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We analyze a three species predator-prey chain model with stochastic perturbation. First, we show that this system has a unique
positive solution and its 𝑝th moment is bounded. Then, we deduce conditions that the system is persistent in time average. After
that, conditions for the system going to be extinction in probability are established. At last, numerical simulations are carried out
to support our results.

1. Introduction

Recently, the dynamical relationship between predator-prey
has been one of the dominant themes in both ecology
and mathematical ecology due to its universal importance.
Especially, the predator-prey chain model is the typical
representative. Thereby it significantly changed the biology,
the understanding of the existence, and development of the
basic law and hasmade themodel become a research hot spot.
One of the most famous models for population dynamics is
the Lotka-Volterra predator-prey system which has received
plenty of attention and has been studied extensively; see [1–
4]. Specially persistence and extinction of this model are
interesting topics.

The three species predator-prey chain model is described
as follows:
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where 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, 3) denotes the population densities of

the species at time 𝑡. The parameters 𝑎
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are positive constants that stand for intrinsic growth rate,
predator death rate of the second species, predator death

rate of the third species, coefficient of internal competition,
respectively. 𝑏
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23
represent the decrement rate of

predator to prey.
System (1) describes a three species predator-prey chain

model in which the latter preys on the former. From a
biological viewpoint, we not only require the positive solution
of the system but also require its unexploded property in any
finite time and stability.

We know that the global asymptotic stability of a positive
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which could refer to [5]. However, population dynamics
in the real world is inevitably affected by environmental
noise (see, e.g., [6, 7]). Parameters involved in the system
are not absolute constants, they always fluctuate around
some average values. The deterministic models assume that
parameters in the systems are deterministic irrespective of
environmental fluctuationswhich impose some limitations in
mathematical modeling of ecological systems. So we cannot
omit the influence of the noise on the system. Recently many
authors have discussed population systems subject to white
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noise (see, e.g., [8–15]). May (see, e.g., [16]) pointed out that
due to continuous fluctuation in the environment, the birth
rates, death rates, saturated rate, competition coefficients, and
all other parameters involved in the model exhibit random
fluctuation to some extent, and as a result the equilibrium
population distribution never attains a steady value but
fluctuates randomly around some average value. Sometimes,
large amplitude fluctuation in population will lead to the
extinction of certain species, which does not happen in
deterministic models.

Therefore, Lotka-Volterra predator-prey chain models in
random environments are becomingmore andmore popular.
Ji et al. [14, 15] investigated the asymptotic behavior of the
stochastic predator-prey system with perturbation. Liu and
Chen introduced periodic constant impulsive immigration
of predator into predator-prey system and gave conditions
for the system to be extinct and permanence. Polansky [17]
and Barra et al. [18] have given some special systems of
their invariant distribution. After that, Gard [5] analysed that
under some conditions the stochastic food chainmodel exists
an invariant distribution. However, seldom people study the
persistent and nonpersistent of the food chain model with
stochastic perturbation.

In this paper, we introduce the white noise into the
intrinsic growth rate of system (1), and suppose 𝑎

𝑖
→ 𝑎
𝑖
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system:
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where 𝐵
𝑖
(𝑡)(𝑖 = 1, 2, 3) are independent white noises with
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the noise.
The aim of this paper is to discuss the long time behavior

of system (3). We have mentioned that 𝑥∗ = (𝑥
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the positive equilibrium of system (1). But, when it suffers
stochastic perturbations, there is no positive equilibrium.
Hence, it is impossible that the solution of system (3) will
tend to a fixed point. In this paper, we show that system
(3) is persistent in time average. Furthermore, under certain
conditions, we prove that the population of system (3) will
die out in probability which will not happen in deterministic
system and could reveal that large white noise may lead to
extinction.

The rest of this paper is organized as follows. In Section 2,
we show that there is a unique nonnegative solution of
system (3), and its 𝑝th moment is bounded. In Section 3, we
show that system (3) is persistent in time average. While in
Section 4, we consider three situations when the population
of the system will be extinction. In Section 5, numerical
simulations are carried out to support our results.
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2. Existence and Uniqueness of the
Nonnegative Solution

To investigate the dynamical behavior, the first concern thing
is whether the solution is global existence. Moreover, for a
population model, whether the solution is nonnegative is
also considered. Hence, in this section, we show that the
solution of system (3) is global and nonnegative. As we have
known, in order for a stochastic differential equation to have
a unique global (i.e., no explosion at a finite time) solution
with any given initial value, the coefficients of the equation are
generally required to satisfy the linear growth condition and
local Lipschitz condition (see, e.g., [19]). It is easy to see that
the coefficients of system (3) are locally Lipschitz continuous,
so system (3) has a local solution. By Lyapunov analysis
method, we show the global existence of this solution.
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the nonnegativity of this function can be seen from 𝑢 − 1 −
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≤ [𝑝(𝑎
1
+
𝑝

2
max {𝜎2

1
, 𝜎
2

2
, 𝜎
2

3
}) 𝑦
𝑝

−
𝑝min {𝑏

11
, 𝑏
22
, 𝑏
33
}

𝑏
32
𝑏
21
+ 𝑏
32
𝑏
12
+ 𝑏
23
𝑏
12

𝑦
𝑝+1
]𝑑𝑡

+ 𝑝𝑦
𝑝−1

(𝜎
1
𝑏
21
𝑏
32
𝑥
1
𝑑𝐵
1
(𝑡) + 𝜎

2
𝑏
12
𝑏
32
𝑥
2
𝑑𝐵
2
(𝑡)

+ 𝜎
3
𝑏
12
𝑏
23
𝑥
3
𝑑𝐵
3
(𝑡)) .

(18)

Hence

𝑑𝐸 [𝑦
𝑝
(𝑡)]

𝑑𝑡

≤ 𝑝(𝑎
1
+ 𝑝

max {𝜎2
1
, 𝜎
2

2
, 𝜎
2

3
}

2
)𝐸 [𝑦

𝑝
(𝑡)]

− 𝑝
min {𝑏

11
, 𝑏
22
, 𝑏
33
}

𝑏
32
𝑏
21
+ 𝑏
32
𝑏
12
+ 𝑏
23
𝑏
12

𝐸 [𝑦
𝑝+1

(𝑡)]

≤ 𝑝(𝑎
1
+ 𝑝

max {𝜎2
1
, 𝜎
2

2
, 𝜎
2

3
}

2
)𝐸 [𝑦

𝑝
(𝑡)]

− 𝑝
min {𝑏

11
, 𝑏
22
, 𝑏
33
}

𝑏
32
𝑏
21
+ 𝑏
32
𝑏
12
+ 𝑏
23
𝑏
12

𝐸[𝑦
𝑝
(𝑡)]
(𝑝+1)/𝑝

.

(19)

Therefore, by comparison theorem, we get

lim sup
𝑡→∞

𝐸 [𝑦
𝑝
(𝑡)]

≤ [
(𝑎
1
+ 𝑝max {𝜎2

1
, 𝜎
2

2
, 𝜎
2

3
}) (𝑏
32
𝑏
21
+ 𝑏
32
𝑏
12
+ 𝑏
23
𝑏
12
)

min {𝑏
11
, 𝑏
22
, 𝑏
33
}

]

𝑝

.

(20)

Besides, note that 𝐸[𝑦𝑝(𝑡)] is continuous; then there is a
positive constant𝐾(𝑝) such that

𝐸 [𝑦
𝑝
(𝑡)] ≤ 𝐾 (𝑝) , ∀𝑡 ∈ [0,∞) . (21)

3. Persistent in Time Average

There is no equilibrium of system (3). Hence we cannot show
the permanence of the system by proving the stability of
the positive equilibrium as the deterministic system. In this
section we first show that this system is persistent in mean.
Before we give the result, we should do some prepared work.

L. S. Chen and J. Chen in [20] proposed the definition of
persistence in mean for the deterministic system. Here, we
also use this definition for the stochastic system.

Definition 3. System (3) is said to be persistent in mean, if

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
3
(𝑠) 𝑑𝑠 > 0, a.s. (22)

Lemma 4 (see [21, Lemma 17]). Let 𝑓 ∈ 𝐶([0, +∞) ×

Ω, (0, +∞)) and 𝐹 ∈ 𝐶([0, +∞) × Ω, 𝑅). If there exist positive
constants 𝜆

0
, 𝜆, such that

log𝑓 (𝑡) ≥ 𝜆𝑡 − 𝜆
0
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 + 𝐹 (𝑡) , 𝑡 ≥ 0 a.s., (23)

and lim
𝑡→∞

(𝐹(𝑡)/𝑡) = 0 a.s., then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≥
𝜆

𝜆
0

, a.s. (24)

FromLemma 4, it is easy to see that we could get Lemmas
5 and 6 with the same method.

Lemma 5. Let 𝑓 ∈ 𝐶([0, +∞) × Ω, (0, +∞)) and 𝐹 ∈ 𝐶([0,
+∞) × Ω, 𝑅). If there exist positive constants 𝜆

0
, 𝜆, such that

log𝑓 (𝑡) ≤ 𝜆𝑡 − 𝜆
0
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 + 𝐹 (𝑡) , 𝑡 ≥ 0 a.s., (25)

and lim
𝑡→∞

(𝐹(𝑡)/𝑡) = 0 a.s., then

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≤
𝜆

𝜆
0

, a.s. (26)

Lemma 6. Let 𝑓 ∈ 𝐶([0, +∞) × Ω, (0, +∞)) and 𝐹 ∈ 𝐶([0,
+∞) × Ω, 𝑅). If there exist positive constants 𝜆

0
, 𝜆, such that

log𝑓 (𝑡) = 𝜆𝑡 − 𝜆
0
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 + 𝐹 (𝑡) , 𝑡 ≥ 0 a.s., (27)

and lim
𝑡→∞

(𝐹(𝑡)/𝑡) = 0 a.s., then

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 =
𝜆

𝜆
0

, a.s. (28)

From the stochastic comparison theorem [11], it is easy to
get the following result.

Lemma 7. Let 𝑥(𝑡) ∈ 𝑅
3

+
be a solution of system (3) with

𝑥(0) = (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)). Then one has

𝑥 (𝑡) ≤ Φ (𝑡) ; (29)

that is,

𝑥
𝑖
(𝑡) ≤ Φ

𝑖
(𝑡) , 𝑖 = 1, 2, 3, (30)

where

Φ (𝑡) = (Φ
1
(𝑡) , Φ

2
(𝑡) , Φ

3
(𝑡))
⊤

, (31)
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Φ
𝑖
(𝑡) is solutions of the following stochastic differential equa-

tions:

𝑑Φ
1
(𝑡) = Φ

1
(𝑡) (𝑎
1
− 𝑏
11
Φ
1
(𝑡)) 𝑑𝑡

+ 𝜎
1
Φ
1
(𝑡) 𝑑𝐵

1
(𝑡) , Φ

1
(0) = 𝑥

1
(0) ,

𝑑Φ
2
(𝑡) = Φ

2
(𝑡) (−𝑎

2
+ 𝑏
21
Φ
1
(𝑡) − 𝑏

22
Φ
2
(𝑡)) 𝑑𝑡

− 𝜎
2
Φ
2
(𝑡) 𝑑𝐵

2
(𝑡) , Φ

2
(0) = 𝑥

2
(0) ,

𝑑Φ
3
(𝑡) = Φ

3
(𝑡) (−𝑎

3
+ 𝑏
32
Φ
2
(𝑡) − 𝑏

33
Φ
3
(𝑡)) 𝑑𝑡

− 𝜎
3
Φ
3
(𝑡) 𝑑𝐵

3
(𝑡) , Φ

3
(0) = 𝑥

3
(0) .

(32)

Assumption 8. Consider

𝑟
1
−
𝑏
11

𝑏
21

𝑟
2
−
𝑏
11
𝑏
22
+ 𝑏
12
𝑏
21

𝑏
21
𝑏
32

𝑟
3
> 0,

𝑟
1
= 𝑎
1
−
𝜎
2

1

2
> 0, 𝑟

𝑖
= 𝑎
𝑖
+
𝜎
2

𝑖

2
𝑖 = 2, 3.

(33)

Lemma 9. If Assumption 8 is satisfied, the solution Φ(𝑡) of
system (32) with any initial value Φ(0) ∈ 𝑅3

+
has the following

property:

lim
𝑡→∞

logΦ
𝑖
(𝑡)

𝑡
= 0, lim

𝑡→∞

1

𝑡
∫

𝑡

0

Φ
𝑖
(𝑠) 𝑑𝑠 = 𝑀

𝑖
, a.s.,

(34)

where

𝑀
1
=
𝑟
1

𝑏
11

, 𝑀
2
=
𝑟
1
𝑏
21
− 𝑟
2
𝑏
11

𝑏
11

,

𝑀
3
=
𝑟
1
𝑏
21
𝑏
32
− 𝑟
2
𝑏
11
𝑏
32
− 𝑟
3
𝑏
11
𝑏
22

𝑏
11
𝑏
22
𝑏
33

.

(35)

Proof. From the result in [14] and Assumption 8 being satis-
fied, we know

lim
𝑡→∞

logΦ
1
(𝑡)

𝑡
= 0,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

Φ
1
(𝑠) 𝑑𝑠 =

𝑎
1
− 𝜎
2

1
/2

𝑏
11

=
𝑟
1

𝑏
11

,

(36)

Besides, according to Itô’s formula, the second population of
system (32) is changed into

𝑑 logΦ
2
(𝑡) = (−𝑟

2
+ 𝑏
21
Φ
1
(𝑡) − 𝑏

22
Φ
2
(𝑡)) 𝑑𝑡 − 𝜎

2
𝑑𝐵
2
(𝑡) .

(37)

It then follows

logΦ
2
(𝑡) = logΦ

2
(0) − 𝑟

2
𝑡

+ 𝑏
21
∫

𝑡

0

Φ
1
(𝑠) 𝑑𝑠 − 𝑏

22
∫

𝑡

0

Φ
2
(𝑠) 𝑑𝑠 − 𝜎

2
𝐵
2
(𝑡) ,

(38)

With Lemma 6 and Assumption 8, we could get

lim
𝑡→∞

1

𝑡
∫

𝑡

0

Φ
2
(𝑠) 𝑑𝑠

=
−𝑟
2
+ 𝑏
21
(𝑟
1
/𝑏
11
)

𝑏
22

=
𝑟
1
𝑏
21
− 𝑟
2
𝑏
11

𝑏
11
𝑏
22

> 0.

(39)

Let (38) divide 𝑡, and 𝑡 → ∞, together with (36) and (39),
consequently

lim
𝑡→∞

logΦ
2
(𝑡)

𝑡
= 0. (40)

Similarly, according to Itô’s formula, the third population of
system (25) is changed into

𝑑 logΦ
3
(𝑡) = (−𝑟

3
+ 𝑏
32
Φ
2
(𝑡) − 𝑏

33
Φ
3
(𝑡)) 𝑑𝑡 − 𝜎

3
𝑑𝐵
3
(𝑡) ;

(41)

it then follows

logΦ
3
(𝑡) = logΦ

3
(0) − 𝑟

3
𝑡 + 𝑏
32
∫

𝑡

0

Φ
2
(𝑠) 𝑑𝑠

− 𝑏
33
∫

𝑡

0

Φ
3
(𝑠) 𝑑𝑠 − 𝜎

3
𝐵
3
(𝑡) ,

lim
𝑡→∞

1

𝑡
∫

𝑡

0

Φ
3
(𝑠) 𝑑𝑠

=
−𝑟
3
+ 𝑏
32
((𝑟
1
𝑏
21
− 𝑟
2
𝑏
11
) /𝑏
11
𝑏
22
)

𝑏
33

> 0,

lim
𝑡→∞

logΦ
3
(𝑡)

𝑡
= 0.

(42)

From this, together with Lemmas 7 and 9, the following
result is obviously true.

Theorem 10. If Assumption 8 is satisfied, the solution 𝑥(𝑡) of
system (3) with any initial value 𝑥(0) ∈ 𝑅3

+
has the following

property:

lim sup
𝑡→∞

log𝑥
𝑖
(𝑡)

𝑡
≤ 0, 𝑖 = 1, 2, 3. (43)

Above all, we could get.

Theorem 11. If Assumption 8 is satisfied, the the solution 𝑥(𝑡)
of system (3) with any initial value 𝑥(0) ∈ 𝑅3

+
has the following

property:

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
3
(𝑠) 𝑑𝑠 ≥ 𝑥

∗

3
, a.s., (44)

where 𝑥∗ = (𝑥∗
1
, 𝑥
∗

2
, 𝑥
∗

3
) is the only nonnegative solution of the

following equation:

𝑟
1
− 𝑏
11
𝑥
1
− 𝑏
12
𝑥
2
= 0,

−𝑟
2
+ 𝑏
21
𝑥
1
− 𝑏
22
𝑥
2
− 𝑏
23
𝑥
3
= 0,

−𝑟
3
+ 𝑏
32
𝑥
2
− 𝑏
33
𝑥
3
= 0.

(45)
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Proof. From system (3), such that

𝑑 (𝑐
1
log𝑥
1
(𝑡) + 𝑐

2
log𝑥
2
(𝑡) + 𝑐

3
log𝑥
3
(𝑡))

= [(𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3
) + (−𝑏

11
𝑐
1
+ 𝑏
21
𝑐
2
) 𝑥
1

+ (−𝑏
12
𝑐
1
− 𝑏
22
𝑐
2
+ 𝑏
32
𝑐
3
) 𝑥
2

− (𝑏
23
𝑐
2
+ 𝑏
33
𝑐
3
) 𝑥
3
] 𝑑𝑡

+ 𝑐
1
𝜎
1
𝑑𝐵
1
(𝑡) − 𝑐

2
𝜎
2
𝑑𝐵
2
(𝑡) − 𝑐

3
𝜎
3
𝑑𝐵
3
(𝑡) .

(46)

Let 𝑐
1
= 𝑏
21
, 𝑐
2
= 𝑏
11
, and 𝑐

3
= (𝑏
11
𝑏
22
+ 𝑏
12
𝑏
21
)/𝑏
32
, together

with Assumption 8, we know

𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3
> 0; (47)

hence
(𝑐
1
(log𝑥

1
(𝑡) − log𝑥

1
(0)) + 𝑐

2
(log𝑥

2
(𝑡) − log𝑥

2
(0))

+𝑐
3
(log𝑥

3
(𝑡) − log𝑥

3
(0))) × (𝑡)

−1

= (𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3
)

− (𝑐
2
𝑏
23
+ 𝑐
3
𝑏
33
)
1

𝑡
∫

𝑡

0

𝑥
3
(𝑠) 𝑑𝑠

+
𝑐
1
𝜎
1
𝐵
1
(𝑡) − 𝑐

2
𝜎
2
𝐵
2
(𝑡) − 𝑐

3
𝜎
3
𝐵
3
(𝑡)

𝑡
.

(48)

According toTheorem 10, where

lim sup
𝑡→∞

log𝑥
𝑖
(𝑡)

𝑡
≤ 0, 𝑖 = 1, 2, 3, (49)

and lim
𝑡→∞

(𝐵
𝑖
(𝑡)/𝑡) = 0, 𝑖 = 1, 2, 3,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
3
(𝑠) 𝑑𝑠 ≥

𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3

𝑐
2
𝑏
23
+ 𝑐
3
𝑏
33

= 𝑥
∗

3
, (50)

where 𝑥∗ = (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) is the only nonnegative solution of

the following equation when Assumption 8 is satisfied:

𝑟
1
− 𝑏
11
𝑥
1
− 𝑏
12
𝑥
2
= 0,

−𝑟
2
+ 𝑏
21
𝑥
1
− 𝑏
22
𝑥
2
− 𝑏
23
𝑥
3
= 0,

−𝑟
3
+ 𝑏
32
𝑥
2
− 𝑏
33
𝑥
3
= 0.

(51)

4. Nonpersistence

In this section, we show the situation when the population of
system (3) will be extinction in three cases.

Case 1 (𝑟
1

< 0). According to Itô’s formula, the first
population of system (25) is changed into

𝑑 logΦ
1
(𝑡) ≤ (𝑟

1
− 𝑏
11
Φ
1
(𝑡)) 𝑑𝑡 − 𝜎

1
𝑑𝐵
1
(𝑡) . (52)

If 𝑟
1
< 0, we could get

lim sup
𝑡→∞

logΦ
1
(𝑡)

𝑡
≤
𝑟
1

𝑏
11

< 0 a.s. (53)

From the stochastic comparison theorem, we have

lim sup
𝑡→∞

log𝑥
1
(𝑡)

𝑡
≤
𝑟
1

𝑏
11

< 0 a.s., (54)

hence

lim
𝑡→∞

𝑥
1
(𝑡) = 0, a.s. (55)

From the second population of system (25), we have

lim sup
𝑡→∞

logΦ
2
(𝑡)

𝑡

≤ −𝑎
2
+ 𝑏
21
lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

Φ
1
(𝑠) 𝑑𝑠 ≤ −𝑎

2
a.s.;

(56)

similarly

lim sup
𝑡→∞

logΦ
3
(𝑡)

𝑡
≤ −𝑎
3
a.s.,

lim
𝑡→∞

𝑥
𝑖
(𝑡) = 0 a.s. i = 2, 3.

(57)

Case 2 (𝑟
1
> 0, 𝑟
1
− (𝑏
11
/𝑏
21
)𝑟
2
< 0). It is clear that from the

proof section of Case 1, we get

logΦ
2
(𝑡) − logΦ

2
(0)

𝑡

≤ −𝑟
2
+ 𝑏
21

1

𝑡
∫

𝑡

0

Φ
1
(𝑠) 𝑑𝑠 −

𝜎
2
𝑑𝐵
2
(𝑡)

𝑡
a.s.,

(58)

hence

lim sup
𝑡→∞

logΦ
2
(𝑡)

𝑡

≤ −𝑟
2
+ 𝑏
21
𝑀
1
= −𝑟
2
+ 𝑏
21

𝑟
1

𝑏
11

< 0 a.s.
(59)

Similarly

lim sup
𝑡→∞

logΦ
3
(𝑡)

𝑡

≤ −𝑟
3
+ 𝑏
32
lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

Φ
2
(𝑠) 𝑑𝑠

≤ −𝑎
3
< 0 a.s.;

(60)

thus,

lim
𝑡→∞

𝑥
𝑖
(𝑡) = 0 a.s., i = 2, 3. (61)

Above all, and from the conclusion in [22], we could easily
know that the distribution of 𝑥

1
(𝑡) converges weekly to the

probability measure with density:

𝑓
∗
(𝜁) = 𝐶

0
𝜁
2𝑟
1
/𝜎
2

1
−1
𝑒
−2𝑏
11
𝜁/𝜎
2

1 , (62)

where 𝐶
0
= (2𝑏
11
/𝜎
2

1
)
2𝑟
1
/𝜎
2

1 /Γ(2𝑟
1
/𝜎
2

1
) and

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 =

𝑟
1

𝑏
11

, a.s. (63)
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Case 3 (𝑟
1
− (𝑏
11
/𝑏
21
)𝑟
2
− ((𝑏
11
𝑏
22
+ 𝑏
12
𝑏
21
)/𝑏
21
𝑏
32
)𝑟
3
< 0). It is

clear that

𝑑 (𝑐
1
log𝑥
1
(𝑡) + 𝑐

2
log𝑥
2
(𝑡) + 𝑐

3
log𝑥
3
(𝑡))

= [(𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3
) + (−𝑏

11
𝑐
1
+ 𝑏
21
𝑐
2
) 𝑥
1

+ (−𝑏
12
𝑐
1
− 𝑏
22
𝑐
2
+ 𝑏
32
𝑐
3
) 𝑥
2

− (𝑏
23
𝑐
2
+ 𝑏
33
𝑐
3
) 𝑥
3
] 𝑑𝑡

+ 𝑐
1
𝜎
1
𝑑𝐵
1
(𝑡) − 𝑐

2
𝜎
2
𝑑𝐵
2
(𝑡) − 𝑐

3
𝜎
3
𝑑𝐵
3
(𝑡) .

(64)

Since 𝑐
1
= 𝑏
21
, 𝑐
2
= 𝑏
11
, 𝑐
3
= (𝑏
11
𝑏
22
+ 𝑏
12
𝑏
21
)/𝑏
32
, we get

𝑐
1
log𝑥
1
(𝑡) + 𝑐

2
log𝑥
2
(𝑡) + 𝑐

3
log𝑥
3
(𝑡)

≤ (𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3
) 𝑡

+ 𝑐
1
log𝑥
1
(0) + 𝑐

2
log𝑥
2
(0) + 𝑐

3
log𝑥
3
(0)

+ 𝑐
1
𝜎
1
𝐵
1
(𝑡) − 𝑐

2
𝜎
2
𝐵
2
(𝑡) − 𝑐

3
𝜎
3
𝐵
3
(𝑡) ,

(65)

Moreover,

log𝑥𝑐1
1
(𝑡) 𝑥
𝑐
2

2
(𝑡) 𝑥
𝑐
3

3
(𝑡)

𝑡

≤ (𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3
)

+
𝑐
1
log𝑥
1
(0) + 𝑐

2
log𝑥
2
(0) + 𝑐

3
log𝑥
3
(0)

𝑡

+ 𝑐
1
𝜎
1

𝐵
1
(𝑡)

𝑡
− 𝑐
2
𝜎
2

𝐵
2
(𝑡)

𝑡
− 𝑐
3
𝜎
3

𝐵
3
(𝑡)

𝑡
.

(66)

And lim
𝑡→∞

(𝐵
𝑖
(𝑡)/𝑡) = 0, 𝑖 = 1, 2, 3, implies

lim sup
𝑡→∞

log𝑥𝑐1
1
(𝑡) 𝑥
𝑐
2

2
(𝑡) 𝑥
𝑐
3

3
(𝑡)

𝑡
≤ 𝑟
1
𝑐
1
− 𝑟
2
𝑐
2
− 𝑟
3
𝑐
3
< 0;

(67)

then

lim
𝑡→∞

𝑥
𝑐
1

1
(𝑡) 𝑥
𝑐
2

2
(𝑡) 𝑥
𝑐
3

3
(𝑡) = 0 a.s. (68)

Therefore, by the above arguments, we get the following
conclusion.

Theorem 12. Let 𝑥(𝑡) be the solution of system (3) with any
initial value 𝑥(0) ∈ 𝑅3

+
. Then

(1) if 𝑟
1
< 0, then

lim
𝑡→∞

𝑥
𝑖
(𝑡) = 0 a.s., i = 1, 2, 3, (69)

(2) if 𝑟
1
> 0, 𝑟
1
− (𝑏
11
/𝑏
21
)𝑟
2
< 0, then

lim
𝑡→∞

𝑥
𝑖
(𝑡) = 0 a.s., i = 2, 3, (70)

and the distribution of 𝑥
1
(𝑡) converges weekly to the probability

measure with density:

𝑓
∗
(𝜁) = 𝐶

0
𝜁
2𝑟
1
/𝜎
2

1
−1
𝑒
−2𝑏
11
𝜁/𝜎
2

1 , (71)

where 𝐶
0
= (2𝑏
11
/𝜎
2

1
)
2𝑟
1
/𝜎
2

1 /Γ(2𝑟
1
/𝜎
2

1
) and

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 =

𝑟
1

𝑏
11

, a.s; (72)

(3) if 𝑟
1
− (𝑏
11
/𝑏
21
)𝑟
2
− ((𝑏
11
𝑏
22
+𝑏
12
𝑏
21
)/𝑏
21
𝑏
32
)𝑟
3
< 0, then

lim
𝑡→∞

𝑥
𝑐
1

1
(𝑡) 𝑥
𝑐
2

2
(𝑡) 𝑥
𝑐
3

3
(𝑡) = 0, a.s., (73)

where 𝑐
1
= 𝑏
21
, 𝑐
2
= 𝑏
11
, and 𝑐

3
= (𝑏
11
𝑏
22
+ 𝑏
12
𝑏
21
)/𝑏
32
.

5. Numerical Simulation

In this section, we give out the numerical experiment to
support our results. Consider

�̇�
1
(𝑡) = 𝑥

1
(𝑡) (𝑎
1
− 𝑏
11
𝑥
1
(𝑡) − 𝑏

12
𝑥
2
(𝑡))

+ 𝜎
1
𝑥
1
(𝑡) �̇�
1
(𝑡) ,

�̇�
2
(𝑡) = 𝑥

2
(𝑡) (−𝑎

2
+ 𝑏
21
𝑥
1
(𝑡) − 𝑏

22
𝑥
2
(𝑡) − 𝑏

23
𝑥
3
(𝑡))

− 𝜎
2
𝑥
2
(𝑡) �̇�
2
(𝑡) ,

�̇�
3
(𝑡) = 𝑥

3
(𝑡) (−𝑎

3
+ 𝑏
32
𝑥
2
(𝑡) − 𝑏

33
𝑥
3
(𝑡))

− 𝜎
3
𝑥
3
(𝑡) �̇�
3
(𝑡) .

(74)

By the Milstein method in [23], we have the difference
equation:

𝑥
1,𝑘+1

= 𝑥
1,𝑘
+ 𝑥
1,𝑘

× [ (𝑎
1
− 𝑏
11
𝑥
1,𝑘
− 𝑏
12
𝑥
2,𝑘
) Δ𝑡

+ 𝜎
1
𝜖
1,𝑘
√Δ𝑡 +

𝜎
2

1

2
(𝜖
2

1,𝑘
Δ𝑡 − Δ𝑡)] ,

𝑥
2,𝑘+1

= 𝑥
2,𝑘
+ 𝑥
2,𝑘

× [ (−𝑎
2
+ 𝑏
21
𝑥
1,𝑘
− 𝑏
22
𝑥
2,𝑘
− 𝑏
23
𝑥
3,𝑘
) Δ𝑡

− 𝜎
2
𝜖
2,𝑘
√Δ𝑡 +

𝜎
2

2

2
(𝜖
2

2,𝑘
Δ𝑡 − Δ𝑡)] ,

𝑥
3,𝑘+1

= 𝑥
3,𝑘
+ 𝑥
3,𝑘

× [ (−𝑎
3
+ 𝑏
32
𝑥
2,𝑘
− 𝑏
33
𝑥
3,𝑘
) Δ𝑡

− 𝜎
3
𝜖
3,𝑘
√Δ𝑡 +

𝜎
2

3

2
(𝜖
2

3,𝑘
Δ𝑡 − Δ𝑡)] ,

(75)

where 𝜖
1,𝑘
, 𝜖
2,𝑘
, and 𝜖

3,𝑘
, 𝑖 = 1, 2, 3, are the Gaussian random

variables𝑁(0, 1), 𝑟
1
= 𝑎
1
−𝜎
2

1
/2 > 0, and 𝑟

𝑖
= 𝑎
𝑖
+𝜎
2

𝑖
/2, 𝑖 = 2, 3.

Choosing (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) ∈ 𝑅

3

+
, and suitable parameters,

by Matlab, we get Figures 1, 2, and 3.
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Figure 1: The solution of system (1) and system (3) with
(𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (1, 0.8, 0.5), 𝑎

1
= 0.3, 𝑎

2
= 0.4, 𝑎

3
= 0.1,

𝑏
11
= 0.1, 𝑏

12
= 0.1, 𝑏

21
= 0.6, 𝑏

22
= 0.6, 𝑏

23
= 0.6, 𝑏

32
= 0.8, and

𝑏
33
= 0.6. The red lines represent the solution of system (1), while

the blue lines represent the solution of system (3) with 𝜎
1
= 0.02,

𝜎
2
= 0.01, and 𝜎

3
= 0.01.
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Figure 2: Two of the species will die out in probability.The red lines
represent the solution of system (1), while the blue lines represent
the solution of system (3) with (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (1, 0.8, 0.5),

𝑎
1
= 0.4, 𝑎

2
= 0.4, 𝑎

3
= 0.1, 𝑏

11
= 0.1, 𝑏

12
= 0.1, 𝑏

21
= 0.6, 𝑏

22
= 0.6,

𝑏
23
= 0.6, 𝑏

32
= 0.8, and 𝑏

33
= 0.6.The red lines represent the solution

of system (1), while the blue lines represent the solution of system (3)
with 𝜎

1
= 0.02, 𝜎

2
= 3, and 𝜎

3
= 0.01.

In Figure 1, when the noise is small, choosing parameters
satisfying the condition ofTheorem 10, the solution of system
(3) will persist in time average.

In Figure 2, we observe case (3) inTheorem 12 and choose
parameters 𝑟

1
> 0, 𝑟

1
− (𝑏
11
/𝑏
21
)𝑟
2
< 0. As Theorem 12

indicated that two predators will die out in probability. The
prey solution of system (3) will persist in time average.
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Figure 3: One of the species or both species will die out in
probability. The red lines represent the solution of system (1),
while the blue lines represent the solution of system (3) with
(𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (1, 0.8, 0.5), 𝑎

1
= −0.1, 𝑎

2
= 0.4, 𝑎

3
= 0.1,

𝑏
11
= 0.1, 𝑏

12
= 0.1, 𝑏

21
= 0.6, 𝑏

22
= 0.6, 𝑏

23
= 0.6, 𝑏

32
= 0.8, and

𝑏
33
= 0.6. The red lines represent the solution of system (1), while

the blue lines represent the solution of system (3) with 𝜎
1
= 0.02,

𝜎
2
= 3, and 𝜎

3
= 0.01.

In Figure 3, we observe case (1) inTheorem 12 and choose
parameters 𝑟

1
< 0. As Theorem 12 indicated that not only

predators but also prey will die out in probability when the
noise of the prey is large, and it does not happen in the
deterministic system.
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