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The optimal control problem with integral boundary condition is considered. The sufficient condition is established for existence
and uniqueness of the solution for a class of integral boundary value problems for fixed admissible controls. First-order necessary
condition for optimality is obtained in the traditional form of themaximumprinciple.The second-order variations of the functional
are calculated. Using the variations of the controls, various optimality conditions of second order are obtained.

1. Introduction

Boundary value problems with integral conditions constitute
a very interesting and important class of boundary problems.
They include two-, three-, and multipoint and nonlocal
boundary value problems as special cases, (see [1–3]). The
theory of boundary value problems with integral boundary
conditions for ordinary differential equations arises in dif-
ferent areas of applied mathematics and physics. For exam-
ple, heat conduction, thermoelasticity, chemical engineering,
plasma physics, and underground water flow can be reduced
to the nonlocal problems with integral boundary conditions.
For boundary value problemswith nonlocal boundary condi-
tions and comments on their importance, we refer the reader
to the papers [4, 5] and the references therein.

The role of the Pontryagin maximum principle is critical
for any research related to optimal processes that have control
constraints. The simplicity of the principle’s formulation
together with its meaningful and beneficial directness has
become an extraordinary attraction and one of the major
causes for the appearance of new tendencies in mathematical
sciences. The maximum principle is by nature a necessary

first-order optimality condition since it was born as an exten-
sion of Euler-Lagrange andWeierstrass necessary conditions
of variational calculus.

At present, there exists a great amount of works devoted
to derivation of necessary optimality conditions of first and
second orders for the systems with local conditions (see [6–
12] and the references therein).

Since the systems with nonlocal conditions describe
real processes, it is necessary to study the optimal control
problems with nonlocal boundary conditions.

The optimal control problems with nonlocal boundary
conditions have been investigated in [13–25]. Note that opti-
mal control problems with integral boundary condition are
considered and first-order necessary conditions are obtained
in [23–25]. In certain cases, the first-order optimality condi-
tions are “degenerated,” and are fulfilled trivially on a series
of admissible controls. In this case, it is necessary to obtain
second-order optimality conditions.

In the present paper, we investigate an optimal control
problem in which the state of the system is described by
differential equations with integral boundary conditions.
Note that this problem is a natural generalization of the
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Cauchy problem. The matters of existence and uniqueness
of solutions of the boundary value problem are investigated,
first and second increments formula of the functional are
calculated. Using the variations of the controls, various
optimality conditions of first and second order are obtained.

The organization of the present paper is as follows. First,
we give the statement of the problem. Second, theorems on
existence and uniqueness of a solution for the problem (1)–
(3) are established under some sufficient conditions on non-
linear terms. Third, the functional increment formula of first
order is presented, and Pontryagin’s maximum principle is
provided. Fourth, variations of the functional of the first and
second-order are given. Fifth, Legendre-Clebsh condition is
obtained. Finally, a conclusion is given.

Consider the following system of differential equations
with integral boundary condition:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (1)

𝑥 (0) + ∫

𝑇

0

𝑚(𝑡) 𝑥 (𝑡) 𝑑𝑡 = 𝐶, (2)

𝑢 (𝑡) ∈ 𝑈, 𝑡 ∈ [0, 𝑇] , (3)

where 𝑥(𝑡) ∈ 𝑅
𝑛; 𝑓(𝑡, 𝑥, 𝑢) is 𝑛-dimensional continuous

function and has second-order derivative with respect to
(𝑥, 𝑢); 𝐶 ∈ 𝑅

𝑛 is the given constant vector; 𝑚(𝑡) ∈ 𝑅
𝑛×𝑛 is

𝑛× 𝑛matrix function; 𝑢 is a control parameter; and𝑈 ⊂ 𝑅
𝑟 is

an bounded set.
It is required to minimize the functional

𝐽 (𝑢) = 𝜑 (𝑥 (0) , 𝑥 (𝑇)) + ∫

𝑇

0

𝐹 (𝑡, 𝑥, 𝑢) 𝑑𝑡 (4)

subject to (1)–(3).
Here, it is assumed that the scalar functions 𝜑(𝑥, 𝑦) and

𝐹(𝑡, 𝑥, 𝑢) are continuous by their own arguments and have
continuous and bounded partial derivatives with respect to
𝑥, 𝑦, and 𝑢 to second order, inclusively. Under the solution
of boundary value problem (1)–(3) corresponding to the
fixed control parameter 𝑢(𝑡), we understand the function
𝑥(𝑡) : [0, 𝑇] → 𝑅

𝑛 that is absolutely continuous on
[0, 𝑇]. Denote the space of such functions by 𝐴𝐶([0, 𝑇], 𝑅𝑛).
By 𝐶([0, 𝑇], 𝑅𝑛), we define the space of continuous functions
on [0, 𝑇] with values from 𝑅

𝑛. It is obvious that this is a
Banach space with the norm

‖𝑥‖𝐶[0,𝑇] = max
𝑡∈[0,𝑇]

|𝑥 (𝑡)| , (5)

where | ⋅ | is the norm in space 𝑅𝑛.
Admissible controls are taken from the class of bounded

measurable functions with values from the set 𝑈 ∈ 𝑅
𝑟. The

admissible control together with corresponding solutions of
(1), (2) is called an admissible process.

The admissible process {𝑢(𝑡), 𝑥(𝑡, 𝑢)} being the solution
of problem (1)–(4), that is, delivering minimum to functional
(4) under restrictions (1)–(3) is said to be an optimal process,
and is 𝑢(𝑡) optimal control.

We suppose the existence of the optimal control in the
problem (1)–(4).

2. Existence of Solutions of Boundary Value
Problem (1)–(3)

Introduce the following conditions:

(1) Let ‖𝐵‖ < 1, where 𝐵 = ∫
𝑇

0
𝑚(𝑡)𝑑𝑡,

(2) 𝑓 : [0, 𝑇] × 𝑅
𝑛
× 𝑅
𝑟
→ 𝑅
𝑛 is a continuous function,

and there exists the constant𝐾 ≥ 0

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑢) − 𝑓 (𝑡, 𝑦, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝐾

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ,

𝑡 ∈ [0, 𝑇] , 𝑥, 𝑦 ∈ 𝑅
𝑛
, 𝑢 ∈ 𝑈,

(6)

(3) 𝐿 = (1 − ‖𝐵‖)
−1
𝐾𝑇𝑁 < 1, where

𝑁 = max
0≤𝑡,𝑠≤𝑇

‖𝑁 (𝑡, 𝑠)‖ ,

𝑁 (𝑡, 𝑠) =

{{{

{{{

{

𝐸 + ∫

𝑠

0

𝑚(𝜏) 𝑑𝜏, 0 ≤ 𝑡 ≤ 𝑠,

−∫

𝑇

𝑠

𝑚(𝜏) 𝑑𝜏, 𝑠 ≤ 𝑡 ≤ 𝑇,

(7)

𝐸 ⊂ 𝑅
𝑛×𝑛-unit matrix.

Theorem 1. Let condition (1) be satisfied. Then, the function
𝑥(⋅) ∈ 𝐶([0, 𝑇], 𝑅

𝑛
) is an absolutely continuous solution of

boundary value problem (1)–(3) if and only if

𝑥 (𝑡) = (𝐸 + 𝐵)
−1
𝐶 + ∫

𝑇

0

𝐾 (𝑡, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏, (8)

where𝐾(𝑡, 𝜏) = (𝐸 + 𝐵)
−1
𝑁(𝑡, 𝜏).

Proof. Note that under condition (1), the matrix 𝐸 + 𝐵 is
invertible and the estimation ‖(𝐸 + 𝐵)

−1
‖ < (1 − ‖𝐵‖)

−1 holds
[26, page 78]. If 𝑥 = 𝑥(⋅) is a solution of differential equation
(1), then for 𝑡 ∈ (0, 𝑇)

𝑥 (𝑡) = 𝑥 (0) + ∫

𝑡

0

𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠, (9)

where𝑥(0) is still an arbitrary constant. For determining𝑥(0),
we require that the function defined by equality (9) satisfies
condition (2):

(𝐸 + 𝐵) 𝑥 (0) = 𝐶 − ∫

𝑇

0

𝑚(𝑡) ∫

𝑡

0

𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏 𝑑𝑡.

(10)

Since det(𝐸 + 𝐵) ̸= 0, then

𝑥 (0) = (𝐸 + 𝐵)
−1
𝐶

− (𝐸 + 𝐵)
−1
∫

𝑇

0

𝑚(𝑡) ∫

𝑡

0

𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏 𝑑𝑡.

(11)

The equality (11) may be written in the following equiva-
lent from
𝑥 (0) = (𝐸 + 𝐵)

−1
𝐶

− (𝐸 + 𝐵)
−1
∫

𝑇

0

∫

𝑇

𝑡

𝑚(𝜏) 𝑑𝜏𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡.

(12)
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Now, considering the value of 𝑥(0) defined by (12) in (9), we
get

𝑥 (𝑡) = (𝐸 + 𝐵)
−1
𝐶

− (𝐸 + 𝐵)
−1
∫

𝑇

0

∫

𝑇

𝑡

𝑚(𝜏) 𝑑𝜏𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

+ ∫

𝑡

0

𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏.

(13)

It is obvious one can write the last equality as

𝑥 (𝑡) = (𝐸 + 𝐵)
−1
𝐶

+ ∫

𝑡

0

(𝐸 − (𝐸 + 𝐵)
−1
∫

𝑇

𝑠

𝑚(𝜏) 𝑑𝜏)

× 𝑓 (𝑠, 𝑥 (𝑠) 𝑢 (𝑠)) 𝑑𝑠

− (𝐸 + 𝐵)
−1
∫

𝑇

𝑡

∫

𝑇

𝑠

𝑚(𝜏) 𝑑𝜏𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠.

(14)

Since 𝐵 = ∫
𝑇

0
𝑚(𝑡)𝑑𝑡,

𝐸 − (𝐸 + 𝐵)
−1
∫

𝑇

𝑠

𝑚(𝜏) 𝑑𝜏

= (𝐸 + 𝐵)
−1
(𝐸 + ∫

𝑇

0

𝑚(𝑡) 𝑑𝑡 − ∫

𝑇

𝑠

𝑚(𝜏) 𝑑𝜏)

= (𝐸 + 𝐵)
−1
(𝐸 + ∫

𝑠

0

𝑚(𝜏) 𝑑𝜏) .

(15)

Introduce the matrix function

𝐾 (𝑡, 𝜏) =

{{{

{{{

{

(𝐸 + 𝐵)
−1
(𝐸 + ∫

𝑠

0

𝑚(𝜏) 𝑑𝜏) , 0 ≤ 𝑠 ≤ 𝑡,

−(𝐸 + 𝐵)
−1
∫

𝑇

𝑠

𝑚(𝜏) 𝑑𝜏, 𝑡 < 𝑠 ≤ 𝑇.

(16)

Then, (14) turns to

𝑥 (𝑡) = (𝐸 + 𝐵)
−1
𝐶 + ∫

𝑇

0

𝐾 (𝑡, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏. (17)

Thus, we show that the boundary value problem (1)–
(3) may be written in the form of integral equation (8). By
direct verification, we can show that the solution of integral
equation (8) also satisfies to the boundary value problem (1)–
(3). Theorem 1 is proved.

For every fixed admissible controls, define the operator
𝑃 : 𝐶([0, 𝑇], 𝑅

𝑛
) → 𝐶([0, 𝑇], 𝑅

𝑛
) by the rule

(𝑃𝑥) (𝑡) = (𝐸 + 𝐵)
−1
𝐶 + ∫

𝑇

0

𝐾 (𝑡, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏.

(18)

Theorem 2. Let conditions (1)–(3) be fulfilled. Then, for any
𝐶 ∈ 𝑅

𝑛 and for each fixed admissible control, boundary

value problem (1)–(3) has the unique solution that satisfies the
following integral equation:

𝑥 (𝑡) = (𝐸 + 𝐵)
−1
𝐶 + ∫

𝑇

0

𝐾 (𝑡, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏. (19)

Proof. Let 𝐶 ∈ 𝑅
𝑛, and let 𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [0, 𝑇] be fixed.

Consider the mapping 𝑃 : 𝐶([0, 𝑇], 𝑅
𝑛
) → 𝐶([0, 𝑇], 𝑅

𝑛
)

defined by equality (18). Clearly, the fixed points of the
operator are solutions of the problem (1)-(2). We will use the
Banach contraction principle to prove that 𝑃 defined by (18)
has a fixed point. Then, for any V, 𝑤 ∈ 𝐶([0, 𝑇], 𝑅

𝑛
), we have

|(𝑃V) (𝑡) − (𝑃𝑤) (𝑡)|

≤ ∫

𝑇

0

|𝐾 (𝑡, 𝑠)| ⋅
󵄨󵄨󵄨󵄨𝑓 (𝑠, V (𝑠) , 𝑢 (𝑠)) − 𝑓 (𝑠, 𝑤 (𝑠) , 𝑢 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ (1 − ‖𝐵‖)
−1
𝐾𝑇𝑁‖V (⋅) − 𝑤 (⋅)‖𝐶[0,𝑇], 𝑡 ∈ [0, 𝑇] ,

(20)

or

‖𝑃V − 𝑃𝑤‖𝐶[0,𝑇] ≤ 𝐿‖V − 𝑤‖𝐶[0,𝑇]. (21)

Estimation (21) shows that the operator 𝑃 is a contrac-
tion in the space 𝐶([0, 𝑇], 𝑅𝑛). Therefore, according to the
principle of contraction operators, the operator 𝑃 defined
by equality (18) has a unique fixed point at 𝐶([0, 𝑇], 𝑅𝑛). So,
integral equation (19) or boundary value problem (1)–(3) has
a unique solution. Theorem 2 is proved.

3. First-Order Optimality Condition

In this section, we assume that 𝑈 is closed set in 𝑅
𝑟. In

order to obtain the necessary conditions for optimality, we
will use the standard procedure (see, e.g., [7]). Namely,
we should analyze the changing of the objective functional
caused by some control impulse. In other words, we must
derive the increment formula that originates from Taylor’s
series expansion.A suitable definition of the conjugate system
will facilitate the extraction of the dominant term that is
destined to determine the necessary condition for optimality.
For the sake of simplicity, it will be reasonable to construct a
linearized model of nonlinear system (8), (9) in some small
vicinity.

3.1. Increment Formula. Let {𝑢, 𝑥 = 𝑥(𝑡, 𝑢)} and {𝑢̃ = 𝑢 +

Δ𝑢, 𝑥 = 𝑥 + Δ𝑥 = 𝑥(𝑡, 𝑢̃)} be two admissible processes. We
can determine the boundary value problem for problem (1)–
(3)

Δ𝑥̇ = Δ𝑓 (𝑡, 𝑥, 𝑢) , 𝑡 ∈ [0, 𝑇] ,

Δ𝑥 (0) + ∫

𝑇

0

𝑚(𝑡) Δ𝑥 (𝑡) 𝑑𝑡 = 0,

(22)



4 Abstract and Applied Analysis

where Δ𝑓(𝑡, 𝑥, 𝑢) = 𝑓(𝑡, 𝑥, 𝑢̃) − 𝑓(𝑡, 𝑥, 𝑢) denotes the total
increment of the function 𝑓(𝑡, 𝑥, 𝑢). Then, we can represent
the increment of the functional in the form

Δ𝐽 (𝑢) = 𝐽 (𝑢̃) − 𝐽 (𝑢)

= Δ𝜑 (𝑥 (0) , 𝑥 (𝑇)) + ∫

𝑇

0

Δ𝐹 (𝑥, 𝑢, 𝑡) 𝑑𝑡.

(23)

Let us introduce some nontrivial vector function 𝜓(𝑡) ∈

𝑅
𝑛 and numerical vector 𝜆 ∈ 𝑅

𝑛. Then, the increment of
functional index (4) may be represented as

Δ𝐽 (𝑢)

= 𝐽 (𝑢̃) − 𝐽 (𝑢)

= Δ𝜑 (𝑥 (0) , 𝑥 (𝑇)) + ∫

𝑇

0

Δ𝐹 (𝑥, 𝑢, 𝑡) 𝑑𝑡

+ ∫

𝑇

0

⟨𝜓 (𝑡) , Δ𝑥̇ (𝑡) − Δ𝑓 (𝑡, 𝑥, 𝑢)⟩ 𝑑𝑡

+ ⟨𝜆, Δ𝑥 (0) + ∫

𝑇

0

𝑚(𝑡) Δ𝑥 (𝑡) 𝑑𝑡⟩ .

(24)

After some operations usually used in deriving of the first-
order optimality conditions, for the increment of the func-
tional, we get the formulas

Δ𝐽 (𝑢) = − ∫

𝑇

0

Δ
𝑢̃
𝐻(𝑡, 𝜓, 𝑥, 𝑢) 𝑑𝑡

− ∫

𝑇

0

⟨Δ
𝑢̃

𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
, Δ𝑥 (𝑡)⟩𝑑𝑡

+ ∫

𝑇

0

⟨𝜓̇ (𝑡) +
𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
+ 𝑚
󸀠
(𝑡) 𝜆⟩𝑑𝑡

+ ⟨
𝜕𝜑

𝜕𝑥 (0)
− 𝜓 (0) + 𝜆, Δ𝑥 (0)⟩

+ ⟨
𝜕𝜑

𝜕𝑥 (𝑇)
+ 𝜓 (𝑇) , Δ𝑥 (𝑇)⟩ + 𝜂

𝑢̃
,

𝜂
𝑢̃
= 𝑜
𝜑 (‖Δ𝑥 (0)‖ , ‖Δ𝑥 (𝑇)‖) − ∫

𝑇

0

𝑜
𝐻 (‖𝑥 (𝑡)‖) 𝑑𝑡,

(25)

where

𝐻(𝑡, 𝜓, 𝑥, 𝑢) = ⟨𝜓, 𝑓 (𝑡, 𝑥, 𝑢)⟩ − 𝐹 (𝑡, 𝑥, 𝑢) . (26)

Suppose that the vector function 𝜓(𝑡) ∈ 𝑅
𝑛 and vector

𝜆 ∈ 𝑅
𝑛 is a solution of the following conjugate problem (the

stationary condition of the Lagrangian function by state):

𝜓̇ (𝑡) = −
𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
− 𝑚
󸀠
(𝑡) 𝜆, 𝑡 ∈ [0, 𝑇] ,

𝜕𝜑

𝜕𝑥 (0)
− 𝜓 (0) + 𝜆 = 0,

𝜕𝜑

𝜕𝑥 (𝑇)
+ 𝜓 (𝑇) = 0.

(27)

Then, increment formula (25) takes the form

Δ𝐽 (𝑢) = − ∫

𝑇

0

Δ
𝑢̃
𝐻(𝑡, 𝜓, 𝑥, 𝑢) 𝑑𝑡

− ∫

𝑇

0

⟨Δ
𝑢̃

𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
, Δ𝑥 (𝑡)⟩𝑑𝑡 + 𝜂

𝑢̃
.

(28)

3.2. The Maximum Principle. Let us consider the formula
for the increment of the functional on the needle-shaped
variation of the admissible control. As a parameters, we take
the point 𝜏 ∈ (0, 𝑇], number 𝜀 ∈ (0, 𝜏], and vector 𝜐 ∈ 𝑈. The
variation interval (𝜏 − 𝜀, 𝜏) belongs to [0, 𝑇]. Needle-shaped
variation of the control 𝑢 = 𝑢(𝑡) is given as follows:

𝑢̃ (𝑡) = 𝑢
𝜀 (𝑡)

= {
V ∈ 𝑈, 𝑡 ∈ (𝜏 − 𝜀, 𝜏] ⊂ [0, 𝑇] , 𝜀 > 0,

𝑢 (𝑡) , 𝑡 ∉ (𝜏 − 𝜀, 𝜏] .

(29)

A traditional form of the necessary optimality condition
will follow from the increment formula (28) if we show
that on the needle-shaped variation 𝑢̃(𝑡) = 𝑢

𝜀
(𝑡) the state

increment Δ
𝜀
𝑥(𝑡) has the order 𝜀.

That follows from conditions (1)–(3) and equalities (19)
and (22)

Δ𝑥 (𝑡) = ∫

𝑇

0

𝐾 (𝑡, 𝜏) [𝑓 (𝜏, 𝑥 + Δ𝑥, 𝑢̃) − 𝑓 (𝜏, 𝑥, 𝑢̃)] 𝑑𝜏

+ ∫

𝑇

0

𝐾 (𝑡, 𝜏) Δ 𝑢̃𝑓 (𝜏, 𝑥, 𝑢) 𝑑𝜏.

(30)

From this, we obtain

‖Δ𝑥 (𝑡)‖ ≤ (1 − 𝐿)
−1
(1 − ‖𝐵‖)

−1
𝑁∫

𝑇

0

󵄩󵄩󵄩󵄩Δ 𝑢̃𝑓 (𝑡, 𝑥, 𝑢)
󵄩󵄩󵄩󵄩 𝑑𝑡,

(31)

which proves our hypothesis on response of the state incre-
ment caused by the needle-shaped variation given by (29)

󵄩󵄩󵄩󵄩Δ 𝜀𝑥 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝐿̃ ⋅ 𝜀, 𝑡 ∈ [0, 𝑇] , 𝐿̃ = const > 0. (32)

This also implies that for 𝑢̃(𝑡) = 𝑢
𝜀
(𝑡),

∫

𝜏

𝜏−𝜀

⟨Δ V

𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
, Δ
𝜀
𝑥 (𝑡)⟩𝑑𝑡

+ 𝜂
𝑢
𝜀

(
󵄩󵄩󵄩󵄩Δ 𝜀𝑥 (𝑡)

󵄩󵄩󵄩󵄩) = 𝑜 (𝜀) ,

(33)

where

Δ
𝜀
𝑥 (𝑡) = 𝑥 (𝑡, 𝑢

𝜀
) − 𝑥 (𝑡, 𝑢) ∼ 𝜀. (34)

Therefore, the changing of objective functional caused by the
needle-shaped variation (29) can be represented according to
(28) as

Δ
𝜀
𝐽 (𝑢) = 𝐽 (𝑢

𝜀
) − 𝐽 (𝑢)

= −Δ V𝐻(𝜏, 𝜓, 𝑥, 𝑢) ⋅ 𝜀 + 𝑜 (𝜀) , V ∈ 𝑈, 𝜏 ∈ [0, 𝑇] .
(35)
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It should be noted that in the last expression, we used the
mean value theorem.

For the needle-shaped variation of optimal process
{𝑢
0
, 𝑥
0
= 𝑥(𝑡, 𝑢

0
)}, the increment formula (35) with regard to

the estimate (32) implies the necessary optimality condition
in the form of the maximum principle.

Theorem 3 (maximum principle). Suppose that the admissi-
ble process {𝑢0, 𝑥0 = 𝑥(𝑡, 𝑢

0
)} is optimal for problem (1)–(4)

and 𝜓0(𝑡) is the solution to conjugate boundary value problem
(27) calculated on the optimal process. Then, for all 𝜏 ∈ [0, 𝑇],
the following inequality holds:

Δ V𝐻(𝜏, 𝜓
0
, 𝑥
0
, 𝑢
0
) ≤ 0, for every V ∈ 𝑈. (36)

Remark 4. If the function𝑓 is linear with respect to (𝑥, 𝑢) and
functions 𝜑, 𝐹 are convex with respect to 𝑥(0), 𝑥(𝑇), and 𝑥(𝑡),
respectively, then maximum principle (36) is both necessary
and sufficient optimality condition.This fact follows from the
increment formula

Δ𝐽 (𝑢) = − ∫

𝑇

0

Δ
𝑢̃
𝐻(𝑡, 𝜓, 𝑥, 𝑢) 𝑑𝑡

+ 𝑜
𝜑 (‖𝑥 (0)‖ , ‖𝑥 (𝑇)‖) + ∫

𝑇

0

𝑜
𝐹 (‖𝑥 (𝑡)‖) 𝑑𝑡,

(37)

where 𝑜
𝜑
≥ 0, 𝑜

𝐹
≥ 0.

4. Variations of the Functional and Derivation
of Legendre-Clebsh Conditions

Let the set 𝑈 ⊂ 𝑅
𝑟 be open. Since the functions 𝜑(𝑥, 𝑦),

𝐹(𝑡, 𝑥, 𝑢), and 𝑓(𝑡, 𝑥, 𝑢) are continuous by their own argu-
ments and have continuous and bounded partial derivatives
with respect to𝑥, 𝑦, and𝑢up to secondorder, inclusively, then
increment formula (28) takes the form

Δ𝐽 (𝑢) = − ∫

𝑇

0

⟨
𝜕𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢
, Δ𝑢 (𝑡)⟩𝑑𝑡

−
1

2
∫

𝑇

0

⟨Δ𝑢(𝑡)
󸀠
𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢2
, Δ𝑢 (𝑡)⟩𝑑𝑡

− ∫

𝑇

0

⟨Δ𝑢(𝑡)
󸀠
𝜕𝐻
2
(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥𝜕𝑢

+
1

2
Δ𝑥
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥2
, Δ𝑥 (𝑡)⟩𝑑𝑡

+
1

2
⟨Δ𝑥(0)

󸀠 𝜕
2
𝜑

𝜕𝑥(0)
2

+Δ𝑥(𝑇)
󸀠 𝜕

2
𝜑

𝜕𝑥 (0) 𝜕𝑥 (𝑇)
, Δ𝑥 (0)⟩

+
1

2
⟨Δ𝑥(0)

󸀠 𝜕
2
𝜑

𝜕𝑥 (𝑇) 𝜕𝑥 (0)

+Δ𝑥(𝑇)
󸀠 𝜕
2
𝜑

𝜕𝑥(𝑇)
2
, Δ𝑥 (𝑇)⟩ + 𝜉

𝑢̃
,

(38)

where

𝜉
𝑢̃
= − ∫

𝑇

0

𝑜
𝐻
(‖Δ𝑥 (𝑡)‖

2
+ ‖Δ𝑢 (𝑡)‖

2
) 𝑑𝑡

+ 𝑜
𝜑
(
󵄩󵄩󵄩󵄩Δ𝑥 (𝑡0)

󵄩󵄩󵄩󵄩
2
,
󵄩󵄩󵄩󵄩Δ𝑥 (𝑡1)

󵄩󵄩󵄩󵄩
2
) .

(39)

Let nowΔ𝑢(𝑡) = 𝜀𝛿𝑢(𝑡), where 𝜀 > 0 is a rather small number
and 𝛿𝑢(𝑡) is some piecewise continuous function. Then, the
increment of the functional Δ𝐽(𝑢) = 𝐽(𝑢̃) − 𝐽(𝑢) for the fixed
functions 𝑢(𝑡), Δ𝑢(𝑡) is the function of the parameter 𝜀. If the
representation

Δ𝐽 (𝑢) = 𝜀𝛿𝐽 (𝑢) +
1

2
𝜀
2
𝛿
2
𝐽 (𝑢) + 𝑜 (𝜀

2
) (40)

is valid, then 𝛿𝐽(𝑢) is called the first, and 𝛿
2
𝐽(𝑢) is the

second variation of the functional. Further, we get an explicit
expression for the first and second variations. To achieve the
object, we have to select in Δ𝑥(𝑡) the principal term with
respect to 𝜀.

Assume that

Δ𝑥 (𝑡) = 𝜀𝛿𝑥 (𝑡) + 𝑜 (𝜀, 𝑡) , (41)

where 𝛿𝑥(𝑡) is the variation of the trajectory. Such a repre-
sentation exists, and for the function 𝛿𝑥(𝑡), one can obtain
an equation in variations. Indeed, by definition of Δ𝑥(𝑡), we
have:

Δ𝑥 (𝑡) = ∫

𝑇

0

𝐾 (𝑡, 𝜏) Δ𝑓 (𝜏, 𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏. (42)

Applying the Taylor formula to the integrand expression, we
get

𝜀𝛿𝑥 (𝑡) + 𝑜 (𝜀, 𝑡)

= ∫

𝑇

0

𝐾 (𝑡, 𝜏) {
𝜕𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑥
[𝜀𝛿𝑥 (𝜏) + 𝑜 (𝜀, 𝜏)]

+𝜀
𝜕𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑢
𝛿𝑢 + 𝑜

1 (𝜀, 𝜏)} 𝑑𝜏.

(43)

Since this formula is true for any 𝜀, then

𝛿𝑥 (𝑡) = ∫

𝑇

0

𝐾 (𝑡, 𝜏)

× {
𝜕𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑥
𝛿𝑥 (𝜏) +

𝜕𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑢
𝛿𝑢 (𝑡)} 𝑑𝜏.

(44)
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Equation (44) is said to be an equation in variations. Obvi-
ously, integral equation (44) is equivalent to the following
nonlocal boundary value problem:

𝛿𝑥̇ (𝑡) =
𝜕𝑓 (𝑡, 𝑥, 𝑢)

𝜕𝑥
𝛿𝑥 (𝑡) +

𝜕𝑓 (𝑡, 𝑥, 𝑢)

𝜕𝑢
𝛿𝑢 (𝑡) , (45)

𝛿𝑥 (0) + ∫

𝑇

0

𝑚(𝑡) 𝛿𝑥 (𝑡) 𝑑𝑡 = 0. (46)

By [6, page 527], any solution of differential equation (45)
may be represented in the form

𝛿𝑥 (𝑡) = Φ (𝑡) 𝛿𝑥 (0) + Φ (𝑡) ∫

𝑡

0

Φ
−1
(𝜏)

𝜕𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑢
𝛿𝑢 (𝜏) 𝑑𝜏,

(47)

whereΦ(𝑡) is a solution of the following differential equation:

𝑑Φ (𝑡)

𝑑𝑡
=
𝜕𝑓 (𝑡, 𝑥, 𝑢)

𝜕𝑥
Φ (𝑡) , Φ (0) = 𝐸. (48)

Assume that the solution of differential equation (45)
determined by equality (47) satisfies boundary condition
(46). Then, for the solutions of problems (45), (46), we get
the following explicit formula:

𝛿𝑥 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝜏)
𝜕𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑢
𝛿𝑢 (𝜏) 𝑑𝜏, (49)

where

𝐺 (𝑡, 𝜏)

=

{{{{{{{

{{{{{{{

{

Φ(𝑡) [𝐸 + 𝐵
1
]
−1
[𝐸 + ∫

𝑠

0

𝑚(𝜏)Φ (𝜏) 𝑑𝜏]Φ
−1
(𝜏) ,

0 ≤ 𝜏 ≤ 𝑡,

−Φ (𝑡) [𝐸 + 𝐵
1
]
−1
∫

𝑇

𝑠

𝑚(𝜏)Φ (𝜏) 𝑑𝜏Φ
−1
(𝜏) ,

𝑡 ≤ 𝜏 ≤ 𝑇,

𝐵
1
= ∫

𝑇

0

𝑚(𝑡)Φ (𝑡) 𝑑𝑡.

(50)

Now, substituting (41) into (38), one may get

Δ𝐽 (𝑢) = − 𝜀∫

𝑇

0

⟨
𝜕𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢
, 𝛿𝑢 (𝑡)⟩𝑑𝑡

−
𝜀
2

2
{∫

𝑇

0

[⟨𝛿𝑥
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥2
, 𝛿𝑥 (𝑡)⟩

+ 2⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥𝜕𝑢
, 𝛿𝑥 (𝑡)⟩

+ ⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢2
, 𝛿𝑢 (𝑡)⟩]𝑑𝑡

− ⟨𝛿𝑥
󸀠
(0)

𝜕
2
𝜑

𝜕𝑥(0)
2

+Δ𝑥
󸀠
(𝑇)

𝜕
2
𝜑

𝜕𝑥 (0) 𝜕𝑥 (𝑇)
, 𝛿𝑥 (0)⟩

−⟨𝛿𝑥
󸀠
(0)

𝜕
2
𝜑

𝜕𝑥 (𝑇) 𝜕𝑥 (0)

+𝛿𝑥
󸀠
(𝑇)

𝜕
2
𝜑

𝜕𝑥(𝑇)
2
, 𝛿𝑥 (𝑇)⟩} + 𝑜 (𝜀

2
) .

(51)

Considering definition (40), we finally obtain

𝛿𝐽 (𝑢) = −∫

𝑇

0

⟨
𝜕𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢
, 𝛿𝑢 (𝑡)⟩𝑑𝑡, (52)

𝛿
2
𝐽 (𝑢) = − ∫

𝑇

0

[⟨𝛿𝑥
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥2
, 𝛿𝑥 (𝑡)⟩

+ 2⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥𝜕𝑢
, 𝛿𝑥 (𝑡)⟩

+ ⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢2
, 𝛿𝑢 (𝑡)⟩]𝑑𝑡

+ ⟨𝛿𝑥
󸀠
(0)

𝜕
2
𝜑

𝜕𝑥(0)
2

+Δ𝑥
󸀠
(𝑇)

𝜕
2
𝜑

𝜕𝑥 (0) 𝜕𝑥 (𝑇)
, 𝛿𝑥 (0)⟩

+⟨𝛿𝑥
󸀠
(0)

𝜕
2
𝜑

𝜕𝑥 (𝑇) 𝜕𝑥 (0)

+ 𝛿𝑥
󸀠
(𝑇)

𝜕
2
𝜑

𝜕𝑥(𝑇)
2
, 𝛿𝑥 (𝑇)⟩ .

(53)

It follows from (40) that the conditions

𝛿𝐽 (𝑢
0
) = 0, 𝛿

2
𝐽 (𝑢
0
) ≥ 0 (54)

are fulfilled for the optimal control 𝑢0(𝑡). From the first
condition in (54), it follows that

∫

𝑇

0

⟨
𝜕𝐻(𝑡, 𝜓

0
, 𝑥
0
, 𝑢
0
)

𝜕𝑢
, 𝛿𝑢 (𝑡)⟩𝑑𝑡 = 0. (55)

Hence, we can prove that the following equality is fulfilled
along the optimal control (see [11, p. 54]):

𝜕𝐻 (𝑡, 𝜓
0
, 𝑥
0
, 𝑢
0
)

𝜕𝑢
= 0, 𝑡 ∈ [0, 𝑇] , (56)
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and it is called the Euler equation. From the second condition
in (54), it follows that the following inequality is fulfilled
along the optimal control:

𝛿
2
𝐽 (𝑢)

= −∫

𝑇

0

[⟨𝛿𝑥
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥2
, 𝛿𝑥 (𝑡)⟩

+ 2⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥𝜕𝑢
, 𝛿𝑥 (𝑡)⟩

+ ⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢2
, 𝛿𝑢 (𝑡)⟩]𝑑𝑡

+ ⟨𝛿𝑥
󸀠
(0)

𝜕
2
𝜑

𝜕𝑥(0)
2
+ Δ𝑥
󸀠
(𝑇)

𝜕
2
𝜑

𝜕𝑥 (0) 𝜕𝑥 (𝑇)
, 𝛿𝑥 (0)⟩

+⟨𝛿𝑥
󸀠
(0)

𝜕
2
𝜑

𝜕𝑥 (𝑇) 𝜕𝑥 (0)
+ 𝛿𝑥
󸀠
(𝑇)

𝜕
2
𝜑

𝜕𝑥(𝑇)
2
, 𝛿𝑥 (𝑇)⟩

≥ 0.

(57)

Inequality (57) is an implicit necessary optimality con-
dition of first order. However, the practical value of such
conditions is not great, since it requires very complicated
calculations.

For obtaining effectively verifiable optimality conditions
of second order, following [12, p. 16], we take into account (49)
in (57) and introduce the matrix function

𝑅 (𝜏, 𝑠) = − 𝐺
󸀠
(0, 𝜏)

𝜕
2
𝜑

𝜕𝑥(0)
2
𝐺 (0, 𝑠)

− 𝐺
󸀠
(𝑇, 𝜏)

𝜕
2
𝜑

𝜕𝑥 (𝑇) 𝜕𝑥 (0)
𝐺 (0, 𝑠)

− 𝐺
󸀠
(0, 𝜏)

𝜕
2
𝜑

𝜕𝑥 (0) 𝜕𝑥 (𝑇)
𝐺 (𝑇, 𝑠)

− 𝐺
󸀠
(𝑇, 𝜏)

𝜕
2
𝜑

𝜕𝑥(𝑇)
2
𝐺 (𝑇, 𝑠)

+ ∫

𝑇

0

𝐺
󸀠
(𝑡, 𝜏)

𝜕
2
𝐻

𝜕𝑥2
𝐺 (𝑡, 𝑠) 𝑑𝑡.

(58)

Then, for the second variation of the functional, we get the
terminal formula

𝛿
2
𝐽 (𝑢) = − {∫

𝑇

0

∫

𝑇

0

⟨𝛿
󸀠
𝑢 (𝜏)

𝜕
󸀠
𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑢

× 𝑅 (𝜏, 𝑠)
𝜕𝑓 (𝑠, 𝑥, 𝑢)

𝜕𝑢
, 𝛿𝑢 (𝑠)⟩𝑑𝑡 𝑑𝑠

+ ∫

𝑇

0

⟨𝛿
󸀠
𝑢 (𝜏)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢2
, 𝛿𝑢 (𝑡)⟩𝑑𝑡

+ 2∫

𝑇

0

∫

𝑇

0

⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥𝜕𝑢
𝐺 (𝑡, 𝑠)

×
𝜕𝑓 (𝑠, 𝑥, 𝑢)

𝜕𝑢
, 𝛿𝑢 (𝑠)⟩𝑑𝑡 𝑑𝑠} .

(59)

Theorem 5. If the admissible control 𝑢(𝑡) satisfies condition
(56), then for its optimality in problem (1)–(4), the inequality

𝛿
2
𝐽 (𝑢) = − {∫

𝑇

0

∫

𝑇

0

⟨𝛿
󸀠
𝑢 (𝜏)

𝜕
󸀠
𝑓 (𝜏, 𝑥, 𝑢)

𝜕𝑢

×𝑅 (𝜏, 𝑠)
𝜕𝑓 (𝑠, 𝑥, 𝑢)

𝜕𝑢
, 𝛿𝑢 (𝑠)⟩𝑑𝜏𝑑𝑠

+ ∫

𝑇

0

⟨𝛿
󸀠
𝑢 (𝜏)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑢2
, 𝛿𝑢 (𝑡)⟩𝑑𝑡

+ 2∫

𝑇

0

∫

𝑇

0

⟨𝛿𝑢
󸀠
(𝑡)

𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥𝜕𝑢
𝐺 (𝑡, 𝑠)

×
𝜕𝑓 (𝑠, 𝑥, 𝑢)

𝜕𝑢
, 𝛿𝑢 (𝑠)⟩𝑑𝑡𝑑𝑠} ≥ 0

(60)

should be fulfilled for all 𝛿𝑢(𝑡) ∈ 𝐿
∞
[0, 𝑇].

The analogy of the Legandre-Klebsh condition for the
considered problem follows from condition (60).

Theorem 6. Along the optimal process (𝑢(𝑡), 𝑥(𝑡)) for all V ∈

𝑅
𝑟 and 𝜃 ∈ [0, 𝑇]

V󸀠
𝜕
2
𝐻(𝜃, 𝜓 (𝜃) , 𝑥 (𝜃) , 𝑢 (𝜃))

𝜕𝑢2
V ≤ 0. (61)

To prove (61), one constructs the variation of the control

𝛿𝑢 (𝑡) = {
V 𝑡 ∈ [𝜃, 𝜃 + 𝜀)

0 𝑡 ∉ [𝜃, 𝜃 + 𝜀) ,
(62)

where 𝜀 > 0 and V is some 𝑟-dimensional vector.
By virtue of (62) the corresponding variation of the

trajectory indeed is

𝛿𝑥 (𝑡) = 𝑎 (𝑡) 𝜀 + 𝑜 (𝜀, 𝑡) , 𝑡 ∈ [0, 𝑇] , (63)

where 𝑎(𝑡) is a continuous bounded function.
Substituting variation (62) into (60) and selecting the

principal term with respect to 𝜀, one may obtain

𝛿
2
𝐽 (𝑢) = −∫

𝜃+𝜀

𝜃

V󸀠
𝜕
2
𝐻(𝑡, 𝜓 (𝑡) , 𝑥 (𝑡) , 𝑢 (𝑡))

𝜕𝑢2
V𝑑𝑡 + 𝑜 (𝜀)

= −𝜀V󸀠
𝜕
2
𝐻(𝜃, 𝜓 (𝜃) , 𝑥 (𝜃) , 𝑢 (𝜃))

𝜕𝑢2
V + 𝑜
1 (𝜀) .

(64)

Thus, considering the second condition of (54), one obtains the
Legandre-Klebsh criterion (61).
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Condition (61) is the second-order optimality condition. It
is obvious that when the right-hand side of system (1) is linear
with respect to control parameters, then condition (61) also
degenerates fulfills trivially. Following [11, p. 27], [12, p. 40], if
for all 𝜃 ∈ (0, 𝑇), V ∈ 𝑅𝑟

𝜕𝐻 (𝜃, 𝜓 (𝜃) , 𝑥 (𝜃) , 𝑢 (𝜃))

𝜕𝑢
= 0,

V󸀠
𝜕
2
𝐻(𝜃, 𝜓 (𝜃) , 𝑥 (𝜃) , 𝑢 (𝜃))

𝜕𝑢2
V = 0,

(65)

then the admissible control 𝑢(𝑡) is said be a singular control in
the classic sense.

Theorem 7. For singular optimality of the control 𝑢(𝑡) in the
classic sense, the inequality

V󸀠 {∫
𝑇

0

∫

𝑇

0

⟨
𝜕𝑓 (𝑡, 𝑥, 𝑢)

𝜕𝑢
𝑅 (𝑡, 𝑠) ,

𝜕𝑓 (𝑠, 𝑥, 𝑢)

𝜕𝑢
⟩𝑑𝑡 𝑑𝑠

+ 2∫

𝑇

0

∫

𝑇

0

⟨
𝜕
2
𝐻(𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥𝜕𝑢
𝐺 (𝑡, 𝑠) ,

𝜕𝑓 (𝑠, 𝑥, 𝑢)

𝜕𝑢
⟩𝑑𝑡 𝑑𝑠} V ≤ 0

(66)

should be fulfilled for all V ∈ 𝑅𝑛.

Condition (66) is an integral necessary condition of
optimality for singular controls in the classic sense. Selecting
special variation in different way in formula (60), we can get
various necessary optimality conditions.

5. Conclusion

In this work, the optimal control problem is considered
when the state of the system is described by the differential
equations with integral boundary conditions. Applying the
Banach contraction principle, the existence and uniqueness
of the solution are proved for the corresponding boundary
problem by fixed admissible control. The first and second
order increment formulas for the functional are calculated.
Various necessary conditions of optimality of the first and
second order are obtained by the help of the variation of the
controls. Of course, such type, the existence and uniqueness
results and necessary conditions of optimality hold under the
same sufficient conditions on nonlinear terms for the system
of nonlinear differential equations (1), subject to multipoint
nonlocal and integral boundary conditions

𝐸𝑥 (0) + ∫

𝑇

0

𝑚(𝑡) 𝑥 (𝑡) 𝑑𝑡 +

𝐽

∑

𝑗=1

𝐵
𝑗
𝑥 (𝑡
𝑗
) = 𝐶, (67)

where 𝐵
𝑗
∈ 𝑅
𝑛×𝑛 are given matrices and

‖𝐵‖ +

𝐽

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑗

󵄩󵄩󵄩󵄩󵄩
< 1. (68)

Here, 0 < 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑗
≤ 𝑇. Moreover, the method given in

[27, 28] and the method presented in the paper may allow
one to investigate optimal control for infinite-dimensional
systems with integral boundary conditions.
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