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We investigate the Hölder regularity of the local time of the fractional Ornstein-Uhlenbeck process𝑋𝐻
= {𝑋

𝐻

𝑡
, 𝑡 ≥ 0}. As a related

problem, we study the collision local time of two independent fractional Ornstein-Uhlenbeck 𝑋𝐻𝑖 = {𝑋
𝐻𝑖

𝑡
, 𝑡 ≥ 0}, 𝑖 = 1, 2 with

respective indices𝐻
1
, 𝐻

2
∈ (0, 1).

1. Introduction

The Brownian motion and the Ornstein-Uhlenbeck process
are the two most well-studied and widely applied stochastic
processes.The Einstein-Smoluchowski theorymay be seen as
an idealized Ornstein-Uhlenbeck theory, and predictions of
either cannot be distinguished by the experiment. However,
if the Brownian particle is under the influence of an external
force, the Einstein-Smoluchowski theory breaks down, while
the Ornstein-Uhlenbeck theory remains successful. It is well
known that a diffusion process𝑋 = (𝑋

𝑡
)
𝑡≥0

starting from 𝑥 ∈

R is called Ornstein-Uhlenbeck process with coefficients V >
0 if its infinitesimal generator is

𝐿 =
1

2
V
2 𝑑

2

𝑑𝑥2
− 𝑥

𝑑

𝑑𝑥
. (1)

TheOrnstein-Uhlenbeck process (see, e.g., Revuz andYor
[1]) has a remarkable history in physics. It is introduced to
model the velocity of the particle diffusion process, and later
it has been heavily used in finance, and thus in econophysics.
It can be constructed as the unique strong solution of Itô
stochastic differential equation

𝑑𝑋
𝑡
= −𝑋

𝑡
𝑑𝑡 + V𝑑𝐵

𝑡
, 𝑋

0
= 𝑥, (2)

where 𝐵 is a standard Brownian motion starting at 0.
Recently, as an extension of Brownian motion, fractional

Brownian motion has become an object of intense study, due
to its interesting properties and its applications in various sci-
entific areas including condensed matter physics, biological
physics, telecommunications, turbulence, image processing,
finance, and econophysics (see, e.g., Gouyet [2], Nualart [3],

Biagini et al. [4], Mishura [5], Willinger et al. [6], and ref-
erences therein). Recall that fractional Brownian motion 𝐵𝐻

withHurst index𝐻 ∈ (0, 1) is a central Gaussian process with
𝐵
𝐻

0
= 0 and the covariance function

𝐸 [𝐵
𝐻

𝑡
𝐵
𝐻

𝑠
] =

1

2
[𝑡

2𝐻
+ 𝑠

2𝐻
− |𝑡 − 𝑠|

2𝐻
] (3)

for all 𝑡, 𝑠 ⩾ 0. This process was first introduced by Kol-
mogorov and studied byMandelbrot and van Ness [7], where
a stochastic integral representation in terms of a standard
Brownianmotionwas established. For𝐻 = 1/2,𝐵𝐻 coincides
with the standard Brownian motion 𝐵. 𝐵𝐻 is neither a sem-
imartingale nor a Markov process unless 𝐻 = 1/2, and so
many of the powerful techniques from stochastic analysis are
not available when dealing with 𝐵𝐻. It has self-similar, long-
range dependence, Hölder paths, and it has stationary incre-
ments.These propertiesmake𝐵𝐻 an interesting tool formany
applications.

On the other hand, extensions of the classical Ornstein-
Uhlenbeck process have been suggestedmainly on demand of
applications. The fractional Ornstein-Uhlenbeck process is
an extension of the Ornstein-Uhlenbeck process, where frac-
tional Brownian motion is used as integrator

𝑑𝑋
𝑡
= −𝑋

𝑡
𝑑𝑡 + V𝑑𝐵

𝐻

𝑡
, 𝑋

0
= 𝑥. (4)

Then (4) has a unique solution𝑋𝐻

𝑡
= {𝑋

𝐻

𝑡
, 0 ≤ 𝑡 ≤ 𝑇}, which

can be expressed as

𝑋
𝐻

𝑡
= 𝑒

−𝑡
(𝑥 + V∫

𝑡

0

𝑒
𝑠
𝑑𝐵

𝐻

𝑠
) , (5)
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and the solution is called the fractional Ornstein-Uhlenbeck
process. More work for the process can be found in Cheridito
et al. [8], Lim and Muniandy [9], Metzler and Klafter [10],
and Yan et al. [11, 12]. Clearly, when 𝐻 = 1/2, the frac-
tional Ornstein-Uhlenbeck process is the classical Ornstein-
Uhlenbeck process𝑋 with parameter V starting at 𝑥 ∈ R. An
advantage of using fractional Ornstein-Uhlenbeck process is
to realize stationary long range dependent processes.

The intuitive idea of local time 𝐿(𝑡, 𝑥) for a stochastic pro-
cess𝑋 is that 𝐿(𝑡, 𝑥)measures the amount of time𝑋 spends at
the level 𝑥 during the interval [0, 𝑡]. Moreover, since the work
of Varadhan [13], the local time of stochastic processes has
become an important subject. Therefore, it seems interesting
to study the local time of fractional Ornstein-Uhlenbeck
process, a rather special class of Gaussian processes.

In this paper, we focus our attention on the Hölder reg-
ularity of the local time of fractional Ornstein-Uhlenbeck
process.

The rest of this paper is organized as follows. Section 2
contains a brief review on the local times of Gaussian pro-
cesses and the approach of chaos expansion of the Gaussian
process. In Section 3, we give Hölder regularity of the local
time. In Section 4, as a related problem,we study the so-called
collision local time of two independent fractional Ornstein-
Uhlenbeck𝑋𝐻𝑖 = {𝑋

𝐻𝑖

𝑡
, 𝑡 ≥ 0}, 𝑖 = 1, 2with respective indices

𝐻
1
, 𝐻

2
∈ (0, 1).

2. Preliminaries

2.1. Local Times and Local Nondeterminism. We recall briefly
the definition of local time. For a comprehensive survey on
local times of both random and nonrandom vector fields, we
refer to Alder [14], Geman and Horowitz [15], and Xiao [16–
18]. Let 𝑋(𝑡) be any Borel function on R with values in R.
For any Borel set 𝐵 ⊂ R, the occupation measure of 𝑋 is
defined by

𝜇
𝐵 (𝐴) = 𝜆1 {𝑡 ∈ 𝐵,𝑋 (𝑡) ∈ 𝐴} , (6)

for all Borel set 𝐴 ⊆ R, where 𝜆
1
is the one-dimensional

Lebesguemeasure. If 𝜇
𝐵
is absolutely continuous with respect

to the Lebesgue measure 𝜆
1
onR, we say that𝑋(𝑡) has a local

time on 𝐵 and define its local time 𝐿(𝐵, 𝑥) to be the Radon-
Nikodym derivative of 𝜇

𝐵
. If 𝐵 = [0, 𝑡], we simply write

𝐿(𝐵, 𝑥) as 𝐿(𝑡, 𝑥). If 𝐼 = [0, 𝑇] and 𝐿(𝑡, 𝑥) is continuous as
a function of (𝑡, 𝑥) ∈ 𝐼 × R, then we say that 𝑋 has a jointly
continuous local time on 𝐼. In this latter case, the set function
𝐿(⋅, 𝑥) can be extended to be a finite Borel measure on the
level set (see Adler [14, Theorem 8.6.1])

𝑋
−1

𝐼
(𝑥) = {𝑡 ∈ 𝐼 : 𝑋 (𝑡) = 𝑥} . (7)

This fact has been used by many authors to study fractal
properties of level sets, inverse image, and multiple times
of stochastic processes. For example, Xiao [16] and Hu [19]
have studied the Hausdorff dimension, and exact Hausdorff
and packing measure of the level sets of iterated Brownian
motion, respectively.

For a fixed sample function at fixed 𝑡, the Fourier trans-
form on 𝑥 of 𝐿(𝑡, 𝑥) is the function

𝑓 (𝑡, 𝑢) = ∫
R

𝑒
𝑖𝑢𝑥
𝐿 (𝑡, 𝑥) 𝑑𝑥. (8)

Using the density of occupation formula we have

𝑓 (𝑡, 𝑢) = ∫

𝑡

0

𝑒
𝑖𝑢𝑋(𝑠)

𝑑𝑠. (9)

We can express the local times 𝐿(𝑡, 𝑥) as the inverse Fourier
transform of 𝑓(𝑡, 𝑢), namely,

𝐿 (𝑡, 𝑥) =
1

2𝜋
∫

+∞

−∞

(∫

𝑡

0

𝑒
𝑖𝑢(𝑋(𝑠)−𝑥)

𝑑𝑠) 𝑑𝑢. (10)

It follows from (10) that for any 𝑥, 𝑦 ∈ R, 𝑡, 𝑡 +𝜔 ∈ [0, 𝑇] and
any integer 𝑛 ≥ 2, we have (see, e.g., Boufoussi et al. [20, 21])

𝐸 (𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥))
𝑛

=
1

(2𝜋)
𝑛
∫
[𝑡,𝑡+𝜔]

𝑛

∫
R𝑛
𝑒
−𝑖𝑥∑

𝑛

𝑗=1
𝑢𝑗𝐸(𝑒

𝑖 ∑
𝑛

𝑗=1
𝑢𝑗𝑋(𝑠𝑗))

×

𝑛

∏

𝑗=1

𝑑𝑢
𝑗

𝑛

∏

𝑗=1

𝑑𝑠
𝑗
,

(11)

and for every even integer 𝑛 ≥ 2,

𝐸(𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥) − 𝐿 (𝑡 + ℎ, 𝑦) + 𝐿 (𝑡, 𝑦))
𝑛

=
1

(2𝜋)
𝑛
∫
[𝑡,𝑡+𝜔]

𝑛

∫
R𝑛

𝑛

∏

𝑗=1

[𝑒
−𝑖𝑥𝑢𝑗 − 𝑒

−𝑖𝑦𝑢𝑗]

× 𝐸 (𝑒
𝑖 ∑
𝑛

𝑗=1
𝑢𝑗𝑋(𝑠𝑗))

𝑛

∏

𝑗=1

𝑑𝑢
𝑗

𝑛

∏

𝑗=1

𝑑𝑠
𝑗
.

(12)

The concept of local nondeterminism was first intro-
duced by Berman [22] to unify and extend his methods for
studying local times of real-valued Gaussian processes. Let
𝑋 = {𝑋(𝑡), 𝑡 ∈ R

+
} be a real-valued, separable Gaussian proc-

ess with mean 0 and let 𝑇 ⊂ R
+
be an open interval. Assume

that 𝐸[𝑋(𝑡)2] > 0 for all 𝑡 ∈ 𝑇 and there exists 𝛿 > 0 such that

𝐸 [(𝑋 (𝑠) − 𝑋 (𝑡))
2
] > 0, (13)

for 𝑠, 𝑡 ∈ 𝑇 with 0 < |𝑠 − 𝑡| < 𝛿.
Recall from Berman [22] that 𝑋 is called locally nonde-

terministic on 𝑇 if for every integer 𝑛 ≥ 2,

lim
𝜖→0

inf
𝑡𝑛−𝑡1≤ 𝜖

𝑉
𝑛
> 0, (14)

where 𝑉
𝑛
is the relative prediction error as follows:

𝑉
𝑛
=
Var (𝑋 (𝑡

𝑛
) − 𝑋 (𝑡

𝑛−1
) | 𝑋 (𝑡

1
) , . . . , 𝑋 (𝑡

𝑛−1
))

Var (𝑋 (𝑡
𝑛
) − 𝑋 (𝑡

𝑛−1
))

, (15)

and the infimum in (14) is taken over all ordered points 𝑡
1
<

𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
in 𝑇 with 𝑡

𝑛
− 𝑡

1
≤ 𝜖. Roughly speaking, (14)
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means that a small increment of the process 𝑋 is not almost
relatively predictable based on a finite number of observa-
tions from the immediate past.

It follows from Berman [22, Lemma 2.3] that (14) is
equivalent to the following property which says that 𝑋 has
locally approximately independent increments: for any pos-
itive integer 𝑛 ≥ 2, there exist positive constants 𝐶

𝑛
and 𝛿

(both may depend on 𝑛) such that

Var(
𝑛

∑

𝑗=1

𝑢
𝑗
[𝑋 (𝑡

𝑗
) − 𝑋 (𝑡

𝑗−1
)])

≥ 𝐶
𝑛

𝑛

∑

𝑗=1

𝑢
2

𝑗
Var [𝑋 (𝑡

𝑗
) − 𝑋 (𝑡

𝑗−1
)] ,

(16)

for all ordered points 0 = 𝑡
0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
in 𝑇 with

𝑡
𝑛
− 𝑡

1
< 𝛿 and all 𝑢

𝑗
∈ R (1 ≤ 𝑗 ≤ 𝑛). We refer to Nolan [23,

Theorem 2.6] for a proof of the above equivalence in a much
more general setting.

For simplicity throughout this paper we let 𝐶
𝑛
stand for

a positive constant depending only on the subscripts and
its value may be different in different appearances, and this
assumption is also adaptable to 𝐶, 𝐶

𝐻
.

2.2. Chaos Expansion. LetΩ be the space of continuousR1-
valued functions 𝜔 on [0, 𝑇]. Then Ω is a Banach space with
respect to the supreme norm. Let F be the 𝜎-algebra on Ω.
Let 𝑃 be the probability measure on the measurable space
(Ω,F). Let E denote the expectation on this probability
space. The set of all square integrable functionals is denoted
by 𝐿2

(Ω, 𝑃), that is,

𝐸 (𝐹
2
) = ∫

Ω

|𝐹 (𝜔)|
2
𝑃 (𝑑𝜔) < ∞. (17)

We can introduce the chaos expansion, which is an
orthogonal decomposition of 𝐿2

(Ω, 𝑃). We refer to Hu [24],
Nualart [3], and the references therein for more details. Let
𝑋 := {𝑋

𝑡
, 𝑡 ∈ [0, 𝑇]} be a Gaussian process defined on the

probality space (Ω,F, 𝑃). If 𝑝
𝑛
(𝑥) is a polynomial of degree

𝑛 in𝑥, thenwe call𝑝
𝑛
(𝑋

𝑡
) a polynomial function of𝑋with 𝑡 ∈

[0, 𝑇]. LetP
𝑛
be the completion with respect to the 𝐿2

(Ω, 𝑃)

norm of the set {𝑝
𝑚
(𝑋

𝑡
) : 0 ≤ 𝑚 ≤ 𝑛, 𝑡 ∈ [0, 𝑇]}. Clearly,

P
𝑛
is a subspace of 𝐿2

(Ω, 𝑃). If C
𝑛
denotes the orthogonal

complement of P
𝑛−1

in P
𝑛
, then 𝐿

2
(Ω, 𝑃) is actually the

direct sum ofC
𝑛
, that is,

𝐿
2
(Ω, 𝑃) =

∞

⨁

𝑛=0

C
𝑛
. (18)

Namely, for any functional 𝐹 ∈ 𝐿
2
(Ω, 𝑃), there are 𝐹

𝑛
in C

𝑛
,

𝑛 = 0, 1, 2, . . ., such that

𝐹 =

∞

∑

𝑛=0

𝐹
𝑛
. (19)

Thedecomposition equation (19) is called the chaos expansion
of 𝐹, and 𝐹

𝑛
is called the 𝑛th chaos of 𝐹. Clearly, we have

𝐸 (|𝐹|
2
) =

∞

∑

𝑛=0

𝐸 (
𝐹𝑛



2
) . (20)

Recall that Meyer-Watanabe test function space U (see
Watanabe [25]) is defined as

U := {𝐹 ∈ 𝐿
2
(Ω, 𝑃) : 𝐹 =

∞

∑

𝑛=0

𝐹
𝑛
,

∞

∑

𝑛=0

𝑛𝐸 (
𝐹𝑛



2
) < ∞} ,

(21)

and 𝐹 ∈ 𝐿2
(Ω, 𝑃) is said to be smooth if 𝐹 ∈ U.

Now, for 𝐹 ∈ 𝐿
2
(Ω, 𝑃), we define an operator Γ

𝑢
with 𝑢 ∈

[0, 1] by

Γ
𝑢
𝐹 :=

∞

∑

𝑛=0

𝑢
𝑛
𝐹
𝑛
. (22)

Set Θ(𝑢) := Γ√𝑢
𝐹. Then Θ(1) = 𝐹. Define Φ

Θ
(𝑢) := (𝑑/𝑑𝑢)

(‖Θ(𝑢)‖
2
), where ‖𝐹‖2 := 𝐸(|𝐹|2) for 𝐹 ∈ 𝐿2

(Ω, 𝑃). We have

Φ
Θ (𝑢) =

∞

∑

𝑛=1

𝑛 𝑢
𝑛−1
𝐸 (

𝐹𝑛


2
) . (23)

Note that ‖Θ(𝑢)‖2 = 𝐸(|Θ(𝑢)|2) = ∑∞

𝑛=0
𝐸(𝑢

𝑛
|𝐹

𝑛
|
2
).

Proposition 1. Let 𝐹 ∈ 𝐿
2
(Ω, 𝑃). Then 𝐹 ∈ U if and only if

Φ
Θ
(1) < ∞.

Consider two independent fractional Ornstein-Uhlen-
beck 𝑋𝐻𝑖 = {𝑋

𝐻𝑖

𝑡
, 𝑡 ≥ 0}, 𝑖 = 1, 2, with respective indices

𝐻
𝑖
∈ (0, 1). Let𝐻

𝑛
(𝑥) and 𝑥 ∈ R be the Hermite polynomials

of degree 𝑛. That is,

𝐻
𝑛 (𝑥) = (−1)

𝑛 1

𝑛!
𝑒
𝑥
2
/2 𝜕

𝑛

𝜕𝑥𝑛
𝑒
−𝑥
2
/2
. (24)

Then,

𝑒
𝑡𝑥−𝑡
2
/2
=

∞

∑

𝑛=0

𝑡
𝑛
𝐻

𝑛 (𝑥) , (25)

for all 𝑡 ∈ C and 𝑥 ∈ R, this implies that

exp (𝑖𝑢𝜉 (𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) +

1

2
𝑢
2
𝜉
2 Var (𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
))

=

∞

∑

𝑛=0

(𝑖𝑢)
𝑛
𝜎
𝑛
(𝑡, 𝜉)𝐻𝑛

(

𝜉 (𝑋
𝐻1

𝑡
− 𝑋

𝐻2

𝑡
)

𝜎 (𝑡, 𝜉)
) ,

(26)

where 𝑖 = √−1 and 𝜎(𝑡, 𝜉) = √Var(𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
)𝜉2 for 𝜉 ∈ R.

Because of the orthogonality of {𝐻
𝑛
(𝑥), 𝑥 ∈ R}

𝑛∈Z+
, we will

get from (19) that

(𝑖𝑢)
𝑛
𝜎
𝑛
(𝑡, 𝜉)𝐻𝑛

(

𝜉 (𝑋
𝐻1

𝑡
− 𝑋

𝐻2

𝑡
)

𝜎 (𝑡, 𝜉)
) (27)

is the 𝑛th chaos of exp(𝑖𝑢𝜉(𝑋𝐻1

𝑡
−𝑋

𝐻2

𝑡
)+ (1/2)𝑢

2
𝜉
2 Var(𝑋𝐻1

𝑡
−

𝐵
𝐻2

𝑡
)) for all 𝑡 ≥ 0.
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3. Local Time of Fractional
Ornstein-Uhlenbeck Process

In this section, we offer theHölder regularity of the local time
of fractional Ornstein-Uhlenbeck process.

Theorem 2. Let {𝑋𝐻

𝑡
, 𝑡 ≥ 0} be the fractional Ornstein-Uhl-

enbeck process. Then, for every 𝑡 ∈ R+ and any 𝑥 ∈ R, there
exist positive and finite constants 𝐶

1
and 𝐶

2
such that

lim sup
ℎ→0

sup
𝑥

𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥)

ℎ1−𝐻(log log (ℎ−1))𝐻
≤ 𝐶

1
𝑎.𝑠. (28)

lim sup
ℎ→0

sup
𝑥,𝑡

𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥)

ℎ1−𝐻(log (ℎ−1))𝐻
≤ 𝐶

2
𝑎.𝑠. (29)

Proof. Let 𝑡 ≥ 0 be a fixed point. Following the Fourier ana-
lytic approach of Berman [26], we have

𝐸[𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥)]
𝑛

=
1

(2𝜋)
𝑛

× ∫

[𝑡,𝑡+ℎ]
𝑛

∫
R𝑛
𝐸(exp(𝑖

𝑛

∑

𝑗=1

𝑢
𝑗
(𝑋

𝐻

𝑠𝑗
− 𝑋

𝐻

𝑡
)))

×

𝑛

∏

𝑗=1

𝑑𝑢
𝑗

𝑛

∏

𝑗=1

𝑑𝑠
𝑗
.

(30)

LetΔ𝑋𝐻

𝑠
= 𝑋

𝐻

𝑠
−𝑋

𝐻

𝑡
, 𝑠 ≥ 0, and denote by𝑅(𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
) the

covariance matrix of (Δ𝑋𝐻

𝑠1
, . . . , Δ𝑋

𝐻

𝑠𝑛
) for different 𝑠

1
, . . . , 𝑠

𝑛
,

then we have

det 𝑅 (𝑠
1
, 𝑠

2
, . . . , 𝑠

𝑛
)

= Var (Δ𝑋𝐻

𝑠1
)Var (Δ𝑋𝐻

𝑠2
| Δ𝑋

𝐻

𝑠1
) ⋅ ⋅ ⋅

Var (Δ𝑋𝐻

𝑠𝑛
| Δ𝑋

𝐻

𝑠1
, . . . , Δ𝑋

𝐻

𝑠𝑛−1
) .

(31)

By Yan et al. [11], one can write the fractional Ornstein-Uhl-
enbeck process starting from zero as

𝑋
𝐻

𝑡
= V∫

𝑡

0

𝐹 (𝑡, 𝑢) 𝑑𝐵
𝑢
, 0 ≤ 𝑡 ≤ 𝑇, (32)

where 𝐵 is a standard Brownian motion with 𝐵
0
= 0, and for

0 < 𝑢 < 𝑡

𝐹 (𝑡, 𝑢) = (𝐻 −
1

2
) 𝜅

𝐻
𝑒
−𝑡
𝑢
1/2−𝐻

× ∫

𝑡

𝑢

𝑠
𝐻−1/2

(𝑠 − 𝑢)
𝐻−3/2

𝑒
𝑠
𝑑𝑠,

(33)

with 1/2 < 𝐻 < 1, 𝜅
𝐻
= (2𝐻Γ((3/2) − 𝐻)/Γ(𝐻 + (1/2))Γ(2−

2𝐻))
1/2, and

𝐹 (𝑡, 𝑢) = 𝜅𝐻𝑢
1/2−𝐻

× (−𝑒
−𝑡
∫

𝑡

𝑢

(𝑠 − 𝑢)
𝐻−1/2

𝑠
𝐻−1/2

𝑒
𝑠
𝑑𝑠

+ 𝑡
𝐻−1/2

(𝑡 − 𝑢)
𝐻−1/2

+
2

1 − 2𝐻
𝑒
−𝑡

×∫

𝑡

𝑢

(𝑠 − 𝑢)
𝐻−1/2

𝑠
𝐻−3/2

𝑒
𝑠
𝑑𝑠) ,

(34)

with 0 < 𝐻 < 1/2.
For any 𝑟, 𝑠 ∈ [𝑡, 𝑡 + ℎ] such that 𝑟 < 𝑠, we have

Var (Δ𝑋𝐻

𝑠
| Δ𝑋

𝐻

𝑢
, 𝑢 ≤ 𝑟) ≥ Var (Δ𝑋𝐻

𝑠
− Δ𝑋

𝐻

𝑟
| 𝐵

𝑢
, 𝑢 ≤ 𝑟)

= Var (𝑋𝐻

𝑠
− 𝑋

𝐻

𝑟
| 𝐵

𝑢
, 𝑢 ≤ 𝑟)

= Var (𝑋𝐻

𝑠
| 𝐵

𝑢
, 𝑢 ≤ 𝑟) ,

(35)

where the last equality follows from the fact that𝑋𝐻

𝑟
is meas-

urable with respect to 𝜎(𝐵
𝑢
, 𝑢 ≤ 𝑟). Moreover, we can write

𝑋
𝐻

𝑠
= V∫

𝑠

0

𝐹 (𝑠, 𝑢) 𝑑𝐵𝑢
= V∫

𝑟

0

𝐹 (𝑠, 𝑢) 𝑑𝐵𝑢
+ V∫

𝑠

𝑟

𝐹 (𝑠, 𝑢) 𝑑𝐵𝑢
.

(36)

Hence, by using the measurability of ∫𝑟

0
𝐹(𝑠, 𝑢)𝑑𝐵

𝑢
with

respect to 𝜎(𝐵
𝑢
, 𝑢 ≤ 𝑠), we have

Var (𝑋𝐻

𝑠
| 𝐵

𝑢
, 𝑢 ≤ 𝑟) = Var(V∫

𝑠

𝑟

𝐹 (𝑠, 𝑢) 𝑑𝐵𝑢
| 𝐵

𝑢
, 𝑢 ≤ 𝑟)

= Var(V∫
𝑠

𝑟

𝐹 (𝑠, 𝑢) 𝑑𝐵𝑢
)

≥ 𝐶
𝐻(𝑠 − 𝑟)

2𝐻
,

(37)

where, to obtain the second equality, we have used the fact
that ∫𝑠

𝑟
𝐹(𝑠, 𝑢)𝑑𝐵

𝑢
is independent of 𝜎(𝐵

𝑢
, 𝑢 ≤ 𝑠) (by the

independence of the increments of the Brownian motion).
Combining (31), inequation (35), and inequation (37), we
have

det 𝑅 (𝑠
1
, 𝑠

2
, . . . , 𝑠

𝑛
) ≥ 𝐶

𝐻

𝑛

∏

𝑗=1

(𝑠
𝑗
− 𝑠

𝑗−1
)
2𝐻

> 0, (38)
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where 𝑠
0
= 0. Hence, the change of variable 𝑉 = 𝑅

1/2
𝑈, 𝑈 =

(𝑢
1
, . . . , 𝑢

𝑛
) implies that

∫
R𝑛
𝐸(exp(𝑖

𝑛

∑

𝑗=1

𝑢
𝑗
(𝑋

𝐻

𝑠𝑗
− 𝑋

𝐻

𝑡
)))

𝑛

∏

𝑗=1

𝑑𝑢
𝑗

= ∫
R𝑛
𝐸(exp(𝑖

𝑛

∑

𝑗=1

𝑢
𝑗
Δ𝑋

𝐻

𝑠𝑗
))

𝑛

∏

𝑗=1

𝑑𝑢
𝑗

=
(2𝜋)

𝑛/2

(det𝑅 (𝑠
1
, 𝑠

2
, . . . , 𝑠

𝑛
))

1/2
.

(39)

Hence,

𝐸[𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥)]
𝑛

=
𝑛!

(2𝜋)
𝑛/2

× ∫
𝑡<𝑠1<⋅⋅⋅<𝑠𝑛<𝑡+ℎ

1

(det𝑅 (𝑠
1
, 𝑠

2
, . . . , 𝑠

𝑛
))

1/2
𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠

𝑛

≤ 𝐶
𝐻

𝑛!

(2𝜋)
𝑛/2

∫
𝑡<𝑠1<⋅⋅⋅<𝑠𝑛<𝑡+ℎ

𝑛

∏

𝑗=1

1

(𝑠
𝑗
− 𝑠

𝑗−1
)
𝐻
𝑑𝑠

1
⋅ ⋅ ⋅ 𝑑𝑠

𝑛

≤ 𝐶
𝐻

𝑛!

(2𝜋)
𝑛/2
ℎ
𝑛(1−𝐻) (Γ (1 − 𝐻))

𝑛

Γ (1 + 𝑛 (1 − 𝐻))
.

(40)

Following from Stirling’s formula, we have 𝑛!/Γ(1 + 𝑛(1 −

𝐻)) ≤ 𝐴
𝑛
𝑛!

𝐻, 𝑛 ≥ 2, for a suitable finite number 𝐴. So

𝐸(
𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥)

ℎ1−𝐻
)

𝑛

≤ 𝐶
𝑛
𝑛!

𝐻
. (41)

Following, we first prove that for any𝐾 > 0, there exists a pos-
itive and finite constant 𝐵 > 0, depending on 𝑡, such that for
sufficiently small 𝑢

𝑃(𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥) ≥
𝐵ℎ

1−𝐻

𝑢𝐻
) ≤ 𝑒

−(𝐾/𝑢)
. (42)

First consider 𝑢 of the form 𝑢 = 1/𝑛. By Chebyshev’s inequal-
ity and inequation (41), we have

𝑃 (𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥) ≥ 𝐵ℎ
1−𝐻

𝑛
𝐻
)

≤ 𝐸(
𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥)

𝐵ℎ1−𝐻𝑛𝐻
)

𝑛

≤
𝐶

𝑛

𝐵𝑛
(
1

𝑛
)

𝑛𝐻

𝑛!
𝐻
(by Stirling’s formula)

≤
𝐶

𝑛

𝐵𝑛
(2𝜋𝑛)

𝐻/2
𝑒
−𝐻𝑛

= exp (𝑛 (log(𝐶
𝐵
) − 𝐻) +

𝐻

2
(log 𝑛 + log 2𝜋)) .

(43)

Choose 𝐵 > 𝐶 and 𝑛
0
large such that for any 𝑛 ≥ 𝑛

0
, to

dominate (43) by 𝑒−2𝐾𝑛. Moreover, for 𝑢 sufficiently small,
there exists 𝑛 ≥ 𝑛

0
such that 𝑢

𝑛+1
< 𝑢 < 𝑢

𝑛
and since 𝑛 ≥ 1,

𝑛/(𝑚 + 1) ≥ 1/2. This proves inequation (42).
On the other hand, if we take 𝑢(ℎ) = 1/ log log(1/ℎ) and

consider ℎ
𝑛
of the form 2

−𝑛, then inequation (42) implies

𝑃(𝐿 (𝑡 + ℎ
𝑛
, 𝑥) − 𝐿 (𝑡, 𝑥) ≥ 𝐵ℎ

1−𝐻

𝑛
(log log( 1

ℎ
𝑛

))

𝐻

)

≤ 𝑛
−2
,

(44)

for large 𝑛. So, following that Borel-Cantelli lemma andmon-
otonicity arguments, we have

𝐿 (𝑡 + ℎ, 𝑥) − 𝐿 (𝑡, 𝑥)

ℎ1−𝐻
≤ 𝐵(log log( 1

ℎ
𝑛

))

𝐻

a.s. (45)

This completes the proof of inequation (28). we can obtain
inequation (29) in the similar manner.

4. Existence and Smoothness of
Collision Local Time

In this section we will study the so-called collision local time
of two independent fractional Ornstein-Uhlenbeck 𝑋

𝐻𝑖 =

{𝑋
𝐻𝑖

𝑡
, 𝑡 ≥ 0}, 𝑖 = 1, 2. It is defined formally by the following

expression:

ℓ
𝑇
= ∫

𝑇

0

𝛿
0
(𝑋

𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) 𝑑𝑡, (46)

where 𝛿
0
is the Dirac delta function. It is a measure of the

amount of time for which the trajectories of the two pro-
cesses, 𝑋𝐻1

𝑡
and 𝑋𝐻2

𝑡
, collide on the time interval [0, 𝑇]. The

collision local time for fractional Brownian motion has been
studied by Jiang and Wang [27]. We shall show that the ran-
dom variable ℓ

𝑇
exists in 𝐿2. We approximate the Dirac delta

function by the heat kernel

𝑝
𝜀 (𝑥) =

1

√2𝜋𝜀

𝑒
−𝑥
2
/2𝜀

≡
1

2𝜋
∫
R

𝑒
𝑖𝑥𝜉
𝑒
−𝜀(𝜉
2
/2)
𝑑𝜉. (47)

For 𝜀 > 0 we define

ℓ
𝜀,𝑇

= ∫

𝑇

0

𝑝
𝜖
(𝑋

𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) 𝑑𝑡

=
1

2𝜋
∫

𝑇

0

∫
R

𝑒
𝑖𝜉(𝑋
𝐻1

𝑡
−𝑋
𝐻2

𝑡
)
⋅ 𝑒

−𝜀(𝜉
2
/2)
𝑑𝜉 𝑑𝑡,

(48)

and a natural question to study is that of the behavior of ℓ
𝜀,𝑇

as 𝜀 tends to zero.

Theorem 3. For 𝐻
𝑖
∈ (0, 1), 𝑖 = 1, 2. Then ℓ

𝜀,𝑇
converges in

𝐿
2
(Ω,F, 𝑃), as 𝜀 ↓ 0. Moreover, the limit is denoted by ℓ

𝑇
,

then ℓ
𝑇
∈ 𝐿

2
(Ω,F, 𝑃).
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Proof. First we claim that ℓ
𝜀,𝑇

∈ 𝐿
2
(Ω,F, 𝑃) for every 𝜀 > 0.

By (48) we have

𝐸 (ℓ
2

𝜀,𝑇
)

=
1

4𝜋2
∬

𝑇

0

∫
R2
𝐸𝑒

𝑖𝜉(𝑋
𝐻1

𝑡
−𝑋
𝐻2

𝑡
)+𝑖𝜂(𝑋

𝐻1
𝑠 −𝑋

𝐻2
𝑠 )

× 𝑒
−((𝜀(𝜉

2
+𝜂
2
))/2)

𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡

=
1

4𝜋2
∬

𝑇

0

∫
R2
𝑒
−(1/2)𝜎

2

𝑒
−((𝜀(𝜉

2
+𝜂
2
))/2)

𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡,

(49)

where 𝜎2 denotes the variance of random variable 𝜉(𝑋𝐻1

𝑡
−

𝑋
𝐻2

𝑡
) + 𝜂(𝑋

𝐻1

𝑠
− 𝑋

𝐻2

𝑠
), that is,

𝜎
2
:= Var (𝜉 (𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) + 𝜂 (𝑋

𝐻1

𝑠
− 𝑋

𝐻2

𝑠
)) . (50)

According to the property of local nondeterminism (seeThe-
orem 3.1 in [11]), we have

𝜎
2
= Var (𝜉 (𝑋𝐻1

𝑡
− 𝑋

𝐻1

𝑠
) − 𝜉 (𝑋

𝐻2

𝑡
− 𝑋

𝐻2

𝑠
)

+ (𝜉 + 𝜂) (𝑋
𝐻1

𝑠
− 𝑋

𝐻2

𝑠
))

≥ 𝐶 [𝜉
2
((𝑡 − 𝑠)

2𝐻1 + (𝑡 − 𝑠)
2𝐻2)

+ (𝜉 + 𝜂)
2
(𝑠

2𝐻1 + 𝑠
2𝐻2)] .

(51)

Thus, we have

1

4𝜋2
∬

𝑇

0

∫
R2
𝑒
−(1/2)𝜎

2

𝑒
−(𝜀(𝜉
2
+𝜂
2
))/2

𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑡

0

∫
R2
𝑒
−(𝐶/2)[𝜉

2
((𝑡−𝑠)

2𝐻1+(𝑡−𝑠)
2𝐻2 )+(𝜉+𝜂)

2
(𝑠
2𝐻1+𝑠

2𝐻2 )]
𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡

= 𝐶∫

𝑇

0

∫

𝑡

0

[((𝑡 − 𝑠)
2𝐻1 + (𝑡 − 𝑠)

2𝐻2)

× (𝑠
2𝐻1 + 𝑠

2𝐻2)]
−1/2

𝑑𝑠 𝑑𝑡

≤ 𝐶∫

𝑇

0

∫

𝑡

0

(𝑡 − 𝑠)
−(1/2)(𝐻1+H2)𝑠

−(1/2)(𝐻1+H2)𝑑𝑠 𝑑𝑡 < ∞,

(52)

because of𝐻
𝑖
∈ (0, 1), which yields

𝐸 (ℓ
2

𝜀,𝑇
) < ∞, (53)

for all 𝜀 ∈ (0, 1].

Second, we claim that the sequence {ℓ
𝜀,𝑇
, 𝜀 > 0} is of

Cauchy in 𝐿2
(Ω,F, 𝑃). For any 𝜃, 𝜀 > 0 we have

𝐸 (
ℓ𝜀,𝑇 − ℓ𝜃,𝑇



2
)

=
1

4𝜋2
∬

𝑇

0

∫
R2
𝐸𝑒

𝑖𝜉(𝑋
𝐻1

𝑡
−𝑋
𝐻2

𝑡
)+𝑖𝜂(𝑋

𝐻1
𝑠 −𝑋

𝐻2
𝑠 )

⋅ (𝑒
−(𝜀/2)𝜉

2

− 𝑒
−(𝜃/2)𝜉

2

)

× (𝑒
−(𝜀/2)𝜂

2

− 𝑒
−(𝜃/2)𝜂

2

) 𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡

≤
1

4𝜋2
sup
𝜉∈R

(1 − 𝑒
−((|𝜀−𝜃|

2
|𝜉|
2
)/2)

)

2

×∬

𝑇

0

∫
R2
𝑒
−(1/2)𝜎

2

𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡.

(54)

Thus, dominated convergence theorem yields

𝐸 (
ℓ𝜀,𝑇 − ℓ𝜃,𝑇



2
) → 0, (55)

as 𝜀 → 0 and 𝜃 → 0, which leads to ℓ
𝜀,𝑇

is a Cauchy
sequence in 𝐿2

(Ω,F, 𝑃). Consequently, lim
𝜀→0

ℓ
𝜀,𝑇

exists in
𝐿
2
(Ω,F, 𝑃). This completes the proof.

For the increments of collision local time we have the fol-
lowing.

Theorem 4. Let 𝐻
1
, 𝐻

2
∈ (0, 1) and 𝛽 = min{𝐻

1
, 𝐻

2
}. Then

the collision local time ℓ
𝑇
satisfies the following estimate:

𝐸 (
ℓ𝑡 − ℓ𝑠



2
) ≤ 𝐶

𝐻1 ,𝐻2
(𝑡 − 𝑠)

2−2𝛽
, (56)

for all 𝑠, 𝑡, 𝑠 < 𝑡.

Proof. For any 0 ≤ 𝑟, 𝑙 ≤ 𝑇 we denote

𝜎
2

𝑟,𝑙
:= Var (𝜉 (𝑋𝐻1

𝑟
− 𝑋

𝐻2

𝑟
) + 𝜂 (𝑋

𝐻1

𝑙
− 𝑋

𝐻2

𝑙
)) . (57)

Then the property of local nondeterminism (seeTheorem 3.1
in [11]) yields

𝜎
2

𝑟,𝑙
≥ 𝐶 [𝜉

2
((𝑟 − 𝑙)

2𝐻1 + (𝑟 − 𝑙)
2𝐻2)

+(𝜉 + 𝜂)
2
(𝑙

2𝐻1 + 𝑙
2𝐻2)]

(58)

for a constant 𝐶 > 0. It follows from (48) that for 0 ≤ 𝑠 ≤ 𝑡 ≤
𝑇

𝐸 (
ℓ𝜀,𝑡 − ℓ𝜀,𝑠



2
)

=
2

(2𝜋)
2
∫

𝑡

𝑠

∫

𝑟

𝑠

𝑑𝑟𝑑𝑙 ∫
R2
𝑒
−(1/2)𝜎

2

𝑟,𝑙𝑒
−(𝜀/2)(𝜉

2
+𝜂
2
)
𝑑𝜉 𝑑𝜂

≤ 𝐶∫

𝑡

𝑠

𝑑𝑟∫

𝑟

𝑠

(𝑟 − 𝑙)
−𝛽
𝑙
−𝛽
𝑑𝑙

≤ 𝐶(𝑡 − 𝑠)
2−2𝛽

.

(59)
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Thus, Theorem 3 and Fatou’s lemma yield

𝐸 (
ℓ𝑡 − ℓ𝑠



2
)

= 𝐸( lim
𝜀→0

ℓ𝜀,𝑡 − ℓ𝜀,𝑠


2
)

≤ lim inf
𝜀→0

𝐸 (
ℓ𝜀,𝑡 − ℓ𝜀,𝑠



2
) ≤ 𝐶(𝑡 − 𝑠)

2−2𝛽
.

(60)

This completes the proof.

Let 𝜆
𝑡
= Var(𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) for 𝑡 ≥ 0 and

𝜌
𝑠,𝑡
= 𝐸 [(𝑋

𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) (𝑋

𝐻1

𝑠
− 𝑋

𝐻2

𝑠
)] , (61)

for 𝑠, 𝑡 ≥ 0.

Lemma 5 (An and Yan [28]). For any 𝑥 ∈ [−1, 1) we have

∞

∑

𝑛=1

(2𝑛 − 1)!!

(2𝑛 − 2)!!
𝑥
𝑛
= 𝑥(1 − 𝑥)

−3/2
, (62)

where (2𝑛 − 2)!! = 1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2𝑛 − 1) and (2𝑛 − 1)!! = 2 ⋅ 4 ⋅

6 ⋅ ⋅ ⋅ (2𝑛 − 2).

By Cauchy-Schwartz’s inequality, we have 𝜌2
𝑠,𝑡

≤ 𝜆s𝜆𝑡
.

Hence,

𝜌
2

𝑠,𝑡

(𝜆
𝑠
𝜆
𝑡
− 𝜌

2

𝑠,𝑡
)
3/2

=
𝜌
2

𝑠,𝑡

𝜆
𝑠
𝜆
𝑡

(1 −
𝜌
2

𝑠,𝑡

𝜆
𝑠
𝜆
𝑡

)

−3/2

(
1

𝜆
𝑠
𝜆
𝑡

)

1/2

=

∞

∑

𝑛=1

(2𝑛 − 1)!!

(2𝑛 − 2)!!
(
𝜌
2

𝑠,𝑡

𝜆
𝑠
𝜆
𝑡

)

𝑛

(
1

𝜆
𝑠
𝜆
𝑡

)

1/2

,

(63)

for all 𝑡, 𝑠 ≥ 0 and 𝑠 ̸= 𝑡.
Below, we consider the smoothness of the collision local

time. Our main object is to explain and prove the following
theorem.

Theorem 6. Let ℓ
𝑇
, 𝑇 ≥ 0 be the collision local time process

of two independent fractional Ornstein-Uhlenbeck 𝑋
𝐻𝑖 =

{𝑋
𝐻𝑖

𝑡
, 𝑡 ≥ 0}, 𝑖 = 1, 2, with respective indices𝐻

𝑖
∈ (0, 1). Then

ℓ
𝑇
is smooth in the sense of the Meyer-Watanabe if and only if

min {𝐻
1
, 𝐻

2
} <

1

3
. (64)

Proof. By Yan et al. [11], we have

𝜆
𝑡
𝜆
𝑠
− 𝜌

2

𝑠,𝑡

≍ (𝑠
2𝐻1 + 𝑠

2𝐻2) (𝑡
2𝐻1 + 𝑡

2𝐻2)

−
1

2
(𝑡

2𝐻1 + 𝑠
2𝐻1 − |𝑡 − 𝑠|

2𝐻1

+ 𝑡
2𝐻2 + 𝑠

2𝐻2 − |𝑡 − 𝑠|
2𝐻2)

≍ (𝑠
2𝐻1 + 𝑠

2𝐻2) [(𝑡 − 𝑠)
2𝐻1 + (𝑡 − 𝑠)

2𝐻2] ,

(65)

where the notation 𝐹 ≍ 𝐺 means that there are positive
constants 𝑐

1
and 𝑐

2
so that

𝑐
1
𝐺 (𝑥) ≤ 𝐹 (𝑥) ≤ 𝑐2𝐺 (𝑥) , (66)

in the common domain of definition for 𝐹 and 𝐺.
Hence, following Theorem 2 in An and Yan [28], we have
∬

𝑇

0
(𝜌

2

𝑠,𝑡
/(𝜆

𝑠
𝜆
𝑡
− 𝜌

2

𝑠,𝑡
)
3/2
) 𝑑𝑠 𝑑𝑡 < ∞ if and only if

min{𝐻
1
, 𝐻

2
} < 1/3. Therefore, in order to prove Theorem 6,

it only needs to prove: for 𝑇 ≥ 0, ℓ
𝑇
is smooth in the sense of

the Meyer-Watanabe if and only if

∬

𝑇

0

𝜌
2

𝑠,𝑡
(𝜆

𝑡
𝜆
𝑠
− 𝜌

2

𝑠,𝑡
)
−3/2

𝑑𝑠 𝑑𝑡 < ∞. (67)

In fact, for 𝜀 > 0, 𝑇 ≥ 0 we denote

Θ
𝜀
(𝑢, 𝑇, ℓ

𝜀,𝑇
) := 𝐸 (


Γ√𝑢

ℓ
𝜀,𝑇



2

) , (68)

and Θ(𝑢, 𝑇, ℓ
𝑇
) := 𝐸(|Γ√𝑢

ℓ
𝑇
|
2
). Thus, by Proposition 1 to

prove that (67) holds if and only if Φ
Θ
(1) < ∞. Clearly, we

have

ℓ
𝜀,𝑇

= ∫

𝑇

0

𝑝
𝜀
(𝑋

𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) 𝑑𝑡

=
1

2𝜋
∫

𝑇

0

∫
R

𝑒
𝑖𝜉(𝑋
𝐻1

𝑡
−𝑋
𝐻2

𝑡
)
⋅ 𝑒

−(1/2)𝜀𝜉
2

𝑑𝜉 𝑑𝑡

=
1

2𝜋
∫

𝑇

0

∫
R

𝑒
−(1/2)𝜉

2 Var(𝑋𝐻1
𝑡

−𝑋
𝐻2

𝑡
)

× 𝑒
−(1/2)𝜀𝜉

2
∞

∑

𝑛=0

𝑖
𝑛
𝜎
𝑛
(𝑡, 𝜉)𝐻𝑛

× (

𝜉 (𝑋
𝐻1

𝑡
− 𝑋

𝐻2

𝑡
)

𝜎 (𝑡, 𝜉)
)𝑑𝜉 𝑑𝑡

≡

∞

∑

𝑛=0

𝐹
𝑛
.

(69)

Notice that

Φ
Θ𝜀
(1)

=

∞

∑

𝑛=0

𝑛𝐸 (
𝐹𝑛



2
)

=

∞

∑

𝑛=0

𝑛

4𝜋2

× 𝐸[∬

𝑇

0

∫
R2

exp(−1
2
𝜀 (
𝜉


2
+
𝜂


2
))

× 𝜎
𝑛
(𝑡, 𝜉) 𝜎

𝑛
(𝑠, 𝜂)

⋅ exp(−1
2
(𝜉

2 Var (𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
)

+ 𝜂
2 Var (𝑋𝐻1

𝑠
− 𝑋

𝐻2

𝑠
)) )
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⋅ 𝐻
𝑛
(

𝜉 (𝑋
𝐻1

𝑡
− 𝑋

𝐻2

𝑡
)

𝜎 (𝑡, 𝜉)
)

× 𝐻
𝑛
(

𝜂 (𝑋
𝐻1

𝑠
− 𝑋

𝐻2

𝑠
)

𝜎 (𝑠, 𝜂)
) 𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡]

=

∞

∑

𝑛=1

1

4𝜋2
(2𝑛 − 1)!

× [∬

𝑇

0

∫
R2
(𝜉𝜂)

2𝑛

× [𝐸 ((𝑋
𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) (𝑋

𝐻1

𝑠
− 𝑋

𝐻2

𝑠
))]

2𝑛

⋅ exp( − ( (𝜉2 Var ((𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) + 𝜀)

+ 𝜂
2 Var ((𝑋𝐻1

𝑠
− 𝑋

𝐻2

𝑠
)

+ 𝜀) ) ×
1

2
)) 𝑑𝜉 𝑑𝜂 𝑑𝑠 𝑑𝑡] ,

(70)

for all 𝑇 ≥ 0, where we have used the following fact: For two
random variables 𝑋, 𝑌 with joint Gaussian distribution such
that 𝐸(𝑋) = 𝐸(𝑌) = 0 and 𝐸(𝑋2

) = 𝐸(𝑌
2
) = 1 we have (see,

for example, Nualart [3])

𝐸 (𝐻
𝑛 (𝑋)𝐻𝑚 (𝑌)) =

{

{

{

0, 𝑚 ̸= 𝑛,

1

𝑛!
[𝐸 (𝑋𝑌)]

𝑛
, 𝑚 = 𝑛.

(71)

We obtain

Φ
Θ𝜀
(1) =

∞

∑

𝑛=1

(Γ (𝑛 + 1/2))
2
2
2𝑛+1

4𝜋2
(2𝑛 − 1)!

×∬

𝑇

0

𝜌
2𝑛

𝑠,𝑡

((𝜆
𝑠
+ 𝜀) (𝜆

𝑡
+ 𝜀))

𝑛+(1/2)
𝑑𝑠 𝑑𝑡

=

∞

∑

𝑛=1

1

2𝜋

(2𝑛 − 1)!!

(2𝑛 − 2)!!

×∬

𝑇

0

𝜌
2𝑛

𝑠,𝑡

((𝜆
𝑠
+ 𝜀) (𝜆

𝑡
+ 𝜀))

𝑛+(1/2)
𝑑𝑠 𝑑𝑡

=
1

2𝜋
∬

𝑇

0

𝜌
2

𝑠,𝑡

((𝜆
𝑠
+ 𝜀) (𝜆

𝑡
+ 𝜀) − 𝜌

2

𝑠,𝑡
)
3/2
𝑑𝑠 𝑑𝑡,

(72)

where we have used the following equality:

∫
R

𝜉
2𝑛 exp(−

𝜉
2
(Var (𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) + 𝜀)

2
)𝑑𝜉

= 2
𝑛+(1/2)

Γ (𝑛 +
1

2
) (Var (𝑋𝐻1

𝑡
− 𝑋

𝐻2

𝑡
) + 𝜀)

−(𝑛+(1/2))

.

(73)

Hence, we have

lim
𝜀→0

Φ
Θ𝜀
(1) =

1

2𝜋
∫∫

𝑇

0

𝜌
2

𝑠,𝑡

(𝜆
𝑠
𝜆
𝑡
− 𝜌

2

𝑠,𝑡
)
3/2
𝑑𝑠 𝑑𝑡, (74)

for all 𝑇 ≥ 0. This completes the proof.
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