a class of piecewise switched linear systems was further
investigated. It should be pointed out that almost all results
concerning the BIBO stability for control systems mainly
concentrate on continuous-time models. Seldom works have
been done for discrete-time control systems one can see
[21, 28]. In addition, the previously mentioned works just
considered the deterministic systems (see, e.g., [31, 32]). The
deterministic systems often fluctuate due to noise, which is
random or at least appears to be so.Therefore, we must move
from deterministic problems to stochastic ones. So, the BIBO
stabilization for stochastic control systems case is necessary
and interesting. To the best of our knowledge, there is no
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work reported on the mean square BIBO stabilization for
the discrete-time stochastic control systemswithmixed time-
varying delays.

It is well known that the classical technique applied in the
study of stability is based on the Lyapunov direct method.
However, the Lyapunov direct method has some difficulties
with the theory and application to specific problems while
discussing the stability of solutions in stochastic systems with
time delay. In [33], the midpoint in the time delay’s variation
interval is introduced, and the variation interval is divided
into two subintervals with equal length, by constructing the
Lyapunov functional which involved midpoint to reduce the
conservatism of stability conditions. This method was first
proposed to study the stability and stabilization problems for
linear continuous-time systems, and then many successful
applications were found in [13–15]. In this paper, we will
reconsider this method by introducing a new piecewise-
like delay method, given that the point of the time delay’s
variation interval is arbitrary point rather than midpoint.

Motivated by the aforementioned works, in this paper,
we investigate BIBO stabilization in mean square for a class
of discrete-time stochastic control systems with mixed time-
varying delays and nonlinear perturbations. Some novel
delay-dependent stability conditions for the previously men-
tioned system are derived by constructing a novel Lyapunov-
Krasovskii function. These conditions are expressed in the
forms of linear matrix inequalities, whose feasibility can be
easily checked by using MATLAB LMI Toolbox. Finally, a
numerical example is given to illustrate the validity of the
obtained results.

The paper is organized as follows. In Section 2, some
notations and the problem formulation are proposed. The
main results are given in Section 3. In Section 4, a numerical
example is given to illustrate the validity of the obtained
theory results. The conclusion is proposed in Section 5.

2. Notations and Problem Formulation

Firstly, we propose some notations which will be needed in
the sequel. The notations are quite standard. Let 𝑅𝑛 and 𝑅𝑛×𝑚
denote, respectively, the 𝑛-dimensioned Euclidean space and
the set of all 𝑛 ×𝑚 real matrices. The superscript “𝑇” denotes
the transpose and the notation 𝑋 ≥ 𝑌 (respective 𝑋 > 𝑌)
means that𝑋 and 𝑌 are symmetric matrices and that𝑋−𝑌 is
positive semidefinitive (respective positive definite). Let ‖ ⋅ ‖
denote the Euclidean norm in 𝑅𝑛, let𝑁+ denote the positive
integer set, and let 𝐼 be the identity matrix with compatible
dimension. If𝐴 is a matrix, denote by ‖𝐴‖ its operator norm;
that is, ‖𝐴‖ = sup{‖𝐴𝑥‖ : ‖𝑥‖ = 1} = √𝜆max(𝐴

𝑇𝐴), where
𝜆max(𝐴) (resp., 𝜆min(𝐴)) means the largest (resp., smallest)
value of 𝐴. Moreover, let (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃) be a complete

probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying the
usual conditions (i.e., the filtration contains all 𝑃-null sets
and is right continuous). 𝐸{⋅} stands for the mathematical
expectation operator with respect to the given probability
measure 𝑃. The asterisk ∗ in a matrix is used to denote term
that is induced by its symmetry. Matrices, if not explicitly
state are assumed to have compatible dimensions. Denote

𝑁[𝑎, 𝑏] := {𝑎, 𝑎 + 1, . . . , 𝑏}. Sometimes, the arguments of the
functions will be omitted in the analysis without confusions.

In this paper, we consider the discrete-time stochastic
control systemwithmixed time-varying delays and nonlinear
perturbations with the following form:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐶𝑢 (𝑘)

+ 𝐷

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)) + 𝑓 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))

+ (𝐺𝑥 (𝑘) + 𝐻𝑥 (𝑘 − 𝑑 (𝑘))) 𝜔 (𝑘) ,

𝑦 (𝑘) = 𝑀𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) = [𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)]
𝑇

∈ 𝑅
𝑛 denotes the

state vector, 𝑢(𝑘) = [𝑢
1
(𝑘), 𝑢
2
(𝑘), . . . , 𝑢

𝑚
(𝑘)]
𝑇

∈ 𝑅
𝑚 is the

control input vector, 𝑦(𝑘) = [𝑦
1
(𝑘), 𝑦
2
(𝑘), . . . , 𝑦

𝑛
(𝑘)]
𝑇

∈ 𝑅
𝑛 is

the control output vector, ℎ(𝑥(𝑘)) = [ℎ
1
(𝑥(𝑘)), ℎ

2
(𝑥(𝑘)), . . .,

ℎ
𝑛
(𝑥(𝑘))]

𝑇

, 𝐴, 𝐵, 𝐷, 𝐺, 𝐶, 𝐻, and 𝑀 represent the weight-
ing matrices with appropriate dimension, and the positive
integers 𝜏(𝑘) and 𝑑(𝑘) are the discrete-time-varying delay,
distributed time-varying delay and respectively, satisfying
that

𝜏
1
≤ 𝜏 (𝑘) ≤ 𝜏

2
, 𝑑
1
≤ 𝑑 (𝑘) ≤ 𝑑

2
, 𝑘 ∈ 𝑁

+

, (2)

with 𝜏
1
, 𝜏
2
, 𝑑
1
, and 𝑑

2
being four known positive integers. For

any given 𝜏∗ ∈ (𝜏
1
, 𝜏
2
), 𝑑∗ ∈ (𝑑

1
, 𝑑
2
). The initial conditions of

the system (1) are given by

𝑥 (𝑘) = 𝜙 (𝑘) , 𝑘 ∈ [−max {𝜏
2
, 𝑑
2
} , 0] . (3)

Thenonlinear vector-valued perturbation𝑓(𝑘, 𝑥(𝑘),𝑥(𝑘−
𝜏(𝑘))) satisfies that

𝑓 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))


2

≤ 𝛼
1
‖𝑥(𝑘)‖

2

+ 𝛼
2
‖𝑥(𝑘 − 𝜏(𝑘))‖

2

,

(4)

where 𝛼
1
and 𝛼

2
are two positive constants. 𝜔(𝑘) is a scalar

Wiener process defined on (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃) with

𝐸 (𝜔 (𝑘)) = 0, 𝐸 (𝜔(𝑘)
2

) = 1,

𝐸 (𝜔 (𝑖) 𝜔 (𝑗)) = 0, 𝑖 ̸= 𝑗.

(5)

Remark 1. The 𝜏∗ divides the discrete-time delay’s variation
interval into two subintervals, that is, [𝜏

1
, 𝜏
∗

] and (𝜏∗, 𝜏
2
], and

𝑑
∗ divides the distributed time delay’s variation interval into

two subintervals, that is, [𝑑
1
, 𝑑
∗

] and (𝑑∗, 𝑑
2
]. We will dis-

cuss the variation of differences of the Lyapunov-Krasovskii
functional𝑉(𝑡, 𝑥(𝑡)) for each subinterval. Compared with the
previous results in the works of [27–32], the BIBO stability
conditions are derived in this paper by checking the variation
of𝑉(𝑡, 𝑥(𝑡)) in subintervals rather than in the whole variation
interval of the delays.

In what follows, we describe the controller with the form

𝑢 (𝑘) = 𝐾𝑥 (𝑘) + 𝑟 (𝑘) , (6)
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where𝐾 is the feedback gain matrix and 𝑟(𝑘) is the reference
input.

Assumption 2. For any 𝜉
1
, 𝜉
2
∈ 𝑅, 𝜉

1
̸= 𝜉
2
, let

𝛾
−

𝑖
≤
ℎ
𝑖
(𝜉
1
) − ℎ
𝑖
(𝜉
2
)

𝜉
1
− 𝜉
2

≤ 𝛾
+

𝑖
, (7)

where 𝛾−
𝑖
and 𝛾+
𝑖
are known constant scalars.

Remark 3. The constants 𝛾−
𝑖
, 𝛾+
𝑖
in Assumption 2 are allowed

to be positive, negative, or zero. Hence, the function ℎ(𝑥(𝑘))
could be nonmonotonic and is more general than the usual
sigmoid functions and the recently commonly used Lipschitz
conditions.

At the end of this section, let us introduce some important
definitions and lemmas as which will be used in the sequel.

Definition 4 (see [28, 31]). A vector function 𝑟(𝑘) = (𝑟
1
(𝑘),

𝑟
2
(𝑘), . . . , 𝑟

𝑛
(𝑘))
𝑇 is said to be an element of 𝐿𝑛

∞
, if ‖𝑟‖

∞
=

sup
𝑘∈𝑁[0,∞)

‖𝑟(𝑘)‖ < +∞, where ‖ ⋅ ‖ denotes the Euclid norm
in 𝑅𝑛, or the norm of a matrix.

Definition 5 (see [28, 31]). The nonlinear stochastic control
system (1) is said to beBIBO stability inmean square, if we can
construct a controller (6) such that the output 𝑦(𝑘) satisfies
that

E
𝑦 (𝑘)



2

≤ 𝑁
1
+ 𝑁
2
‖𝑟‖
2

∞
, (8)

where𝑁
1
and𝑁

2
are two positive constants.

Lemma 6 (see [28]). For any given vectors V
𝑖
∈ 𝑅
𝑛, 𝑖 = 1,

2, . . . , 𝑛, the following inequality holds:

[

𝑛

∑

𝑖=1

V
𝑖
]

𝑇

[

𝑛

∑

𝑖=1

V
𝑖
] ≤ 𝑛

𝑛

∑

𝑖=1

V𝑇
𝑖
V
𝑖
. (9)

Lemma 7 (see [28]). Let 𝑥, 𝑦 ∈ 𝑅
𝑛 and any 𝑛 × 𝑛 positive-

definite matrix 𝑄 > 0. Then, one has

2𝑥
𝑇

𝑦 ≤ 𝑥
𝑇

𝑄
−1

𝑥 + 𝑦
𝑇

𝑄𝑦. (10)

Lemma 8 (see [28]). Given the constant matricesΩ
1
,Ω
2
, and

Ω
3
with appropriate dimensions, where Ω

1
= Ω
𝑇

1
and Ω

2
=

Ω
𝑇

2
> 0, then Ω

1
+ Ω
𝑇

3
Ω
−1

2
Ω
3
< 0 if and only if

(
Ω
1
Ω
𝑇

3

∗ −Ω
2

) < 0 𝑜𝑟 (
−Ω
2
Ω
3

∗ Ω
1

) < 0. (11)

3. BIBO Stabilization for the System (1)
In this section, we aim to establish our main results based on
the LMI approach. For the conveniences, we denote

Γ
1
= diag {𝛾−

1
𝛾
+

1
, 𝛾
−

2
𝛾
+

2
, . . . , 𝛾

−

𝑛
𝛾
+

𝑛
} ,

Γ
3
= diag {𝛾+

1
, 𝛾
+

2
, . . . , 𝛾

+

𝑛
} ,

Γ
2
= diag{

𝛾
−

1
+ 𝛾
+

1

2
,
𝛾
−

2
+ 𝛾
+

2

2
, . . . ,

𝛾
−

𝑛
+ 𝛾
+

𝑛

2
} ,

𝑎 = 𝜏
2
− 𝜏
1
+ 1,

𝑏 =

{{{{

{{{{

{

(𝑑
∗

+ 𝑑
1
− 1) (𝑑

∗

− 𝑑
1
) + 2𝑑

∗

2
, 𝑑
1
≤ 𝑑 (𝑘) ≤ 𝑑

∗

(𝑑
∗

+ 𝑑
2
− 1) (𝑑

2
− 𝑑
∗

) + 2𝑑
2

2
, 𝑑
∗

< 𝑑 (𝑘) ≤ 𝑑
2
,

𝑐 = {
𝑑
∗

, 𝑑
1
≤ 𝑑 (𝑘) ≤ 𝑑

∗

𝑑
2
, 𝑑
∗

< 𝑑 (𝑘) ≤ 𝑑
2
,

𝜃 (𝑘) = {
𝑥 (𝑘 − 𝜏

1
) , 𝜏
1
≤ 𝜏 (𝑘) ≤ 𝜏

∗

𝑥 (𝑘 − 𝜏
2
) , 𝜏

∗

< 𝜏 (𝑘) ≤ 𝜏
2
,

𝜏 = {
𝜏
∗

− 𝜏
1
, 𝜏
1
≤ 𝜏 (𝑘) ≤ 𝜏

∗

𝜏
2
− 𝜏
∗

, 𝜏
∗

< 𝜏 (𝑘) ≤ 𝜏
2
,

𝛽 =

{{{{

{{{{

{

𝜏 (𝑘) − 𝜏
1

𝜏∗ − 𝜏
1

, 𝜏
1
≤ 𝜏 (𝑘) ≤ 𝜏

∗

𝜏
2
− 𝜏 (𝑘)

𝜏
2
− 𝜏∗

, 𝜏
∗

< 𝜏 (𝑘) ≤ 𝜏
2
.

(12)

Theorem9. For given positive integers 𝜏
1
, 𝜏
2
,𝑑
1
, and𝑑

2
, under

Assumption 2, the nonlinear discrete-time stochastic control
system (1) with the controller (6) is BIBO stabilization in
mean square, if there exist symmetric positive-definite matrix
𝑃, 𝑅, 𝑄

𝑖
, 𝑖 = 1, 2, . . . , 5, 𝑍

1
, 𝑍
2
, and 𝑋 with appropriate

dimensional, positive-definite diagonal matrices Λ and some
positive constants 𝜁 and 𝜆∗ such that the following two LMIs
hold:

𝑃 + 2 (𝜏
∗2

𝑍
1
+ 𝜏
2

𝑍
2
) ≤ 𝜆
∗

𝐼, (13)

Ξ

=

(
(
(
(
(
(
(

(

Ξ
11
Ξ
12

𝑍
1

0 0 Γ
2
Λ Ξ
17

Ξ
18

√2𝑋

∗ Ξ
22
Ξ
23

0 Ξ
25

0 𝐵
𝑇

𝐷 𝐵
𝑇

0

∗ ∗ Ξ
33

0 0 0 0 0 0

∗ ∗ ∗ −𝑄
2

0 0 0 0 0

∗ ∗ ∗ ∗ Ξ
55

0 0 0 0

∗ ∗ ∗ ∗ ∗ Ξ
66

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ
77

𝜆
∗

𝐷
𝑇

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜁𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜆
∗

𝐼

)
)
)
)
)
)
)

)

≤ 0,

(14)
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where
Ξ
11
= 𝑄
1
+ 𝑄
2
+ 𝑄
3
+ 𝑎 (𝑄

3
+ 𝑄
4
) − 𝑍
1

+ 𝑄
5
− Γ
1
Λ + 𝐺

𝑇

𝜆
∗

𝐺 + 2𝜏
∗2

𝑍
1
+ 2𝜏
2

𝑍
2

+ 2𝜆
∗

𝛼
1
𝐼 + 𝛼
1
𝜁𝐼 − 𝑃 + 2𝜆

∗

𝐴
𝑇

𝐴 − 2𝐴
𝑇

𝑋 − 2𝑋
𝑇

𝐴,

Ξ
12
= 𝜆
∗

𝐴
𝑇

𝐵 − 𝑋
𝑇

𝐵 + 𝐺
𝑇

𝜆
∗

𝐻,

Ξ
17
= 𝜆
∗

𝐴
𝑇

𝐷 − 𝑋
𝑇

𝐷,

Ξ
18
= 𝜆
∗

𝐴
𝑇

− 𝑋
𝑇

,

Ξ
22
= 𝐻
𝑇

𝜆
∗

𝐻 + 2𝜆
∗

𝐵
𝑇

𝐵 − 𝑄
4
− 2𝑍
2
− 𝛽𝑍
2

+ 2𝜆
∗

𝛼
2
𝐼 + 𝛼
2
𝜁𝐼 − (1 − 𝛽)𝑍

2
,

Ξ
23
= 𝑍
2
+ 𝛽𝑍
2
,

Ξ
25
= 𝑍
2
+ (1 − 𝛽)𝑍

2
,

Ξ
33
= −𝑄
1
− 𝑍
1
− 𝑍
2
− 𝛽𝑍
2
,

Ξ
55
= −𝑄
5
− 𝑍
2
− (1 − 𝛽)𝑍

2
,

Ξ
66
= 𝑏𝑅 − Λ,

Ξ
77
= 2𝜆
∗

𝐷
𝑇

𝐷 −
1

𝑐
𝑅,

𝑋 = −𝜆
∗

𝐶𝐾.

(15)
Proof. We construct the following Lyapunov-Krasovskii
function for the system (1):

𝑉 (𝑘, 𝑥 (𝑘)) = 𝑉
1
(𝑘, 𝑥 (𝑘)) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘)

+ 𝑉
4
(𝑘) + 𝑉

5
(𝑘) + 𝑉

6
(𝑘) ,

(16)

where

𝑉
1
(𝑘, 𝑥 (𝑘)) = 𝑥

𝑇

(𝑘) 𝑃𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏
∗

𝑥
𝑇

(𝑖) 𝑄
1
𝑥 (𝑖)

+

𝑘−1

∑

𝑖=𝑘−𝑑
∗

𝑥
𝑇

(𝑖) 𝑄
2
𝑥 (𝑖) ,

𝑉
3
(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑥
𝑇

(𝑖) 𝑄
3
𝑥 (𝑖) +

𝜏
2
−1

∑

𝑖=𝜏
1

𝑘−1

∑

𝑗=𝑘−𝑖

𝑥
𝑇

(𝑗) 𝑄
3
𝑥 (𝑗)

+

𝑘−1

∑

𝑖=𝑘−𝜏
1

𝑥
𝑇

(𝑖) 𝑄
3
𝑥 (𝑖)

+

−𝜏
1
+1

∑

𝑖=−𝜏
2
+1

𝑘−1

∑

𝑗=𝑘−1+𝑖

𝑥
𝑇

(𝑗)𝑄
4
𝑥 (𝑗) ,

𝑉
4
(𝑘) = 𝜏

∗

−1

∑

𝑖=−𝜏
∗

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑍
1
𝜂 (𝑗) ,

𝜂 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,

𝑉
5
(𝑘) =

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑘−1

∑

𝑖=𝑘−𝜏
1

𝑥
𝑇

(𝑖) 𝑄
5
𝑥 (𝑖) + (𝜏

∗

− 𝜏
1
)

×

−𝜏
1
−1

∑

𝑖=−𝜏
∗

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑍
2
𝜂 (𝑗) ,

𝜏
1
≤ 𝜏 (𝑘) ≤ 𝜏

∗

𝑘−1

∑

𝑖=𝑘−𝜏
2

𝑥
𝑇

(𝑖) 𝑄
5
𝑥 (𝑖) + (𝜏

2
− 𝜏
∗

)

×

−𝜏
∗

−1

∑

𝑖=−𝜏
2

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑍
2
𝜂 (𝑗) ,

𝜏
∗

< 𝜏 (𝑘) ≤ 𝜏
2
,

𝑉
6
(𝑘) =

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

−1

∑

𝑖=−𝑑(𝑘)

𝑘−1

∑

𝑗=𝑘+𝑖

ℎ
𝑇

(𝑥 (𝑗)) 𝑅ℎ (𝑥 (𝑗))

+

−𝑑
1
−1

∑

𝑖=−𝑑
∗

−1

∑

𝑗=𝑖+1

𝑘−1

∑

𝑙=𝑘+𝑗

ℎ
𝑇

(𝑥 (𝑙)) 𝑅ℎ (𝑥 (𝑙)) ,

𝑑
1
≤ 𝑑 (𝑘) ≤ 𝑑

∗

−1

∑

𝑖=−𝑑(𝑘)

𝑘−1

∑

𝑗=𝑘+𝑖

ℎ
𝑇

(𝑥 (𝑗)) 𝑅ℎ (𝑥 (𝑗))

+

−𝑑
∗

−1

∑

𝑖=−𝑑
2

−1

∑

𝑗=𝑖+1

𝑘−1

∑

𝑙=𝑘+𝑗

ℎ
𝑇

(𝑥 (𝑙)) 𝑅ℎ (𝑥 (𝑙)) ,

𝑑
∗

< 𝑑 (𝑘) ≤ 𝑑
2
.

(17)

Calculating the difference of 𝑉(𝑘, 𝑥(𝑘)) and taking the math-
ematical expectation, by Lemma 6, we have

𝐸Δ𝑉
1
(𝑘, 𝑥 (𝑘))

= 𝐸 [𝑥
𝑇

(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥
𝑇

(𝑘) 𝑃𝑥 (𝑘)]

= 𝐸 [𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘) + 2𝜂
𝑇

(𝑘) 𝑃𝑥 (𝑘)] ,

𝐸Δ𝑉
2
(𝑘)

= 𝐸 [ 𝑥
𝑇

(𝑘) 𝑄
1
𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝜏
∗

) 𝑄
1
𝑥 (𝑘 − 𝜏

∗

)

+𝑥
𝑇

(𝑘) 𝑄
2
𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝑑
∗

) 𝑄
2
𝑥 (𝑘 − 𝑑

∗

)] ,

𝐸Δ𝑉
3
(𝑘)

= 𝐸[(

𝑘

∑

𝑖=𝑘+1−𝜏(𝑘+1)

−

𝑘−1

∑

𝑖=𝑘−𝜏(𝑘)

)𝑥
𝑇

(𝑖) 𝑄
3
𝑥 (𝑖)

+

𝜏
2
−1

∑

𝑖=𝜏
1

(

𝑘

∑

𝑗=𝑘−𝑖+1

−

𝑘−1

∑

𝑗=𝑘−𝑖

)𝑥
𝑇

(𝑗)𝑄
3
𝑥 (𝑗)

+ (

𝑘

∑

𝑖=𝑘−𝜏
1
+1

−

𝑘−1

∑

𝑖=𝑘−𝜏
1

)𝑥
𝑇

(𝑖) 𝑄
3
𝑥 (𝑖)

+

−𝜏
1
+1

∑

𝑖=−𝜏
2
+1

(

𝑘

∑

𝑗=𝑘+𝑖

−

𝑘−1

∑

𝑗=𝑘+𝑗−1

)

× 𝑥
𝑇

(𝑗)𝑄
4
𝑥 (𝑗) ]

]



Abstract and Applied Analysis 5

≤ 𝐸[

[

(

𝑘

∑

𝑖=𝑘+1−𝜏
2

𝑥
𝑇

(𝑖) 𝑄
3
𝑥 (𝑖) −

𝑘−1

∑

𝑖=𝑘−𝜏
1

𝑥
𝑇

(𝑖) 𝑄
3
𝑥 (𝑖))

+

𝜏
2
−1

∑

𝑖=𝜏
1

(𝑥
𝑇

(𝑘) 𝑄
3
𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝑖) 𝑄
3
𝑥 (𝑘 − 𝑖))

+ (𝑥
𝑇

(𝑘) 𝑄
3
𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝜏
1
) 𝑄
3
𝑥 (𝑘 − 𝜏

1
))

+

−𝜏
1
+1

∑

𝑖=−𝜏
2
+1

(𝑥
𝑇

(𝑘) 𝑄
4
𝑥 (𝑘) − 𝑥

𝑇

× (𝑘 + 𝑖 − 1)𝑄
4
𝑥 (𝑘 + 𝑖 − 1) )]

]

= 𝐸[

[

𝑥
𝑇

(𝑘) [𝑎 (𝑄
3
+ 𝑄
4
) + 𝑄
3
] 𝑥 (𝑘)

− 2𝑥
𝑇

(𝑘 − 𝜏
1
) 𝑄
3
𝑥 (𝑘 − 𝜏

1
)

−

𝑘−𝜏
1

∑

𝑖=𝑘−𝜏
2

𝑥
𝑇

(𝑖) 𝑄
4
𝑥 (𝑖)]

]

≤ 𝐸 [𝑥
𝑇

(𝑘) [𝑎 (𝑄
3
+ 𝑄
4
) + 𝑄
3
] 𝑥 (𝑘)

−𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑄
4
𝑥 (𝑘 − 𝜏 (𝑘))] ,

𝐸Δ𝑉
4
(𝑘)

= 𝐸[

[

𝜏
∗

−1

∑

𝑖=−𝜏
∗

(

𝑘

∑

𝑗=𝑘+𝑖+1

−

𝑘−1

∑

𝑗=𝑘+𝑖

)𝜂
𝑇

(𝑗) 𝑍
1
𝜂 (𝑗)]

]

= 𝐸[𝜏
∗2

𝜂
𝑇

(𝑘) 𝑍
1
𝜂 (𝑘) − 𝜏

∗

𝑘−1

∑

𝑖=𝑘−𝜏
∗

𝜂
𝑇

(𝑖) 𝑍
1
𝜂 (𝑖)]

≤ 𝐸[𝜏
∗2

𝜂
𝑇

(𝑘) 𝑍
1
𝜂 (𝑘)

−

𝑘−1

∑

𝑖=𝑘−𝜏
∗

𝜂
𝑇

(𝑖) 𝑍
1

𝑘−1

∑

𝑖=𝑘−𝜏
∗

𝜂 (𝑖)] .

(18)

Note that

−

𝑘−1

∑

𝑖=𝑘−𝜏
∗

𝜂
𝑇

(𝑖) 𝑍
1

𝑘−1

∑

𝑖=𝑘−𝜏
∗

𝜂 (𝑖)

= (
𝑥 (𝑘)

𝑥 (𝑘 − 𝜏
∗

)
)

𝑇

(
−𝑍
1
𝑍
1

∗ −𝑍
1

)(
𝑥 (𝑘)

𝑥 (𝑘 − 𝜏
∗

)
) ,

(19)

𝐸Δ𝑉
5
(𝑘) = 𝐸 {𝑥

𝑇

(𝑘) 𝑄
5
𝑥 (𝑘) − 𝜃

𝑇

(𝑘) 𝑄
5
𝜃 (𝑘)

+ 𝜏
2

𝜂
𝑇

(𝑘) 𝑍
2
𝜂 (𝑘) − 𝜏𝜓 (𝑘)} ,

(20)

where

𝜓 (𝑘) =

{{{{{{

{{{{{{

{

𝑘−𝜏
1
−1

∑

𝑖=𝑘−𝜏
∗

𝜂
𝑇

(𝑖) 𝑍
2
𝜂 (𝑖) , 𝜏

1
≤ 𝜏 (𝑘) ≤ 𝜏

∗

,

𝑘−𝜏
∗

−1

∑

𝑖=𝑘−𝜏
2

𝜂
𝑇

(𝑖) 𝑍
2
𝜂 (𝑖) , 𝜏

∗

< 𝜏 (𝑘) ≤ 𝜏
2
.

(21)

When 𝜏∗ < 𝜏(𝑘) ≤ 𝜏
2
, it is easy to compute that

− 𝜏𝜓 (𝑘)

= − [(𝜏
2
− 𝜏 (𝑘)) + (𝜏 (𝑘) − 𝜏

∗

)]

×

𝑘−𝜏
∗

−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂
𝑇

(𝑖) 𝑍
2
𝜂 (𝑖)

− [((𝜏
2
− 𝜏 (𝑘)) + (𝜏 (𝑘) − 𝜏

∗

))]

×

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
2

𝜂
𝑇

(𝑖) 𝑍
2
𝜂 (𝑖)

≤ −𝛽

𝑘−𝜏
∗

−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏
∗

−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂 (𝑖)

−

𝑘−𝜏
∗

−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏
∗

−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂 (𝑖)

−

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
2

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
2

𝜂 (𝑖) − (1 − 𝛽)

×

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
2

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
2

𝜂 (𝑖) .

(22)

When 𝜏
1
≤ 𝜏(𝑘) ≤ 𝜏

∗, similarly we can have

−𝜏𝜓 (𝑘) ≤ − (1 − 𝛽)

𝑘−𝜏
1
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏
1
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂 (𝑖)

−

𝑘−𝜏
1
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏−1

∑

𝑖=𝑘−𝜏(𝑘)

𝜂 (𝑖)

−

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
∗

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
∗

𝜂 (𝑖)

− 𝛽

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
∗

𝜂
𝑇

(𝑖) 𝑍
2

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
∗

𝜂 (𝑖) .

(23)
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From (20), (22), and (23), we have

𝐸Δ𝑉
5
(𝑘) = 𝐸 [𝑥

𝑇

(𝑘) 𝑄
5
𝑥 (𝑘) − 𝜃

𝑇

(𝑘) 𝑄
5
𝜃 (𝑘)

+ 𝜏
2

𝜂
𝑇

(𝑘) 𝑍
2
𝜂 (𝑘) + (

𝑥 (𝑘 − 𝜏 (𝑘))

𝑥 (𝑘 − 𝜏
∗

)

𝜃 (𝑘)

)

𝑇

× (

−2𝑍
2
𝑍
2

𝑍
2

∗ −𝑍
2

0

∗ ∗ −𝑍
2

)(

𝑥 (𝑘 − 𝜏 (𝑘))

𝑥 (𝑘 − 𝜏
∗

)

𝜃 (𝑘)

)

+ 𝛽(
𝑥 (𝑘 − 𝜏 (𝑘))

𝑥 (𝑘 − 𝜏
∗

)
)

𝑇

(
−𝑍
2
𝑍
2

∗ −𝑍
2

)

× (
𝑥 (𝑘 − 𝜏 (𝑘))

𝑥 (𝑘 − 𝜏
∗

)
) + (1 − 𝛽)

×(
𝑥 (𝑘 − 𝜏 (𝑘))

𝜃 (𝑘)
)

𝑇

(
−𝑍
2
𝑍
2

∗ −𝑍
2

)

×(
𝑥 (𝑘 − 𝜏 (𝑘))

𝜃 (𝑘)
)] .

(24)

When 𝑑
1
≤ 𝑑(𝑘) ≤ 𝑑

∗, by Lemma 6, it is easy to get

𝐸Δ𝑉
6
(𝑘) = 𝐸[

[

(

−1

∑

𝑖=−𝑑(𝑘+1)

𝑘

∑

𝑗=𝑘+𝑖+1

−

−1

∑

𝑖=−𝑑(𝑘)

𝑘−1

∑

𝑗=𝑘+𝑖

)

× ℎ
𝑇

(𝑥 (𝑗)) 𝑅ℎ (𝑥 (𝑗))

+

−𝑑
1
−1

∑

𝑖=−𝑑
∗

−1

∑

𝑗=𝑖+1

(

𝑘

∑

𝑙=𝑘+𝑗+1

−

𝑘−1

∑

𝑙=𝑘+𝑗

)

× ℎ
𝑇

(𝑥 (𝑙)) 𝑅ℎ (𝑥 (𝑙)) ]

]

≤ 𝐸[

[

−1

∑

𝑖=−𝑑
∗

𝑘−1

∑

𝑗=𝑘+𝑖+1

ℎ
𝑇

(𝑥 (𝑗)) 𝑅ℎ (𝑥 (𝑗))

−

−1

∑

𝑖=−𝑑(𝑘)

𝑘−1

∑

𝑗=𝑘+𝑖+1

ℎ
𝑇

(𝑥 (𝑗)) 𝑅ℎ (𝑥 (𝑗))

+

−1

∑

𝑖=−𝑑
∗

ℎ
𝑇

(𝑥 (𝑘)) 𝑅ℎ (𝑥 (𝑘))

−

−1

∑

𝑖=−𝑑(𝑘)

ℎ
𝑇

(𝑥 (𝑘 + 𝑖)) 𝑅ℎ (𝑥 (𝑘 + 𝑖))

+

−𝑑
1
−1

∑

𝑖=−𝑑
∗

−1

∑

𝑗=𝑖+1

ℎ
𝑇

(𝑥 (𝑘)) 𝑅ℎ (𝑥 (𝑘))

−

−𝑑
1
−1

∑

𝑖=−𝑑
∗

−1

∑

𝑗=𝑖+1

ℎ
𝑇

(𝑥 (𝑘 + 𝑗)) 𝑅ℎ (𝑥 (𝑘 + 𝑗))]

]

≤ 𝐸[
(𝑑
∗

+ 𝑑
1
− 1) (𝑑

∗

− 𝑑
1
) + 2𝑑

∗

2

× ℎ
𝑇

(𝑥 (𝑘)) 𝑅ℎ (𝑥 (𝑘))

−
1

𝑑∗
(

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))

𝑇

×𝑅(

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))] .

(25)

When 𝑑∗ < 𝑑(𝑘) ≤ 𝑑
2
, similarly we can have

𝐸Δ𝑉
6
(𝑘) ≤ 𝐸[

(𝑑
∗

+ 𝑑
2
− 1) (𝑑

1
− 𝑑
∗

) + 2𝑑
2

2

× ℎ
𝑇

(𝑥 (𝑘)) 𝑅ℎ (𝑥 (𝑘))

−
1

𝑑
2

(

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))

𝑇

× 𝑅(

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))] .

(26)

From (25) and (26), we have

𝐸Δ𝑉
6
(𝑘) ≤ 𝐸[𝑏ℎ

𝑇

(𝑥 (𝑘)) 𝑅ℎ (𝑥 (𝑘))

−
1

𝑐
(

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))

𝑇

× 𝑅(

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))] .

(27)

From (7), it follows that

(ℎ
𝑖
(𝑥 (𝑘)) − 𝛾

+

𝑖
𝑥
𝑖
(𝑘))

× (ℎ
𝑖
(𝑥 (𝑘)) − 𝛾

−

𝑖
𝑥
𝑖
(𝑘)) ≤ 0, 𝑖 = 1, 2, . . . , 𝑛,

(28)

which are equivalent to

(
𝑥 (𝑘)

ℎ (𝑥 (𝑘))
)

𝑇

(
𝛾
−

𝑖
𝛾
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−
𝛾
−

𝑖
+ 𝛾
+

𝑖

2
𝑒
𝑖
𝑒
𝑇

𝑖

∗ 𝑒
𝑖
𝑒
𝑇

𝑖

)

×(
𝑥 (𝑘)

ℎ (𝑥 (𝑘))
) ≤ 0,

(29)

where 𝑒
𝑖
denotes the unit column vector having one element

on its 𝑖th row and zeros elsewhere.
Then from (29), for any matrices Λ = diag{𝜆

1
, 𝜆
2
, . . .,

𝜆
𝑛
} > 0, it follows that

(
𝑥 (𝑘)

ℎ (𝑥 (𝑘))
)

𝑇

(
−Γ
1
Λ Γ
2
Λ

∗ −Λ
)(

𝑥 (𝑘)

ℎ (𝑥 (𝑘))
) ≥ 0. (30)
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Note that, by Lemma 7, we get

𝐸 [𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘) + 2𝜂
𝑇

(𝑘) 𝑃𝑥 (𝑘) + 𝜏
∗2

𝜂
𝑇

(𝑘) 𝑍
1
𝜂 (𝑘)

+𝜏𝜂
𝑇

(𝑘) 𝑍
2
𝜂 (𝑘)]

= 𝐸 [𝜂
𝑇

(𝑘) (𝑃 + 𝜏
∗2

𝑍
1
+ 𝜏𝑍
2
) 𝜂 (𝑘) + 2𝜂

𝑇

(𝑘) 𝑃𝑥 (𝑘)]

= 𝐸 [𝑥
𝑇

(𝑘 + 1) (𝑃 + 𝜏
∗2

𝑍
1
+ 𝜏𝑍
2
) 𝑥 (𝑘 + 1)

− 2𝑥
𝑇

(𝑘 + 1) (𝜏
∗2

𝑍
1
+ 𝜏𝑍
2
) 𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) (𝜏
∗2

𝑍
1
+ 𝜏𝑍
2
− 𝑃) 𝑥 (𝑘)]

≤ 𝐸 [𝑥
𝑇

(𝑘 + 1) (𝑃 + 2𝜏
∗2

𝑍
1
+ 2𝜏𝑍

2
) 𝑥 (𝑘 + 1)

+ 𝑥
𝑇

(𝑘) (2𝜏
∗2

𝑍
1
+ 2𝜏𝑍

2
− 𝑃) 𝑥 (𝑘)]

≤ 𝐸 [𝑥
𝑇

(𝑘 + 1) 𝜆
∗

𝐼𝑥 (𝑘 + 1) + 𝑥
𝑇

(𝑘)

× (2𝜏
∗2

𝑍
1
+ 2𝜏𝑍

2
− 𝑃) 𝑥 (𝑘)]

= 𝐸 {[ (𝐴 + 𝐶𝐾) 𝑥 (𝑘) + 𝐵𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝐷

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖))

+𝑓 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) + 𝐶𝑟 (𝑘) ]
𝑇

× 𝜆
∗

𝐼 [ (𝐴 + 𝐶𝐾) 𝑥 (𝑘) + 𝐵𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝐷

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖))

+𝑓 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) + 𝐶𝑟 (𝑘) ]

+ [𝐺𝑥 (𝑘) + 𝐻𝑥 (𝑘 − 𝜏 (𝑘))]
𝑇

× 𝜆
∗

𝐼 [𝐺𝑥 (𝑘) + 𝐻𝑥 (𝑘 − 𝜏 (𝑘))]

+ 𝑥
𝑇

(𝑘) (2𝜏
∗2

𝑍
1
+ 2𝜏𝑍

2
− 𝑃) 𝑥 (𝑘) }

≤ 𝐸{[ (𝐴 + 𝐶𝐾) 𝑥 (𝑘) + 𝐵𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝐷

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖))

+𝑓 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) ]

𝑇

𝜆
∗

𝐼

× [ (𝐴 + 𝐶𝐾) 𝑥 (𝑘) + 𝐵𝑥 (𝑘 − 𝜏 (𝑘))

+𝐷

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)) + 𝑓 (𝑘, 𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))]

+ [𝐺𝑥 (𝑘) + 𝐻𝑥 (𝑘 − 𝜏 (𝑘))]
𝑇

𝜆
∗

𝐼

× [𝐺𝑥 (𝑘) + 𝐻𝑥 (𝑘 − 𝜏 (𝑘))]

+ 𝑥
𝑇

(𝑘) (2𝜏
∗2

𝑍
1
+ 2𝜏𝑍

2
− 𝑃) 𝑥 (𝑘)

+ 𝜆
∗

𝑥
𝑇

(𝐴 + 𝐶𝐾)
𝑇

(𝐴 + 𝐶𝐾) 𝑥 (𝑘)

+ 𝜆
∗

𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) 𝐵
𝑇

𝐵𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝜆
∗

(

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))

𝑇

𝐷
𝑇

𝐷

× (

−1

∑

𝑖=−𝑑(𝑘)

ℎ (𝑥 (𝑘 + 𝑖)))

+5𝜆
∗

‖𝐶‖
2

‖𝑟‖
2

∞
} .

(31)

Then from (18) to (31), we have

𝐸Δ𝑉 (𝑘) ≤ 𝐸{𝜉
𝑇

(𝑘) [Ξ


+ (√2𝑋, 0, 0, 0, 0, 0, 0, 0)
𝑇 1

𝜆∗

× (√2𝑋, 0, 0, 0, 0, 0, 0, 0) ] 𝜉 (𝑘)}

+ 𝜌‖𝑟‖
2

∞
,

(32)

where

Ξ


𝑖𝑗
= Ξ
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 8, 𝜌 = 5𝜆

∗

‖𝐷‖
2

,

𝜉
𝑇

(𝑘) = [𝑥
𝑇

(𝑘) , 𝑥
𝑇

(𝑘 − 𝜏 (𝑘)) , 𝑥 (𝑘 − 𝜏
∗

) , 𝑥 (𝑘 − 𝑑
∗

) ,

𝜃
𝑇

(𝑘) , ℎ
𝑇

(𝑥 (𝑘)) ,

−1

∑

−𝑑(𝑘)

ℎ
𝑇

(𝑥 (𝑘 + 𝑖)) , 𝑓
𝑇

] .

(33)

If the LMI (14) holds, by using Lemma 8, it follows that there
exists a sufficient small positive 𝜀 > 0, such that

𝐸Δ𝑉 (𝑘) ≤ −𝜀𝐸‖𝑥 (𝑘)‖
2

+ 𝜌‖𝑟‖
2

∞
. (34)

It is easy to derive that

𝐸𝑉 (𝑘) ≤ 𝜇
1
𝐸‖𝑥 (𝑘)‖

2

+ 𝜇
2

𝑘−1

∑

𝑖=𝑘−𝜏
2

𝐸‖𝑥 (𝑖)‖
2

+ 𝜇
3

𝑘−1

∑

𝑖=𝑘−𝑑
2

𝐸‖𝑥 (𝑖)‖
2

,

(35)
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with

𝜇
1
= 𝜆max (𝑃) ,

𝜇
2
= 𝜆max (𝑄1) + (𝑎 + 1) 𝜆max (𝑄3)

+ 2𝜆max (𝑄4) + 4𝜏
∗2

𝜆max (𝑍1)

+ 4(𝜏
2
− 𝜏
1
)
2

𝜆max (𝑍2) ,

𝜇
3
= 𝜆max (𝑄2) + [𝑑2 + (𝑑2 − 𝑑1)

× (𝑑
2
− 𝑑
1
)]

× ‖Γ‖
2

𝜆max (𝑅) .

(36)

For any 𝜃 > 1, it follows from (34) and (35) that

𝐸 [𝜃
𝑗+1

𝑉 (𝑗 + 1) − 𝜃
𝑗

𝑉 (𝑗)]

= 𝜃
𝑗+1

𝐸Δ𝑉 (𝑗) + 𝜃
𝑗

(𝜃 − 1) 𝐸𝑉 (𝑗)

≤ 𝜃
𝑗 [

[

(−𝜀𝜃 + (𝜃 − 1) 𝜇
1
) 𝐸
𝑥 (𝑗)



2

+ (𝜃 − 1) 𝜇
2

𝑗−1

∑

𝑖=𝑗−𝜏
2

𝐸‖𝑥 (𝑖)‖
2

+ 𝜌𝜃‖𝑟‖
2

∞

+ (𝜃 − 1) 𝜇
3

𝑗−1

∑

𝑖=𝑗−𝑑
2

𝐸‖𝑥 (𝑖)‖
2]

]

.

(37)

Summing up both sides of (37) from 0 to 𝑘−1, we can obtain

𝜃
𝑘

𝐸𝑉 (𝑘) − 𝐸𝑉 (0)

≤ (𝜇
1
(𝜃 − 1) − 𝜀𝜃)

𝑘−1

∑

𝑗=0

𝜃
𝑗

𝐸
𝑥 (𝑗)



2

+ 𝜇
2
(𝜃 − 1)

𝑘−1

∑

𝑗=0

𝑗−1

∑

𝑖=𝑗−𝜏
2

𝜃
𝑗

𝐸‖𝑥 (𝑖)‖
2

+ 𝜇
3
(𝜃 − 1)

𝑘−1

∑

𝑗=0

𝑗−1

∑

𝑖=𝑗−𝑑
2

𝜃
𝑗

𝐸‖𝑥 (𝑖)‖
2

+ 𝜌

𝑘−1

∑

𝑗=0

𝜃
𝑗+1

‖𝑟‖
2

∞
.

(38)

Also it is easy to compute that

𝑘−1

∑

𝑗=0

𝑗−1

∑

𝑖=𝑗−𝜏
2

𝜃
𝑗

𝐸‖𝑥 (𝑖)‖
2

≤ (

−1

∑

𝑖=−𝜏
2

𝑖+𝜏
2

∑

𝑗=0

+

𝑘−1−𝜏
2

∑

𝑖=0

𝑖+𝜏
2

∑

𝑗=𝑖+1

+

𝑘−1

∑

𝑖=𝑘−𝜏
2

𝑘−1

∑

𝑗=𝑖+1

)

× 𝜃
𝑗

𝐸‖𝑥 (𝑖)‖
2

≤ 𝜏
2
𝜃
𝜏
2 sup
𝑠∈[−𝜏

2
,0]

𝐸‖𝑥 (𝑠)‖
2

+ 𝜏
2
𝜃
𝜏
2

𝑘−1

∑

𝑖=0

𝜃
𝑖

𝐸‖𝑥 (𝑖)‖
2

,

𝑘−1

∑

𝑗=0

𝑗−1

∑

𝑖=𝑗−𝑑
2

𝜃
𝑗

𝐸‖𝑥 (𝑖)‖
2

≤ (

−1

∑

𝑖=−𝑑
2

𝑖+𝑑
2

∑

𝑗=0

+

𝑘−1−𝑑
2

∑

𝑖=0

𝑖+𝑑
2

∑

𝑗=𝑖+1

+

𝑘−1

∑

𝑖=𝑘−𝑑
2

𝑘−1

∑

𝑗=𝑖+1

)

× 𝜃
𝑗

𝐸‖𝑥 (𝑖)‖
2

≤ 𝑑
2
𝜃
𝑑
2 sup
𝑠∈[−𝑑2 ,0]

𝐸‖𝑥 (𝑠)‖
2

+ 𝑑
2
𝜃
𝑑
2

×

𝑘−1

∑

𝑖=0

𝜃
𝑖

𝐸‖𝑥 (𝑖)‖
2

.

(39)
Substituting (39) into (38) leads to

𝜃
𝑘

𝐸𝑉 (𝑘) − 𝐸𝑉 (0)

≤ 𝜂
1
(𝜃) sup
𝑠∈[−𝜏2 ,0]

𝐸‖𝑥 (𝑠)‖
2

+ 𝜌

𝑘−1

∑

𝑗=0

𝜃
𝑗+1

‖𝑟‖
2

∞

+ 𝜂
2
(𝜃)

𝑘−1

∑

𝑖=0

𝜃
𝑖

𝐸‖𝑥 (𝑖)‖
2

+ 𝜂
3
(𝜃)

𝑘−1

∑

𝑖=0

𝜃
𝑖

𝐸‖𝑥 (𝑖)‖
2

,

(40)

where 𝜂
1
(𝜃) = 𝜇

2
(𝜃 − 1)𝜏

2
𝜃
𝜏
2 + 𝜇
3
(𝜃 − 1)𝑑

2
𝜃
𝑑
2 , 𝜂
2
(𝜃) = 𝜇

2
(𝜃 −

1)𝜏
2
𝜃
𝜏
2 +𝜇
1
(𝜃−1)−𝜀𝜃, 𝜂

3
(𝜃) = 𝜇

3
(𝜃−1)𝑑

2
𝜃
𝑑
2 +𝜇
1
(𝜃−1)−𝜀𝜃.

Since 𝜂
2
(1) < 0, 𝜂

3
(1) < 0, there must exist a positive

𝜃
0
> 1 such that 𝜂

2
(𝜃
0
) < 0, 𝜂

3
(𝜃
0
) < 0. Then we have

𝐸𝑉 (𝑘)

≤ 𝜂
1
(𝜃
0
) (

1

𝜃
0

)

𝑘

sup
𝑠∈[−𝜏2,0]

𝐸‖𝑥 (𝑠)‖
2

+ (
1

𝜃
0

)

𝑘

𝐸𝑉 (0) + 𝜌

𝑘−1

∑

𝑗=0

1

𝜃
𝑘−𝑗−1

0

‖𝑟‖
2

∞

+ 𝜂
2
(𝜃
0
)

𝑘−1

∑

𝑖=0

1

𝜃
𝑘−𝑖

0

𝐸‖𝑥 (𝑖)‖
2

+ 𝜂
3
(𝜃
0
)

𝑘−1

∑

𝑖=0

1

𝜃
𝑘−𝑖

0

𝐸‖𝑥 (𝑖)‖
2

≤ (𝜂
1
(𝜃
0
) + 𝜇
1
+ 𝜇
2
𝜏
2
+ 𝜇
3
𝑑
2
)

× sup
𝑠∈[−max{𝜏2,𝑑2},0]

𝐸‖𝑥 (𝑠)‖
2

+
𝜌

𝜃
0
− 1

‖𝑟‖
2

∞
.

(41)
On the other hand, by (16) we can get

𝐸𝑉 (𝑘) ≥ 𝜆min (𝑃) 𝐸‖𝑥 (𝑘)‖
2

. (42)
Combining (41) with (42), we have

𝐸‖𝑥 (𝑘)‖
2

≤
𝜂
1
(𝜃
0
) + 𝜇
1
+ 𝜇
2
𝜏
2
+ 𝜇
3
𝑑
2

𝜆min (𝑃)

× sup
𝑠∈[−max{𝜏2,𝑑2},0]

𝐸‖𝑥 (𝑠)‖
2

+
1

𝜆min (𝑃)

𝜌

𝜃
0
− 1

‖𝑟‖
2

∞
.

(43)
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Thus,

E
𝑦 (𝑘)



2

≤ ‖𝑀‖
2

𝐸‖𝑥 (𝑘)‖
2

≤ 𝑁
1
+ 𝑁
2
‖𝑟‖
2

∞
, (44)

where 𝑁
1
= ‖𝑀‖

2

((𝜂
1
(𝜃
0
) + 𝜇
1
+ 𝜇
2
𝜏
2
+ 𝜇
3
𝑑
2
)/𝜆min(𝑃))

sup
𝑠∈[−max{𝜏

2
,𝑑
2
},0]
𝐸‖𝑥(𝑠)‖

2, 𝑁
2

= (1/𝜆min(𝑃))(𝜌/(𝜃0 −

1))‖𝑀‖
2. By Definition 5, the nonlinear discrete-time

stochastic control system (1) is BIBO stability in mean
square. This completes the proof.

If the stochastic term 𝜔(𝐾) is removed in (1), then the
following results can be obtained.

Theorem 10. For given positive integers 𝜏
1
, 𝜏
2
, 𝑑
1
, and 𝑑

2
,

under Assumption 2, the nonlinear discrete-time stochastic
control system (1) with the controller (6) is BIBO stabilization
in mean square, if there exist symmetric positive-definite
matrix 𝑃, 𝑅,𝑄

𝑖
, 𝑖 = 1, 2, . . . , 5,𝑍

1
,𝑍
2
, and𝑋with appropriate

dimensional positive-definite diagonal matrices Λ and two
positive constants 𝜁 and 𝜆∗ such that the following two LMIs
hold:

𝑃 + 2 (𝜏
∗2

𝑍
1
+ 𝜏
2

𝑍
2
) ≤ 𝜆
∗

𝐼,

Ξ

=

(
(
(
(
(
(
(
(
(
(
(

(

Ξ
11
Ξ
12

𝑍
1

0 0 Γ
2
Λ Ξ
17

Ξ
18

√2𝑋

∗ Ξ
22
Ξ
23

0 Ξ
25

0 𝐵
𝑇

𝐷 𝐵
𝑇

0

∗ ∗ Ξ
33

0 0 0 0 0 0

∗ ∗ ∗ −𝑄
2

0 0 0 0 0

∗ ∗ ∗ ∗ Ξ
55

0 0 0 0

∗ ∗ ∗ ∗ ∗ Ξ
66

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ
77

𝜆
∗

𝐷
𝑇

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜁𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜆
∗

𝐼

)
)
)
)
)
)
)
)
)
)
)

)

≤ 0,

(45)

where

Ξ
11
= 𝑄
1
+ 𝑄
2
+ 𝑄
3
+ 𝑎 (𝑄

3
+ 𝑄
4
) − 𝑍
1

+ 𝑄
5
− Γ
1
Λ + 𝜁𝐼 + 2𝜏

∗2

𝑍
1
+ 2𝜏
2

𝑍
2

+ 2𝜆
∗

𝛼
1
𝐼 + 𝛼
1
𝜁𝐼 − 𝑃 + 2𝜆

∗

𝐴
𝑇

𝐴

− 2𝐴
𝑇

𝑋 − 2𝑋
𝑇

𝐴,

Ξ
22
= 2𝜆
∗

𝐵
𝑇

𝐵 − 𝑄
4
− 2𝑍
2
− 𝛽𝑍
2

+ 2𝜆
∗

𝛼
2
𝐼 + 𝛼
2
𝜁𝐼 − (1 − 𝛽)𝑍

2
,

Ξ
12
= 𝜆
∗

𝐴
𝑇

𝐵 − 𝑋
𝑇

𝐵,

Ξ
17
= 𝜆
∗

𝐴
𝑇

𝐷 − 𝑋
𝑇

𝐷,

Ξ
18
= 𝜆
∗

𝐴
𝑇

− 𝑋
𝑇

,

Ξ
25
= 𝑍
2
+ (1 − 𝛽)𝑍

2
,

Ξ
23
= 𝑍
2
+ 𝛽𝑍
2
,

Ξ
33
= −𝑄
1
− 𝑍
1
− 𝑍
2
− 𝛽𝑍
2
,

Ξ
55
= −𝑄
5
− 𝑍
2
− (1 − 𝛽)𝑍

2
,

Ξ
66
= 𝑏𝑅 − Λ,

Ξ
77
= 2𝜆
∗

𝐷
𝑇

𝐷 −
1

𝑐
𝑅,

𝑋 = −𝜆
∗

𝐶𝐾.

(46)

Proof. The proof is straightforward and hence omitted.

Corollary 11. System (1) is also stabilization in mean square
when all the conditions in Theorems 9 and 10 are satisfied, if
the bounded input 𝑟(𝑡) = 0 in (6).

Remark 12. In this paper, a novel BIBO stability criterion for
system (1) is derived by checking the variation of derivatives
of the Lyapunov-Krasovskii functionals for each subinterval.
It is different from [27–32], which checked the variation of
the Lyapunov functional in the whole variation interval of the
delay.

Remark 13. The BIBO stabilization criteria for discrete-time
systems have been investigated in the recently reported paper
[28]. However, the stochastic disturbances and nonlinear
perturbations have not been taken into account in the control
systems. In [28], the time delay is constant time, which is a
special case of this paper when 𝜏

1
= 𝜏
2
.

Remark 14. The mean square stabilization conditions in
Theorem 9 in this paper depend on the time-delays upper
bounds and the lower bounds, time-delays interval, and time-
delay interval segmentation point and relate to the delays
themselves.

Remark 15. In [33], the time-delay interval is divided into
two equal subintervals; the interval segmentation point is
midpoint. In this paper, the time-delay interval is divided into
two any subintervals; the interval segmentation point is any
point in the time-delay interval.

4. An Example

In this section, a numerical example will be presented to show
the validity of the main results derived in Section 3.
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Table 1: For 𝜏(𝑘) = 1, 2, 3, 4, 5, 𝛽.

𝜏(𝑘) 1 2 3 4 5

𝛽 0 1 1/2 1/2 0

Example 1. As a simple application of Theorem 9, consider
the stochastic control system (1) with the control law (6); the
parameters are given by

𝐴 = (
−0.1 0

0.1 −0.2
) , 𝐵 = (

−0.1 0.1

−0.1 0.1
) ,

𝐶 = (
0.1 0.1

0.5 0.3
) , 𝐷 = (

0.1 0.1

0 0.2
) ,

(47)

𝐺 = 0.001𝐼, 𝐻 = 0.02𝐼, 𝑓 = [0.1𝑥(𝑘), √0.2𝑥(𝑘 − 𝜏(𝑘))]
𝑇,

ℎ
1
(𝑠) = sin(0.2𝑠) − 0.6 cos(𝑠), ℎ

2
(𝑠) = tanh(−0.4𝑠), 𝜏

1
= 1,

𝜏
2
= 5, 𝑑

1
= 2, 𝑑

2
= 7.

It is easy to verify that 𝑎 = 5, 𝜏∗ = 3, 𝑑∗ = 4, 𝜏 = 2, and

Γ
1
= (

−0.64 0

0 0
) , Γ

2
= (

0 0

0 −0.2
) ,

𝜏
∗

=
𝜏
1
+ 𝜏
2

2
−
min {(−1)𝜏1+𝜏2 , 0}

2
,

𝑑
∗

=
𝜏
1
+ 𝜏
2

2
+
min {(−1)𝜏1+𝜏2 , 0}

2
,

𝑏 = {
9, 𝑑

1
≤ 𝑑 (𝑘) ≤ 𝑑

∗

,

20, 𝑑
∗

< 𝑑 (𝑘) ≤ 𝑑
2
,

𝑐 = {
4, 𝑑

1
≤ 𝑑 (𝑘) ≤ 𝑑

∗

,

7, 𝑑
∗

< 𝑑 (𝑘) ≤ 𝑑
2
.

(48)

Meanwhile, the corresponding values of𝛽 for various 𝜏(𝑘)
are listed in Table 1.

By using the MATLAB LMI Toolbox, we solve LMIs (13),
(14) and obtain six groups of feasible solutions; we list one
case as follows.

When 𝛽 = 1, 𝑏 = 9, 𝑐 = 4,

𝑃 = (
145.0684 −3.2651

−3.2651 147.7799
) , 𝑍

1
= (

0.0478 0.0298

0.0298 0.0230
) ,

𝑍
2
= (

0.3443 0.2142

0.2142 0.1663
) , 𝑄

1
= (

2.8401 1.7808

1.7808 1.3624
) ,

𝑄
2
= (

3.7464 2.3462

2.3462 1.7985
) , 𝑄

3
= (

0.2731 0.1713

0.1713 0.1309
) ,

𝑄
4
= (

15.3027 −6.8645

−6.8645 15.5746
) , 𝑄

5
= (

3.1500 1.9740

1.9740 1.5118
) ,

𝑅 = (
128.2646 −92.1100

−92.1100 239.0910
) , 𝑁 = (

0.4512 0

0 34.3341
) ,

𝑋 = (
13.3495 3.1121

3.1121 0.7692
) , 𝐾 = (

−1.4212 −0.3303

0.5268 0.1218
) ,

(49)

and 𝜁 = 82.0259, 𝜆∗ = 150.2996.
The system (1) exhibits stabilization in mean square

behavior as shown in Figure 1.
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5. Conclusions

In this paper, we have derived some conditions for the
BIBO stabilization in mean square for a class of discrete-
time stochastic control systems with mixed time-varying
delays.The results have been obtained by constructing a novel
Lyapunov-Krasovskii function. The conditions are expressed
in the forms of linear matrix inequalities, which can be
easily checked by usingMATLAB LMI Toolbox. A numerical
example is given to illustrate the validity of the obtained
results.
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