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The problem of approximate symmetries of a class of nonlinear reaction-diffusion equations called Kolmogorov-Petrovsky-
Piskounov (KPP) equation is comprehensively analyzed. In order to compute the approximate symmetries, we have applied the
methodwhichwas proposed by Fushchich and Shtelen (1989) and fundamentally based on the expansion of the dependent variables
in a perturbation series. Particularly, an optimal system of one-dimensional subalgebras is constructed and some invariant solutions
corresponding to the resulted symmetries are obtained.

1. Introduction

Nonlinear problems arise widely in various fields of science
and engineering mainly due to the fact that most physical
systems are inherently nonlinear in nature. But for nonlinear
partial differential equations (PDEs), analytical solutions are
rare and difficult to obtain. Hence, the investigation of the
exact solutions of nonlinear PDEs plays a fundamental role
in the analysis of nonlinear physical phenomena. One of
the most famous and established procedures for obtaining
exact solutions of differential equations is the classical sym-
metries method, also called group analysis. This method was
originated in 1881 from the pioneering work of Sophus Lie
[1]. The investigation of symmetries has been manifested
as one of the most significant and fundamental methods
in almost every branch of science such as in mathematics
and physics. Nowadays, the application of Lie group theory
for the construction of solutions of nonlinear PDEs can be
regarded as one of the most active fields of research in the
theory of nonlinear PDEs and many good books have been
dedicated to this subject (such as [2–4]). For some nonlinear
problems, however, symmetries are not rich to determine
useful solutions. Hence, this fact was the motivation for
the creation of several generalizations of the classical Lie

group method. Consequently, several alternative reduction
methods have been introduced, going beyond Lie’s classical
procedure and providing further solutions. One of the tech-
niques widely applied in analyzing nonlinear problems is the
perturbation analysis. Perturbation theory comprises math-
ematical methods that are applied to obtain an approximate
solution to a problemwhich cannot be solved exactly. Indeed,
this procedure is performed by expanding the dependent
variables asymptotically in terms of a small parameter. In
order to combine the power of the Lie group theory and
perturbation analysis, two different approximate symmetry
theories have been developed recently. The first method is
due to Baikov et al. [5, 6]. Successively another method
for obtaining approximate symmetries was introduced by
Fushchich and Shtelen [7].

In the method proposed by Baikov et al. the Lie operator
is expanded in a perturbation series other than perturbation
for dependent variables as in the usual case. In other words,
assume that the perturbed differential equation is in the form
𝐹(𝑧) = 𝐹

0
(𝑧) + 𝜀𝐹

1
(𝑧), where 𝑧 = (𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑛)
), 𝐹
0
is

the unperturbed equation, 𝐹
1
(𝑧) is the perturbed term, and

𝑋 = 𝑋
0
+ 𝜀𝑋
1 is the corresponding infinitesimal generator.

The exact symmetry of the unperturbed equation 𝐹
0
(𝑧) is

denoted by 𝑋0 and can be obtained as 𝑋0𝐹
0
(𝑧)|
𝐹0(𝑧)=0

= 0.
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Then, by applying the auxiliary function𝐻 = (1/𝜀)𝑋
0
(𝐹
0
(𝑧)+

𝜀𝐹
1
(𝑧))|
𝐹0+𝜀𝐹1=0

, vector field 𝑋
1
will be deduced from the

following relation:

𝑋
1
𝐹
0
(𝑧) |
𝐹0=0

+ 𝐻 = 0. (1)

Finally, after obtaining the approximate symmetries, the
corresponding approximate solutions will be obtained via the
classical Lie symmetry method [8].

In the second method due to Fushchich and Shtelen, first
of all the dependent variables are expanded in a perturbation
series. In the next step, terms are then separated at each
order of approximation and as a consequence a system
of equations to be solved in a hierarchy is determined.
Finally, the approximate symmetries of the original equation
are defined to be the exact symmetries of the system of
equations resulting from perturbations [7, 9, 10]. Pakdemirli
et al. in a recent paper [11] have compared these above two
methods. According to their comparison, the expansion of
the approximate operator applied in the firstmethod does not
reflect well an approximation in the perturbation sense, while
the secondmethod is consistent with the perturbation theory
and results in correct terms for the approximate solutions.
Consequently, the second method is superior to the first one
according to the comparison in [11].

Nonlinear reaction-diffusion equations can be regarded
as mathematical models which explain the change of the
concentration of one ormore substances distributed in space.
Indeed, this variation occurs under the influence of two
main processes including chemical reactions in which the
substances are locally transformed into each other and dif-
fusion which makes the substances spread out over a surface
in space. From the mathematical point of view, reaction-
diffusion systems generally take the form of semilinear
parabolic PDEs. It is worth mentioning that the solutions
of reaction-diffusion equations represent a wide range of
behaviors, such as formation of wave-like phenomena and
traveling waves as well as other self-organized patterns.

In this paper, we will apply the method proposed by
Fushchich and Shtelen [7] in order to present a com-
prehensive analysis of the approximate symmetries of a
significant class of nonlinear reaction-diffusion equations
called Kolmogrov-Petrovsky-Piskounov (KPP) equation [12].
This equation can be regarded as the most simple reaction-
diffusion equation concerning the concentration 𝑢 of a single
substance in one spatial dimension and is generally defined
as follows:

𝑢
𝑡
− 𝑢
𝑥𝑥

= 𝑅 (𝑢) . (2)

By inserting different values to the reaction term 𝑅(𝑢) of (2),
the following significant equations are deduced.

(1) If the reaction term 𝑅(𝑢) vanishes, then the resulted
equation displays a pure diffusion process and is
defined by

𝑢
𝑡
= 𝑢
𝑥𝑥
. (3)

Note that the above equation is called Fick’s second
law [12].

(2) By inserting 𝑅(𝑢) = 𝑎𝑢(1 − 𝑢), 𝑎 ≥ 0, the Fisher
equation (or logistic equation) results as follows:

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑎𝑢 (1 − 𝑢) . (4)

This equation can be regarded as the archetypical
deterministic model for the spread of a useful gene
in a population of diploid individuals living in a one-
dimensional habitat [13, 14].

(3) By inserting 𝑅(𝑢) = 𝑢
2
(1−𝑢), the Zeldovich equation

will be deduced as follows:

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢
2
(1 − 𝑢) . (5)

This equation appears in combustion theory. The
unknown 𝑢 displays temperature, while the last term
on the right-hand side is concerned with the genera-
tion of heat by combustion [15, 16].

(4) By inserting 𝑅(𝑢) = 𝑢(1 − 𝑢
2
) the Newell-Whitehead-

Segel (NWS) equation (or amplitude equation) results
as follows:

𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢 (1 − 𝑢

2
) . (6)

This equation arises in the analysis of thermal convec-
tion of a fluid heated from below after carrying out a
suitable normalization [17].

This paper is organized as follows. Section 2 is devoted
to the thorough investigation of the approximate symmetries
and approximate solutions of the KPP equation. For this pur-
pose, we will concentrate on the four special and significant
forms of the KPP equation described above, that is, Fick’s sec-
ond law, Fisher’s equation, Zeldovich equation, and Newell-
Whitehead-Segel (NWS) equation. In Section 3, an optimal
system of subalgebras is constructed and the corresponding
symmetry transformations are obtained. Some concluding
remarks are mentioned at the end of the paper.

2. Approximate Symmetries of the
KPP Equation

In this section, first of all the problem of exact and approx-
imate symmetries of Fick’s second law (3) with a small
parameter is investigated. Then the approximate symme-
tries and the exact and approximate invariant solutions
corresponding to the perturbed Fisher equation, Zeldovich
equation, and Newell-Whitehead-Segel (NWS) equation will
be determined.

2.1. Exact Symmetries of the Perturbed Fick Second Law. The
perturbed Fick second law is defined as follows:

𝑢
𝑡
= 𝜀𝑢
𝑥𝑥
, (7)

where 𝜀 is a small parameter. Let 𝑋 be the infinitesimal
symmetry generator corresponding to (7) which is defined as
follows:

𝑋 = 𝜉 (𝑥, 𝑡, 𝑢) 𝜕
𝑥
+ 𝜏 (𝑥, 𝑡, 𝑢) 𝜕

𝑡
+ 𝜑 (𝑥, 𝑡, 𝑢) 𝜕

𝑢
. (8)
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Now by acting the second prolongation of the symmetry
operator (8) on (7), an overdetermined system of equations
for 𝜉, 𝜏, and 𝜑 will be obtained. By solving this resulting
determining equations, it is inferred that

𝜉 = (𝑐
1
𝑡𝑥 + 𝑐
2
𝑥) − 2𝜀𝑐

4
𝑡 + 𝑐
6
,

𝜏 = 𝑐
1
𝑡
2
+ 2𝑐
2
𝑡 + 𝑐
3
,

𝜑 = (𝑐
4
𝑥 + 𝑐
5
−
𝑐
1
𝑡

2
−
𝑐
1
𝑥
2

4𝜀
) 𝑢 + 𝐹 (𝑥, 𝑡) ,

(9)

where𝐹(𝑥, 𝑡) is an arbitrary function satisfying the perturbed
Fick second law equation (7) and 𝑐

𝑖
, 𝑖 = 1, . . . , 6 are arbitrary

constants. Hence, this equation admits a six-dimensional Lie
algebra with the following generators:

𝑋
1
= 𝜕
𝑥
,

𝑋
4
= −2𝜀𝑡𝜕

𝑥
+ 𝑥𝑢𝜕

𝑢
,

𝑋
2
= 𝜕
𝑡
,

𝑋
5
= 𝑢𝜕
𝑢
,

𝑋
3
= 𝑥𝜕
𝑥
+ 2𝑡𝜕
𝑡
,

𝑋
6
= 4𝑥𝑡𝜕

𝑥
+ 4𝑡
2
𝜕
𝑡
− (2𝑡 +

𝑥
2

𝜀
) 𝑢𝜕
𝑢
,

(10)

plus the following infinite dimensional subalgebra which is
spanned by𝑋

𝐹
= 𝐹(𝑥, 𝑡)𝜕

𝑢
, where 𝐹 satisfies (7).

2.2. Exact Invariant Solutions. In this part, we compute
some exact invariant solutions corresponding to the resulting
infinitesimal generators.

Case 1. Consider the symmetry operator𝑋 = 𝑐𝑋
1
+𝑋
2
, where

𝑐 is a constant.

Now taking into account [2–4], by applying the Lie
symmetry reduction technique the corresponding exact and
approximate invariant solutions will be obtained as follows.
The characteristic equation associated with the symmetry
generator 𝑋 is given by 𝑑𝑥/𝑐 = 𝑑𝑡/1 = 𝑑𝑢/0. By solving
the above equation, the following Lie invariants resulting:
𝑥 − 𝑐𝑡 = 𝑦, 𝑢 = V(𝑦). By substituting these invariants into
(7) we obtain: 𝜀V(𝑦) + 𝑐V(𝑦) = 0. Consequently, by solving
the above resulting ODE, the following solution is deduced
for (7): 𝑢(𝑥, 𝑡) = 𝑐

1
+ 𝑐
2
exp(−𝑐(𝑥 − 𝑐𝑡)/𝜀).

Case 2. For the symmetry generator 𝑋
3
, the corresponding

characteristic equation is 𝑑𝑥/𝑥 = 𝑑𝑡/2𝑡 = 𝑑𝑢/0. Thus, these
Lie invariants are determined: 𝑢 = V(𝑦), 𝑦 = 𝑥

2
/𝑡. By

substituting the above invariants into (7) the followingODE is
inferred: 4𝜀𝑦V(𝑦)+V(𝑦)(2𝜀+𝑦) = 0. Hence, another solution
is deduced for (7): 𝑢 = V(𝑦) = 𝑐

1
+ 𝑐
2
erf(|𝑥|/2√𝜀𝑡), where

𝑐
1
and 𝑐
2
are arbitrary constants and erf is the error function

given by erf(𝑥) = (2/√𝜋) ∫
𝑥

0
𝑒
−𝑡
2

𝑑𝑡.

2.3. Perturbed Fisher’s Equation. In this section, a thorough
investigation of the symmetries of the perturbed Fisher
equation is proposed:

𝑢
𝑡
= 𝜀𝑢
𝑥𝑥
+ 𝑎𝑢 (1 − 𝑢) . (11)

For this purpose, firstly the exact symmetries of the perturbed
Fisher’s equation (11) will be calculated. Then, the approxi-
mate symmetries of this equation will be analyzed.

Now by acting the second prolongation of the symmetry
generator (8) on the perturbed Fisher equation and solving
the resulting determining equations, it is deduced that 𝜉 = 𝑐

2
,

𝜏 = 𝑐
1
, and 𝜑 = 0, where 𝑐

1
and 𝑐
2
are arbitrary constants.

Hence, the following exact trivial symmetries are obtained:
𝑋
1
= 𝜕
𝑥
, 𝑋
2
= 𝜕
𝑡
. For the infinitesimal symmetry generator

𝑋 = 𝑐𝜕
𝑥
+ 𝜕
𝑡
, the corresponding characteristic equation is

given by 𝑑𝑥/𝑐 = 𝑑𝑡/1 = 𝑑𝑢/0.
Therefore, the Lie invariants resulting as 𝑥 − 𝑐𝑡 = 𝑦

and 𝑢 = V(𝑦). After substituting these invariants into the
perturbed Fisher equation, the following reduced ordinary
differential equation is obtained:

𝜀V (𝑦) + 𝑐V (𝑦) + 𝑎V (𝑦) (1 − V (𝑦)) = 0. (12)

But it is worth noting that finding an exact solution for the
differential equation (12) is difficult. For the particular case
𝑐 = ±5/√6, Ablowitz and Zeppetella [18] used Painleve’s
singularity structure analysis in order to obtain the first
corresponding explicit analytical solution which is given by

V (𝑦) = 𝑢 (𝑥, 𝑡) = [1 +
𝜀

√6

exp(√6𝑥 − 5

6
𝑡)]

−2

. (13)

2.3.1. Approximate Symmetries of the Perturbed Fisher Equa-
tion. In this section, we apply the method proposed in [7]
in order to analyze the problem of approximate symmetries
of Fisher’s equation with an accuracy of order one. First,
we expand the dependent variable in perturbation series,
and then we separate terms of each order of approximation,
so that a system of equations will be formed. The derived
system is assumed to be coupled and its exact symmetry will
be considered as the approximate symmetry of the original
equation.

We expand the dependant variable up to order one as
follows:

𝑢 = V + 𝜀𝑤, 0 < 𝜀 ≤ 1, (14)

where V and 𝑤 are smooth functions of 𝑥 and 𝑡. After
substitution of (14) into the perturbed Fisher equation (11)
and equating to zero the coefficients of 𝑜(𝜀0) and 𝑜(𝜀

1
), the

following system of partial differential equations results:

𝑂(𝜀
0
) : V
𝑡
− 𝑎V (1 − V) 𝑤 = 0,

𝑂 (𝜀) : 𝑤𝑡 − V
𝑥𝑥
− 𝑎𝑤 (1 − 2V) = 0.

(15)

Definition 1. The approximate symmetry of Fisher’s equation
with a small parameter is called the exact symmetry of the
system of differential equations (15).
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Now, consider the following symmetry transformation
group acting on the PDE system (15):

𝑥 = 𝑥 + 𝑎𝜉
1
(𝑡, 𝑥, V, 𝑤) + 𝑜 (𝑎2) ,

�̃� = 𝑡 + 𝑎𝜉
2 (𝑡, 𝑥, V, 𝑤) + 𝑜 (𝑎

2
) ,

Ṽ = V + 𝑎𝜑
1
(𝑡, 𝑥, V, 𝑤) + 𝑜 (𝑎2) ,

𝑤 = 𝑤 + 𝑎𝜑
2
(𝑡, 𝑥, V, 𝑤) + 𝑜 (𝑎2) ,

(16)

where 𝑎 is the group parameter and 𝜉
1
, 𝜉
2
and 𝜑

1
, 𝜑
2
are the

infinitesimals of the transformations for the independent and
dependent variables, respectively. The associated vector field
is of the form

𝑋 = 𝜉
1 (𝑡, 𝑥, V, 𝑤) 𝜕𝑡 + 𝜉2 (𝑡, 𝑥, V, 𝑤) 𝜕𝑥

+ 𝜑
1
(𝑡, 𝑥, V, 𝑤) 𝜕V + 𝜑2 (𝑡, 𝑥, V, 𝑤) 𝜕𝑤.

(17)

The invariance of the system (15) under the infinitesimal
symmetry transformation group (17) leads to the following
invariance condition: 𝑝𝑟(2)𝑋[Δ] = 0 and Δ = 0. Hence, the
following set of determining equations is inferred:

𝜕
𝑤
𝜉
2
= 0, 𝑎V2𝜕

𝑤
𝜉
1
+ 𝜕
𝑤
𝜑
1
− 𝑎V𝜕
𝑤
𝜉
1
= 0, . . . ,

2𝜕V𝑥𝜉2 − 𝜕VV𝜑1 = 0.

(18)

By solving this system of PDEs, it is deduced to 𝜉
2
= 𝐶
1
𝑥+𝐶
3
,

𝜑
1
= 0, and 𝜉

1
= 𝐶
2
, 𝜑
2
= −2𝐶

1
𝑤, where 𝐶

1
, 𝐶
2
, and 𝐶

3

are arbitrary constants. Thus, the Lie algebra of the resulting
infinitesimal symmetries of the PDE system (15) is spanned
by these three vector fields:

𝑋
1
= 𝜕
𝑡
, 𝑋

2
= 𝜕
𝑥
, 𝑋

3
= 𝑥𝜕
𝑥
− 2𝑤𝜕

𝑤
. (19)

2.3.2. Approximate Invariant Solutions. In this section, the
approximate solutions will be obtained from the approximate
symmetries which resulted in the previous section.

Case 1 (𝑋 = 𝑥𝜕
𝑥
− 2𝑤𝜕

𝑤
). By applying the classical Lie

symmetry group method, the corresponding characteristic
equation is 𝑑𝑥/𝑥 = 𝑑𝑡/0 = 𝑑V/0 = 𝑑𝑤/(−2𝑤). So that the
resulted invariants are 𝑡 = 𝑇, V = 𝑓(𝑇), and 𝑤 = 𝑔(𝑇)/𝑥

2.
After substituting these invariants into the first equation of
the PDE system (15), we have

𝑓

(𝑇) − 𝑎𝑓 (𝑇) (1 − 𝑓 (𝑇)) = 0. (20)

Consequently, the following solution is obtained:

𝑓 (𝑇) = V =
1

1 + 𝑐
1
𝑒−𝑎𝑡

. (21)

After substituting V in the second equation of the PDE system
(15), this ODE results in 𝑔(𝑇) + 𝑎𝑔(𝑇)[2/(1 + 𝑐

1
𝑒
−𝑎𝑡
) − 1] =

0. Therefore, we have 𝑔(𝑇) = 𝑐
2
𝑒
−𝑎𝑡
/(1 + 𝑐

1
𝑒
−𝑎𝑡
)
2. Finally,

taking into account (14), the following approximate solution
is inferred:

𝑢 (𝑥, 𝑡) = V + 𝜀𝑤 =
1

1 + 𝑐
1
𝑒−𝑎𝑡

+ 𝜀
𝑐
2
𝑒
−𝑎𝑡

𝑥2(1 + 𝑐
1
𝑒−𝑎𝑡)
2
, (22)

where 𝑐
1
and 𝑐
2
are arbitrary constants.

Case 2. Now consider 𝑋 = 𝑋
1
+ 𝑐𝑋
2
, where 𝑐 is an

arbitrary constant.The corresponding characteristic equation
is defined by 𝑑𝑥/𝑐 = 𝑑𝑡/1 = 𝑑V/0 = 𝑑𝑤/0. So, the associated
Lie invariants are 𝑥 − 𝑐𝑡 = 𝑦, V = 𝑓(𝑦), and 𝑤 = 𝑔(𝑦). By
substituting the resulting invariants into the first equation of
the PDE system (15), the reduced equation is determined as
𝑐𝑓

(𝑦) + 𝑎𝑓(𝑦)(1 − 𝑓(𝑦)) = 0. Therefore, we have V(𝑥, 𝑡) =

1/(𝑐
1
𝑒
𝑎(𝑥−𝑐𝑡)/𝑐

+1). Now by substituting V(𝑥, 𝑡) into the second
equation of the PDE system (15), it is inferred that

𝑐𝑔

(𝑦) +

𝑐
1
𝑎
2
𝑒
𝑎𝑦/𝑐

(−1 + 𝑐
1
𝑒
𝑎𝑦/𝑐

)

𝑐
2
(1 + 𝑐
1
𝑒𝑎𝑦/𝑐)
3

+ 𝑎𝑔 (𝑦) (1 −
2

𝑐
1
𝑒𝑎𝑦/𝑐 + 1

) = 0.

(23)

By solving the above equation, we have

𝑔 (𝑦) =
𝑒
𝑎𝑦/𝑐

(𝑐
1
𝑒𝑎𝑦/𝑐 + 1)

2

× (𝑐
1

𝑎
2

𝑐
3

𝑦 −
2𝑎𝑐
1

𝑐
2

ln (𝑐
1
𝑒
𝑎𝑦/𝑐

+ 1) + 𝑐
2
) .

(24)

Finally, the following approximate solution results:

𝑢 (𝑥, 𝑡) = V + 𝜀𝑤

=
1

𝑐
1
𝑒𝑎(𝑥−𝑐𝑡)/𝑐 + 1

× {1 + 𝜀𝑒
𝑎(𝑥−𝑐𝑡)/𝑐

×(
𝑐
1

𝑐3
(𝑥 − 𝑐𝑡) −

2𝑎𝑐
1

𝑐2
ln(𝑐
1
𝑒
𝑎(𝑥−𝑐𝑡)/𝑐

+ 1)+𝑐
2
)}.

(25)

Consequently, the approximate solutions corresponding to all
the resulted operators were computed.

2.4. Perturbed Zeldovich Equation. In this section, we will
investigate the exact and approximate symmetries of the
Zeldovich equation with a small parameter:

𝑢
𝑡
− 𝜀𝑢
𝑥𝑥

= 𝑢
2
(1 − 𝑢) . (26)

For this purpose, first of all wewill compute the exact symme-
tries and then by applying the classical Lie symmetrymethod,
the perturbed Zeldovich equation would be converted to an
ODE.

By acting the symmetry operator (8) on the perturbed
Zeldovich equation (26) and solving the resulted determining
equations we have 𝜉 = 𝑐

1
, 𝜏 = 𝑐

2
, 𝜑 = 0, where 𝑐

1
and 𝑐
2
are

arbitrary constants. Hence, the corresponding infinitesimal
symmetries will be spanned by these two vector fields𝑋

1
= 𝜕
𝑡

and 𝑋
2

= 𝜕
𝑥
. The characteristic equation corresponding

to the symmetry operator 𝑋 = 𝑋
1
+ 𝑐𝑋
2
is given by

𝑑𝑥/𝑐 = 𝑑𝑡/1 = 𝑑𝑢/0. Hence, the Lie invariants are obtained
as 𝑥 − 𝑐𝑡 = 𝑦 and 𝑢 = 𝑓(𝑦). After substituting these
invariants into (26), the reduced equation is inferred as
𝜀𝑓

(𝑦) + 𝑐𝑓


(𝑦)(1 − 𝑓(𝑦)) = 0.
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2.4.1. Approximate Symmetries of the Zeldovich Equation. In
this section, we use the method proposed in [7] in order to
obtain the approximate symmetries of (26) with the accuracy
𝑜(𝜀). By expanding the dependent variable of this equation in
perturbation series we have

𝑢 = V + 𝜀𝑤, 0 ≤ 𝜀 ≤ 1. (27)

Then by substituting the above relation into the perturbed
equation (26) and separating terms of each order of approx-
imation, the following equations with respect to 𝑜(𝜀

0
) and

𝑜(𝜀
1
) are deduced:

𝑂(𝜀
0
) : V
𝑡
− V2 (1 − V) = 0,

𝑂 (𝜀
1
) : 𝑤
𝑡
− V
𝑥𝑥
− 2V𝑤 (1 − V) + V2𝑤 = 0.

(28)

It isworthmentioning that the resulting approximate symme-
tries of the differential equation (26) correspond to the exact
symmetries of the PDE system (28).

Now, by acting the second prolongation of the infinites-
imal symmetry operator (17) on the PDE system (28) and
solving the resulted determining equations, we have 𝜉

1
= 𝑐
2
,

𝜉
2
= 𝑐
1
𝑥 + 𝑐
3
, 𝜑
1
= 0, and 𝜑

2
= −2𝑐

1
𝑤, where 𝑐

1
, 𝑐
2
, and 𝑐

3

are arbitrary constants. Consequently, the Lie algebra of the
symmetry generators corresponding to the PDE system (28)
is spanned by

𝑋
1
= 𝜕
𝑡
, 𝑋

2
= 𝜕
𝑥
, 𝑋

3
= 𝑥𝜕
𝑥
− 2𝑤𝜕

𝑤
. (29)

2.4.2. Approximate Invariant Solutions. Now, we obtain the
approximate invariant solutions corresponding to the per-
turbed equation (26). For the symmetry operator 𝑋

3
the

corresponding characteristic equation is given by 𝑑𝑥/𝑥 =

𝑑𝑡/0 = 𝑑V/0 = 𝑑𝑤/(−2𝑤). So, the invariants results as 𝑡 = 𝑇,
V = 𝑓(𝑇), and 𝑤 = 𝑔(𝑇)/𝑥

2. By inserting these invariants
into the first equation of the PDE system (28), the reduced
equation is 𝑓(𝑇) − 𝑓

2
(𝑇)(1 − 𝑓(𝑇)) = 0. Therefore, we

have V = 𝑓(𝑇) = 1/W(−𝑒
−𝑡−1

/𝑐
1
), where the function W(𝑧)

is defined implicitly by this equation 𝑧 = W(𝑧)𝑒
W(𝑧). After

substituting this resulting solution into the second equation
of the PDE system (28), we obtain𝑔+𝑔(𝑇)(3𝑓2(𝑇)−2𝑓(𝑇)) =
0. The solution of the above equation is

𝑔 (𝑇) =

𝑐
2
exp (−2W (−𝑒

−𝑡−1
/𝑐
1
))W (−𝑒

−𝑡−1
/𝑐
1
)

W (−𝑒−𝑡−1/𝑐
1
) + 1

. (30)

Finally, the following approximate invariant solution for the
equation (26) is deduced:

𝑢 (𝑥, 𝑡) = 𝑓 (𝑇)

+ 𝜀

𝑐
2
exp (−2W (−𝑒

−𝑡−1
/𝑐
1
))W (−𝑒

−𝑡−1
/𝑐
1
)

𝑥2 (W (−𝑒−𝑡−1/𝑐
1
) + 1)

.

(31)

2.5. Perturbed NSW Equation. Similar to the previous sec-
tions, we will analyze the symmetries of the perturbed NSW
equation:

𝑢
𝑡
− 𝜀𝑢
𝑥𝑥

= 𝑢 (1 − 𝑢
2
) . (32)

Table 1: The commutator table of the approximate symmetries of
the KPP equation.

[𝑋
𝑖
, 𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
1

0 0 0

𝑋
2

0 0 𝑋
2

𝑋
3

0 −𝑋
2

0

By applying the same calculations on this equation, the
approximate symmetries are resulted as 𝑋

1
= 𝜕
𝑡
, 𝑋
2
= 𝜕
𝑥
,

and 𝑋
3
= 𝑥𝜕
𝑥
− 2𝑤𝜕

𝑤
. The Lie invariants corresponding to

the symmetry operator 𝑋
3
are as 𝑡 = 𝑇, V = 𝑓(𝑇), and 𝑤 =

𝑔(𝑇)/𝑥
2. Consequently, the following approximate invariant

solution is deduced:

𝑢 (𝑥, 𝑡) =
±1

√1 + 𝑐
1
𝑒−2𝑡

+ 𝜀
𝑐
2
𝑒
−2𝑡

(1 + 𝑐
1
𝑒−2𝑡)
3/2

. (33)

3. Optimal System of the KPP Equation

In this section, an optimal system of subalgebras correspond-
ing to the resulting approximate symmetries of the KPP equa-
tion is constructed. As it was shown in the previous sections,
the Lie algebra of the approximate symmetries correspond-
ing to Fisher’s equation, Zeldovich equation, and Newell-
Whitehead-Segel (NSW) equation is three-dimensional and
spanned by the following generators:

𝑋
1
= 𝜕
𝑡
, 𝑋

2
= 𝜕
𝑥
, 𝑋

3
= 𝑥𝜕
𝑥
− 2𝑤𝜕

𝑤
. (34)

The commutation relations corresponding to these vector
fields are given in Table 1.

It is worth noting that each 𝑠-parameter subgroup cor-
responds to one of the group invariant solutions. Since any
linear combination of the infinitesimal generators is also
an infinitesimal generator, there are always infinitely many
distinct symmetry subgroups for a differential equation. But
it is not practical to find the list of all group invariant
solutions of a system. Consequently, we need an effective
and systematic means of classifying these solutions, leading
to an “optimal system” of group invariant solutions from
which every other such solutions can results. Let 𝐺 be a
Lie group and let g denote its Lie algebra. An optimal
system of 𝑠-parameter subgroups is indeed a list of conjugacy
inequivalent 𝑠-parameter subgroups with the property that
any other subgroup is conjugate to precisely one subgroup
in the list. Similarly, a list of 𝑠-parameter subalgebras forms
an optimal system if every 𝑠-parameter subalgebra of g is
equivalent to a uniquemember of the list under some element
of the adjoint representation: ℎ̃ = Ad

𝑔
(ℎ), with 𝑔 ∈ 𝐺.

According to the proposition (3.7) of [3], the problem
of finding an optimal system of subgroups is equivalent
to that of obtaining an optimal system of subalgebras.
For one-dimensional subalgebras, this classification prob-
lem is essentially the same as the problem of classifying
the orbits of the adjoint representation. Since each one-
dimensional subalgebra is determined by a nonzero vector in
g, this problem is attacked by the naive approach of taking
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Table 2: Adjoint representation of the approximate symmetries of
the KPP equation.

Ad 𝑋
1

𝑋
2

𝑋
3

𝑋
1

𝑋
1

𝑋
2

𝑋
3

𝑋
2

𝑋
1

𝑋
2

𝑋
3
− 𝜀𝑋
2

𝑋
3

𝑋
1

𝑒
𝜀
𝑋
2

𝑋
3

a general element 𝑋 in g and subjecting it to various adjoint
transformations so as to simplify it as much as possible. Thus
we will deal with the construction of an optimal system of
subalgebras of g. The adjoint action is given by the Lie series:
Ad(exp(𝜀𝑋

𝑖
, 𝑋
𝑗
) = 𝑋

𝑗
− 𝜀[𝑋

𝑖
, 𝑋
𝑗
] + 𝜀
2
/2)[𝑋

𝑖
, [𝑋
𝑖
, 𝑋
𝑗
]] − ⋅ ⋅ ⋅ ,

where [𝑋
𝑖
, 𝑋
𝑗
] denotes the Lie bracket, 𝜀 is a parameter, and

𝑖, 𝑗 = 1, 2, 3 [3].
The adjoint representation Ad corresponding to the

resulted approximate symmetries is presented in Table 2 with
the (𝑖, 𝑗)th entry indicating Ad(exp(𝜀𝑥

𝑖
)𝑥
𝑗
).

Therefore, we can state the following theorem.

Theorem 2. An optimal system of one-dimensional subalge-
bras corresponding to the Lie algebra of approximate symme-
tries of the KPP equation is generated by (i)𝑋

1
, (ii) 𝛼𝑋

1
+𝑋
2
,

and (iii) 𝛽𝑋
1
+ 𝑋
3
, where 𝛼, 𝛽 ∈ R are arbitrary constants.

Proof. Let 𝐹𝑠
𝑖
: g → g be a linear map defined by 𝑋 →

Ad(exp(𝑠
𝑖
𝑋
𝑖
)𝑋) for 𝑖 = 1, . . . , 3. The matrices𝑀𝑠

𝑖
of 𝐹𝑠
𝑖
with

respect to the basis {𝑋
1
, 𝑋
2
, 𝑋
3
} are given by

𝑀
𝑠

1
= (

1 0 0

0 1 0

0 0 1

) ,

𝑀
𝑠

2
= (

1 0 0

0 1 0

0 −𝑠
1
1

) ,

𝑀
𝑠

3
= (

1 0 0

0 𝑒
𝑠2 0

0 0 1

) .

(35)

Let 𝑋 = ∑
3

𝑖=1
𝑎
𝑖
𝑋
𝑖
then 𝐹𝑠

3
∘ 𝐹
𝑠

2
∘ 𝐹
𝑠

1
: 𝑋 → 𝑎

1
𝑋
1
+ 𝑎
2
𝑒
𝑠2𝑋
2
+

(𝑎
3
− 𝑠
1
𝑎
2
)𝑋
3
. In the following, by alternative action of these

matrices on a vector field 𝑋, the coefficients 𝑎
𝑖
of 𝑋 will be

simplified.
If 𝑎
2

̸= 0, then we can make the coefficients of 𝑋
3
vanish

by 𝐹𝑠
1
by setting 𝑠

1
= 𝑎
3
/𝑎
2
. Scaling 𝑋 if necessary, we can

assume that 𝑎
2
= 1. So, 𝑋 is reduced to the case (ii). If 𝑎

2
= 0

and 𝑎
3

̸= 0, by scaling we insert 𝑎
3
= 1. So𝑋 is reduced to the

case (iii). Finally, if 𝑎
2
= 𝑎
3
= 0, then𝑋 is reduced to the case

(i).There are not anymore possible cases for investigating and
the proof is complete.

In order to obtain the group transformations which are
generated by the resulting infinitesimal symmetry generators
(34), we need to solve the following system of first-order

ordinary differential equations (𝑥
1
= 𝑥, 𝑥

2
= 𝑡, 𝑢

1
= V, 𝑢

2
=

𝑤):

𝑑𝑥
𝑗 (𝑠)

𝑑𝑠
= 𝜉
𝑗

𝑖
(𝑥 (𝑠) , �̃� (𝑠) , Ṽ (𝑠) , 𝑤 (𝑠)) ,

𝑥
𝑗
(0) = 𝑥

𝑗
, 𝑖 = 1, 2, 3,

𝑑�̃�
𝑗 (𝑠)

𝑑𝑠
= 𝜑
𝑗

𝑖
(𝑥 (𝑠) , �̃� (𝑠) , Ṽ (𝑠) , 𝑤 (𝑠)) ,

�̃�
𝑗 (0) = 𝑢

𝑗
, 𝑗 = 1, 2.

(36)

Hence, by exponentiating the resulting infinitesimal approx-
imate symmetries of the KPP equation, the one-parameter
groups 𝐺

𝑖
(𝑠) generated by 𝑋

𝑖
for 𝑖 = 1, 2, 3 are determined

as follows:

𝐺
1
: (𝑡, 𝑥, V, 𝑤) → (𝑡 + 𝑠, 𝑥, V, 𝑤) ,

𝐺
2
: (𝑡, 𝑥, V, 𝑤) → (𝑡, 𝑥 + 𝑠, V, 𝑤) ,

𝐺
3
: (𝑡, 𝑥, V, 𝑤) → (𝑡, 𝑒

𝑠
𝑥, V, 𝑒−2𝑠𝑤) .

(37)

Consequently, we can state the following theorem.

Theorem 3. If 𝑢 = 𝑓(𝑡, 𝑥) + 𝜀𝑔(𝑡, 𝑥) is a solution of the KPP
equation, so are the following functions:

𝐺
1
(𝑠) ⋅ 𝑢 (𝑡, 𝑥) = 𝑓 (𝑡 − 𝑠, 𝑥) + 𝜀𝑔 (𝑡 − 𝑠, 𝑥) ,

𝐺
2
(𝑠) ⋅ 𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥 − 𝑠) + 𝜀𝑔 (𝑡, 𝑥 − 𝑠) ,

𝐺
3
(𝑠) ⋅ 𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑒

−𝑠
𝑥) + 𝜀𝑒

−2𝑠
𝑔 (𝑡, 𝑒

−𝑠
𝑥) .

(38)

4. Conclusion

The investigation of the exact solutions of nonlinear PDEs
plays an essential role in the analysis of nonlinear phenom-
ena. Lie symmetry method greatly simplifies many nonlinear
problems. Exact solutions are nevertheless hard to investigate
in general. Furthermore, many PDEs in application depend
on a small parameter; hence it is of great significance
and interest to obtain approximate solutions. Perturbation
analysis method was thus developed and it has a signif-
icant role in nonlinear science, particularly in obtaining
approximate analytical solutions for perturbed PDEs. This
procedure is mainly based on the expansion of the dependent
variables asymptotically in terms of a small parameter. The
combination of Lie group theory and perturbation theory
yields two distinct approximate symmetry methods.The first
method due to Baikov et al. generalizes symmetry group
generators to perturbation forms [5, 6]. The second method
proposed by Fushchich and Shtelen [7] is based on the
perturbation of dependent variables in perturbation series
and the approximate symmetry of the original equation is
decomposed into an exact symmetry of the system resulting
from the perturbation. Taking into account the comparison
in [11] the second method is superior to the first one.

As it is well known, the solutions of nonlinear reaction-
diffusion equations represent a wide class of behaviors,
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including the formation of wave-like phenomena and trav-
eling waves as well as other self-organized patterns. In this
paper we have comprehensively analyzed the approximate
symmetries of a significant class of nonlinear reaction-
diffusion equations called Kolmogorov-Petrovsky-Piskounov
(KPP) equation. For this purpose, we have concentrated
on four particular and important forms of this equation
including Fick’s second law, Fisher’s equation, Zeldovich
equation, and Newell-Whitehead-Segel (NWS) equation. It
is worth mentioning that in order to calculate the approxi-
mate symmetries corresponding to these equations, we have
applied the second approximate symmetry method which
was proposed by Fushchich and Shtelen. Meanwhile, we have
constructed an optimal system of subalgebras. Also, we have
obtained the symmetry transformations and some invariant
solutions corresponding to the resulted symmetries.
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of approximate symmetry methods for differential equations,”

Acta Applicandae Mathematicae, vol. 80, no. 3, pp. 243–271,
2004.

[12] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, “Étude de
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