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The analytical method to predict the period-doubling bifurcation of the three-dimensional (3D) system is improved by using the
undetermined fundamental frequency method. We compute the stable response of the system subject to the quadratic and cubic
nonlinearity by introducing the undetermined fundamental frequency. For the occurrence of the first and second period-doubling
bifurcation, the new bifurcation criterion is accomplished. It depends on the stability of the limit cycle on the central manifold.The
explicit applications show that the new results coincide with the results of the numerical simulation as compared with the initial
methods.

1. Introduction

Period-doubling bifurcation can induce complex dynamical
behavior in the nonlinear dynamic systems. It is the most
classical achievement broadcasted by Feigenbaum [1]. He
discovered the ratio of the difference between the values at
which such successive period-doubling bifurcation occurs
at a constant of around 4.6692 and then showed that the
same behavior, with the same mathematical constant, would
occur within a wide class of mathematical functions, prior
to the onset of chaos. Since then many attempts have
been made to study the period-doubling (flip) bifurca-
tion phenomenon in the nonlinear dynamic systems. Wang
and Xu [2] developed the relation between two periodic
solutions analytically for a general parameter dependent
dynamic system. Such relation is further confirmed by one
example and shows that the 2T-periodic solution contains
all the information of the T-periodic solution near the
bifurcation point. From the frequency domain point of
view, Floquet multipliers commonly used for the analyti-
cal bifurcations of Hopf cycles are the key to detect the
appearance of a subharmonic solution. So a quasianalytical

monodromy matrix approach was developed to the period-
doubling bifurcation emerging near a Hopf bifurcation point
[3].

As compared with the single freedom system, the dynam-
ical behaviors surrounding the bifurcation pointmay become
more complicated in the 3D system. Rand [4] used the
center manifold theory to approximate the newly born limit
cycle and then to investigate the stability of the limit cycle
corresponding to the flip bifurcation. Later, Belhaq et al.
[5, 6] improved the approximation of the critical value with a
higher-order approximation and further solved the problem
of the second period-doubling bifurcation.

In this paper, we use the center manifold theory to reduce
a 3D system and then derive the critical values of the first and
second period-doubling bifurcation according to the stability
of the limit cycle. In terms of the undetermined fundamental
frequency method, it produces more accurate results and
avoids the computational complexity appending the higher-
order approximation at the same time [7, 8]. Finally the
whole process is precisely programmed in terms of the
computer algebra Mathematica to perform the analysis more
efficiently.
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2. Stable Response with the Undetermined
Fundamental Frequency Method

In order to illustrate the analytical process, we refer to the
following 3D system:

𝑥̇ = 𝜇𝑥 − 𝑦 − 𝑥𝑧,

̇𝑦 = 𝜇𝑦 + 𝑥,

𝑧̇ = −𝑧 + 𝑥

2
𝑧 + 𝑦

2
.

(1)

This system may be thought of as a feedback control
system consisting of a damped linear oscillator in the 𝑥, 𝑦
variables and a control variable 𝑧. The origin (𝑥, 𝑦, 𝑧) =

(0, 0, 0) is the equilibrium and may lose its stability at control
parameter changing from 𝜇 < 0 to 𝜇 > 0. This means that
the period-doubling bifurcation appears at the value 𝜇 = 𝜇

𝑐

following the limit cycles.
For the value of 𝜇

𝑐
, the center manifold theory has

to be introduced to finish the reduction and obtain the
equations on the centermanifolds. So we set the second order
polynomial of 𝑧 in terms of 𝑥, 𝑦, and 𝜇

𝑧 = 𝑎𝑥

2
+ 𝑏𝑥𝑦 + 𝑐𝑦

2
+ 𝑑𝑥𝜇 + 𝑒𝑦𝜇 + 𝑓𝜇

2
+ 𝑜 (3) . (2)

Differentiating (2) with respect to time 𝑡 and using (1) give

−𝑧 + 𝑥

2
𝑧 + 𝑦

2
= (2𝑎𝑥 + 𝑏𝑦 + 𝑑𝜇) (𝜇𝑥 − 𝑦 − 𝑥𝑧)

+ (𝑏𝑥 + 2𝑐𝑦 + 𝑒𝜇) (𝜇𝑦 + 𝑥) + 𝑜 (3) .

(3)

Equating the same order terms on both sides of (3) produces
the coefficients

𝑎 =

2

(1 + 2𝜇) (5 + 4𝜇 (1 + 𝜇))

,

𝑏 = −

2

5 + 4𝜇 (1 + 𝜇)

,

𝑐 =

3 + 4𝜇 (1 + 𝜇)

(1 + 2𝜇) (5 + 4𝜇 (1 + 𝜇))

,

𝑑 = 0,

𝑒 = 0,

𝑓 = 0.

(4)

That leads to the following approximate flows on the center
manifold:

𝑥̇ = 𝜇𝑥 − 𝑦 − 𝑎𝑥

3
− 𝑏𝑥

2
𝑦 − 𝑐𝑥𝑦

2
,

̇𝑦 = 𝜇𝑦 + 𝑥.

(5)

The computational precision of the critical value depends
heavily on the stable response, such as the frequency and
amplitude of the 3D system. So, in order to perform the limit
cycle bifurcation analysis more correctly, Belhaq et al. [6]
explored the analysis through a higher-order approximation.

In this paper we introduce the undetermined fundamental
frequency method during the course of normal form oper-
ation.

In terms of the transformation 𝑥 = V − 𝜇𝑢, 𝑦 = 𝑢, (5)
changes to

𝑢̇ = V,

V̇ = −𝑢 + 2V𝜇 − 𝑢𝜇

2
− (V − 𝑢𝜇)

× {−

2𝑢 (V − 𝑢𝜇)

5 + 4𝜇 (1 + 𝜇)

+

2(V − 𝑢𝜇)

2

(1 + 2𝜇) [5 + 4𝜇 (1 + 𝜇)]

+

𝑢

2
(3 + 4𝜇 (1 + 𝜇))

(1 + 2𝜇) [5 + 4𝜇 (1 + 𝜇)]

} .

(6)

To obtain the stable response, it demands to transform (6)
into a differential equation of the first order with the complex
unknown quantities 𝜉. Let

𝑢 = 𝜉 + 𝜉, 𝑢̇ = 𝑖𝜔

10
(𝜉 − 𝜉) , (7)

where 𝜔

10
is the undetermined fundamental frequency. Sol-

ving (7) obtains

𝜉 =

1

2

(𝑢 −

𝑖

𝜔

10

𝑢̇) , 𝜉 =

1

2

(𝑢 +

𝑖

𝜔

10

𝑢̇) . (8)

Differentiating (8) with respect to 𝑡 and using (6) and (7),
give

̇

𝜉 =

1

2𝜔

10

𝑖 {𝜉 + 𝜉 + 𝜇

2
(𝜉 + 𝜉) − 2𝑖𝜇 (𝜉 − 𝜉) 𝜔

10

+ (𝜉 − 𝜉) 𝜔

2

10
−

1

5 + 14𝜇 + 12𝜇

2
+ 8𝜇

3

× [𝜇 (𝜉 + 𝜉) − 𝑖 (𝜉 − 𝜉) 𝜔

10
]

+ [(3 + 6𝜇 + 10𝜇

2
) (𝜉 + 𝜉)

2

− 2𝑖 (1 + 4𝜇) (𝜉

2
− 𝜉

2

)𝜔

10

−2(𝜉 − 𝜉)

2

𝜔

2

10
]} .

(9)

For the simplification of (9), a third-order nonlinear trans-
formation is considered as

𝜉 = 𝜂 + ℎ

1
(𝜂, 𝜂) + ℎ

2
(𝜂, 𝜂) + ℎ

3
(𝜂, 𝜂) , (10)

where ℎ
𝑖
(𝜂, 𝜂) = ∑

𝑖

𝑗=0
Γ

𝑗,𝑖−𝑗
𝜂

𝑗
𝜂

𝑖−𝑗, 𝑖 = 1, 2, 3.
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Table 1: Critical value for the first period-doubling bifurcation.

Method Numerical simulation This paper Reference [4] Reference [6]
𝜇

𝑐
0.439 0.443 0.45 0.446

These transformation coefficients Γ
𝑗,𝑖−𝑗

are suitably cho-
sen to eliminate the nonresonance terms [9] in the final
expression. So the normal form of (9) is

̇𝜂 =

1 + 𝜇

2
+ 𝜔

2

10

2 (𝜇 − 𝑖𝜔

10
)

𝜂

− ( (3𝜇 (3 + 6𝜇 + 10𝜇

2
) − 𝑖 (3 + 8𝜇 + 18𝜇

2
) 𝜔

10

+ 2 (1 + 5𝜇) 𝜔

2

10
− 6𝑖𝜔

3

10
)

× (2 (5 + 14𝜇 + 12𝜇

2
+ 8𝜇

3
) (𝜇 − 𝑖𝜔

10
))

−1

)

× 𝜂

2
𝜂.

(11)

Next, 𝜂, 𝜂 require to be expressed in the following polar form
𝜂 = 1/2𝑎𝑒

𝑖𝜔
10
𝑡, 𝜂 = 1/2𝑎𝑒

−𝑖𝜔
10
𝑡. Then separating the real and

imaginary parts of the foregoing equation by considering the
stationary condition ̇𝑎 = 0, we have

𝜇 {20 + 𝜇 {56 − 3𝑎

2
[3 + 2𝜇 (3 + 5𝜇)]

+ 4𝜇 [17 + 2𝜇 (11 + 6𝜇 + 4𝜇

2
)]}}

+ {4𝜇 (1 + 2𝜇) [5 + 4𝜇 (1 + 𝜇)]

− 𝑎

2
[3 + 2𝜇 (5 + 14𝜇)]} 𝜔

2

10
− 6𝑎

2
𝜔

4

10
= 0,

− 10 + (−28 + 3𝑎

2
) 𝜇 + (−14 + 5𝑎

2
) 𝜇

2

+ 6 (2 + 𝑎

2
) 𝜇

3
+ 24𝜇

4
+ 16𝜇

5

+ (1 + 2𝜇) (10 + 𝑎

2
+ 8𝜇 + 8𝜇

2
) 𝜔

2

10
= 0.

(12)

Hence, (12) produces the amplitude and the undetermined
fundamental frequency

𝑎 = {

1

3 + 4 (−1 + 𝜇) 𝜇

× {−45 + {(1 + 2𝜇)

2

[5 + 4𝜇 (1 + 𝜇)]

2

× {81 + 8𝜇 {15 + 𝜇[3 + 2𝜇 (6 + 𝜇)]}} }

1/2

−2𝜇 {73 + 4𝜇{23 + 2𝜇 [11 + 𝜇 (5 + 2𝜇)]}} } }

1/2

,

𝜔

10
= ((10 − 𝜇 { − 14 (2 + 𝜇)

+ 4𝜇

2
(3 + 6𝜇 + 4𝜇

2
)

+𝑎

2
[3 + 𝜇 (5 + 6𝜇)]} )

× ((1 + 2𝜇) [10 + 𝑎

2
+ 8𝜇 (1 + 𝜇)])

−1

)

1/2

.

(13)

3. Criterion for the
Period-Doubling Bifurcation

Substituting (13) into (7), we obtain the expression of periodic
solution in the trigonometric form so that the solution
changes into the Cartesian formwith the transformation𝑥

0
=

V − 𝜇𝑢, 𝑦
0
= 𝑢. Consider

𝑥

0
= −𝑎𝜇 cos𝜔

10
𝑡 + 𝑎 sin𝜔

10
𝑡,

𝑦

0
= 𝑎 cos𝜔

10
𝑡.

(14)

Note that the limit cycle cannot show period-doubling
as long as it lies in the center manifold because the latter is
two-dimensional and trajectories cannot self-intersect. So it
marks 𝑧

0
on the limit cycle for the expression obtained from

(2). To investigate the stability, we append disturbance to 𝑧 in
(1), that is,

𝑧 = 𝑧

0
+ 𝑧

1
, (15)

and linearize the variation 𝑧

1

𝑧̇

1
= [−1 + (−𝑎𝜇 cos𝜔

10
𝑡 + 𝑎 sin𝜔

10
𝑡)

2

] 𝑧

1
. (16)

The general solution of (16) is

𝑧

1
= 𝑧

∗

1
𝑒

𝑀
, (17)

where 𝑀 = ∫

𝑡

0
[−1 + (−𝑎𝜇 cos𝜔

10
𝑡 + 𝑎 sin𝜔

10
𝑡)

2
]𝑑𝑡. By

considering the Floquet theory, the transition from stable to
unstable occurs in the condition of 𝑧

1
(𝑇) = 𝑧

1
(0), where

𝑇 is the period of the limit cycle oscillation. That produces
the critical value of period-doubling bifurcation through
𝑀(𝜇

𝑐
) = 0, and the result is

𝜇

𝑐
= 0.443. (18)

In order to illustrate the accuracy of the result, the critical
values obtained from different methods are presented in
Table 1.

Finally, we investigate the stability to find the critical
values of the second period doubling bifurcation. That is,
from a bifurcation point, the asymmetric 2T-orbit born at the
first period-doubling bifurcation point becomes nonstable in
a flip bifurcation, where a 4T-orbit emerges. Here, we do
not want to give too many details about the second period-
doubling bifurcation because the computational process is
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Table 2: Critical value for the second period-doubling bifurcation.

Method Numerical simulation This paper Reference [6]
𝜇

𝑐
0.476 0.481 0.486

2

1.5

1

0.5

−0.5 0 0.5

x

z

(a)

1

0.5

−0.5

0

−0.5 0 0.5

x

y

(b)

2

1.5

1

1

0.5

−0.5 0 0.5

y

z

(c)

Figure 1: Projections on (𝑧, 𝑥), (𝑥, 𝑦), and (𝑦, 𝑧) plane of the first period-doubling bifurcation.

very similar to the first period doubling bifurcation. We
mainly follow the stability analyses of Rand [4] and Belhaq
et al. [6]. The main difference exists in finding the solution of
the 3D system, where we use the undetermined fundamental
frequency method. It produces a better approximation of the
asymptotical solution. First of all, we give the general solution
in a complex form as follows:

𝑢 = (𝜉

1
+ 𝜉

1
) + (1 − 𝛿

2,1
) (𝜉

2
+ 𝜉

2
)

+ (1 − 𝛿

2,1
) (𝜉

3
+ 𝜉

3
) ,

𝑢̇ = 𝑖𝜔

10
(𝜉

1
− 𝜉

1
) + 2𝑖𝜔

10
(1 − 𝛿

2,1
) (𝜉

2
− 𝜉

2
)

+ 3𝑖𝜔

10
(1 − 𝛿

2,1
) (𝜉

3
− 𝜉

3
) .

(19)

Then, we may find the normal form of the reduced
system. As for the secular terms, they can be regarded as

the near resonance according to [9]. We use a near identity
transformation from 𝜉

1
to 𝜂

1
,

𝜉

1
= 𝜂

1
+ ℎ

1
(𝜂

1
, 𝜂

1
, 𝜂

2
, 𝜂

2
, 𝜂

3
, 𝜂

3
)

+ ℎ

2
(𝜂

1
, 𝜂

1
, 𝜂

2
, 𝜂

2
, 𝜂

3
, 𝜂

3
)

+ ℎ

3
(𝜂

1
, 𝜂

1
, 𝜂

2
, 𝜂

2
, 𝜂

3
, 𝜂

3
) ,

(20)

to find the normal form of the system which also includes
the subharmonic components in its expression. That can
be written in different order: first order 𝜂

1
, second order

𝜂

3
𝜂

2
, 𝜂
2
𝜂

1
, and third order: 𝜂2

2
𝜂

3
, 𝜂
3
𝜂

2

1
, 𝜂
1
𝜂

3
𝜂

3
, 𝜂
1
𝜂

2
𝜂

2
, 𝜂2
1
𝜂

1
.

With these secular terms we find the averaged equation of
the system and then amplitude and frequency. Finally, we
investigate the stability to find the critical values of the second
period-doubling bifurcation.The critical values are presented
in Table 2. It exhibits a better approximation than the high
order analysis given by Belhaq et al. [6].

In Figure 1, the projections on (𝑧, 𝑥), (𝑥, 𝑦), and (𝑦, 𝑧)

plane are plotted at the value of 𝜇

𝑐
= 0.439. Meanwhile

the time series of trajectories 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) appear in
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Figure 2: Time series of the first period-doubling trajectories 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡).
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Figure 3: 3D phase portrait refers to the first and second period-doubling bifurcation.

Figure 2. A 3D phase portrait refers to the first and second
period-doubling bifurcations that are portrayed at the values
𝜇

𝑐
equal to 0.439 and 0.476 in Figure 3, respectively. Finally

we programme the whole computation process in terms of
the computer algebra Mathematica to accelerate the analysis
more efficiently.

4. Conclusion
The strategy of predicting the period-doubling bifurcation
of the 3D system is presented by using the undetermined

fundamental frequency method. It applies the undetermined
fundamental frequency to obtain the stable response of the
flows on the center manifold and then forms the criterion
of period-doubling prediction by considering the stability
of the limit cycle. In contrast to the result of numerical
simulation, it reveals a good prediction as shown in Tables
1 and 2, compared with the analytical results of the first
and second period-doubling bifurcations given by Rand and
Belhaq. The whole process is constituted in terms of the
computer algebra Mathematica. It enables people to research
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the flip bifurcation of the 3D system more accurately and
efficiently.

The strategy presented in this work is sufficiently general,
so it would be possible to apply the present method to con-
sider other high-dimensional andmore complicated systems,
which will be the topics for further research.
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