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The Chaos Game is an algorithm that can allow one to produce pictures of fractal structures. Considering that the four bases A,
G, C, and T of DNA sequences can be divided into three classes according to their chemical structure, we propose different kinds
of CGR-walk sequences. Based on CGR coordinates of random sequences, we introduce some invariants for the DNA primary
sequences. As an application, we can make the examination of similarity/dissimilarity among the first exon of 𝛽-globin gene of
different species. The results indicate that our method is efficient and can get more biological information.

1. Introduction

A DNA sequence is comprised of four different nucleotides:
adenine (A), cytosine (C), guanine (G), and thymine (T).
Since the DNA molecule contains plentiful biological, physi-
cal, and chemical information, it has become very important
to analyze DNA sequences statistically. Now the nucleotides
stored in GenBank have exceeded hundreds of millions of
bases and the increasing rate is considerably rapid.Therefore,
biologists, physicists, mathematicians, and computer spe-
cialists have adopted different techniques to research DNA
sequences in recent years, including the statistical methods
and some mapping rules of the bases.

A great number of studies have proposed to convert the
DNA sequences into digital sequences before downstream
analysis. There are many statistical methods such as random
walk, lévy-walk, entropy near method, root-mean-square
fluctuation, wavelet transform and Fourier transform, and so
forth, [1–12], which can be used as effective tools to process
the DNA sequences. One-dimensional DNA walk was first
proposed by Peng et al. [1]. Bai et al. [13] later discussed
the representation of DNA primary sequences by the same
walk. Meanwhile, some investigators proposed several kinds
of graphical representation of DNA sequences from different
perspectives. For example, G-curve and H-curve were first

proposed by Hamori and Ruskin in 1983 [14]. R. Zhang
and C. T. Zhang [15] considered a DNA primary sequence
termed as Z-curve. Several researchers in their recent studies
have outlined different kinds of graphical representation of
DNA sequences based on 2D [16–21], 3D [22–25], 4D [26],
5D [27], and 6D [28] spaces. We here need to stress Chaos
Game Representation (CGR) which was proposed as a scale-
independent representation for genomic sequences by Jeffrey
[3] in 1990. Gao and Xu [29] pointed out that the CGR-walk
model can easily generate a model sequence and can be fitted
with a long-memory ARFIMA (𝑝, 𝑑, 𝑞) model reasonably.
However, they treated the four bases equally and ignored the
hidden chemical classification of nucleotides.

Motivated by the above work, we consider in this paper
different classifications of the four bases according to their
chemical structure and the strength of the hydrogen bond,
that is, purine R = {A, G} and pyrimidine Y = {C,T}; amino
group M = {A, C} and keto group K = {G, T}; weak H-
bonds W = {A, T} and strong H-bonds S = {G, C}. Then
we give three kinds of mapping from the four bases A, C,
G, and T to the continuous space and reconstruct CGR-walk
sequences based on CGR coordinates. So we can convert a
DNA sequence into a random numeric sequence, then select
some numerical characterizations of the random sequence
as new invariants for the DNA sequence. As an application,
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we make a comparison of the similarity and dissimilarity of
the first exon of 𝛽-globin gene sequences derived from nine
species.

2. CGR-Walk Based on Three kinds of
Classification and Primary Sequences

2.1. The CGR Space Proposed by Jeffrey. During the past
several years, a new field of physics has developed, known as
“nonlinear dynamics,” “chaotic dynamical systems,” or simply
“chaos.” In fact, the technique of CGR, formally an iterative
mapping, can be traced further back to the foundation of
statistical mechanics, in particular, to chaos theory [2]. Based
on the technique from chaotic dynamics, CGR produces a
picture of gene sequence which displays both local and global
patterns. The Chaos Game is an algorithm which allows one
to produce pictures of fractal structures. Mathematically, it is
described by an iterated function system (IFS).

The CGR space can be viewed as a continuous reference
system, where all possible sequences of any length occupy a
unique position. And the position is produced by the four
possible nucleotides, which are treated as vertices of a binary
square. So it is planar. Since a genetic sequence can be treated
formally as a string composed of the four letters “A,” “C,” “G,”
and “T” (or “U”), the binary CGR vertices are assigned to
the four nucleotides as A = (0, 0), G = (1, 1), C = (0, 1),
T = (1, 0). The CGR coordinates are calculated iteratively by
moving a pointer to half the distance between the previous
position and the current binary representation. For example,
if a “G,” is the next base, then a point is plotted half way
between the previous point and the “G” corner. The iterated
function can be given by

CGR
𝑖
= CGR

𝑖−1
− 0.5 (CGR

𝑖−1
− 𝑔
𝑖
) , (1)

where

𝑖 = 1, . . . , 𝑛G; CGR
0
= (0.5, 0.5) ; 𝑔

𝑖
∈ {𝐴, 𝐺, 𝐶, 𝑇} . (2)

We take the first 6 bases of the sequence of human 𝛽-globin
in Table 1 as an example and present the above procedure in
Figure 1.

2.2. The Newly Proposed CGR Space. The aforementioned
work treats the four nucleic acid bases equally. In this paper,
however, we take the chemical structures of the four nucleic
acid bases into consideration and make adjustments to the
classification based on the elements of the minor diagonal. In
the CGR space proposed by Jeffrey, the elements of theminor
diagonal are purine R = {A, G} and the leading diagonal
elements are pyrimidine Y = {C, T}. Considering amino
group M = {A, C} and keto group K = {G, T}, we get the
second CGR space as shown in Figure 2. In the same way,
according to the strength of the hydrogen bond, the bases
can also be classified into weak H-bonds W = {A, T} and
strong H-bonds S = {G, C}, so the third kind of CGR space is
obtained in Figure 3.
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Figure 1: CGR-RY of the first 6 bases of exon-1 of human 𝛽-globin:
ATGGTG.
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Figure 2: CGR-MK of the first 6 bases of exon-1 of human 𝛽-globin:
ATGGTG.

2.3. CGR-Walk Digital Sequence. Now we can obtain map
relationships between DNA sequences and the CGR coordi-
nates in a right-angled plane. For a DNA sequence, we define
an equation as follows:

𝑧
𝑖
= 𝑥
𝑖
+ 𝑦
𝑖
, (3)

where 𝑥
𝑖
and 𝑦

𝑖
are the 𝑥-coordinate and 𝑦-coordinate of

CGR, respectively. Then we can get a data sequence {𝑧
𝑖
:

𝑖 = 1, 2, . . . , 𝑁}. In this way, we convert a DNA sequence
into a random walk sequence under three different patterns.
Consistent with the above three figures, we call them CGR-
RY-, CGR-MK-, and CGR-WS-walk sequences, respectively.
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Table 1: The coding sequences of the first exon of 𝛽-globin gene of different species.

Species Coding sequence
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGT

Human TACTGCCCTGTGGGGCAAGGTGAACGTGGATTAAG
TTGGTGGTGAGGCCCTGGGCAG

ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGG
Goat CTTCTGGGGCAAGGTGAAAGTGGATGAAGTTGGTG

CTGAGGCCCTGGGCAG

ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCA
Opossum TCACTACCATCTGGTCTAAGGTGCAGGTTGACCA

GACTGGTGGTGAGGCCCTTGGCAG

ATGGTGCACTGGACTGCTGAGGAGAAGCAGCTCAT
Gallus CACCGGCCTCTGGGGGAAGGTCAATGTGGCCGAAT

GTGGGGCCGAAGCCCTGGCCAG

ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGT
Lemur CACCTCTCTGTGGGGCAAGGTGGATGTAGAGAAAG

TTGGTGGCGAGGCCTTGGGCAG

ATGGTTGCACCTGACTGATGCTGAGAAGTCTGCTG
Mouse TCTCTTGCCTGTGGGCAAAGGTGAACCCCGATGAA

GTTGGTGGTGAGGCCCTGGGCAGG

ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGT
Rabbit CACTGCCCTGTGGGGCAAGGTGAATGTGGAAGAAG

TTGGTGGTGAGGCCCTGGGC

ATGGTGCACCTAACTGATGCTGAGAAGGCTACTGT
Rat TAGTGGCCTGTGGGGAAAGGTGAACCCTGATAATG

TTGGCGCTGAGGCCCTGGGCAG

ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGT
Gorilla TACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAG

TTGGTGGTGAGGCCCTGGGCAGG

Table 2: Hurst exponent of the CGR-walk sequence {𝑋
𝑛
} of the nine species in Table 1.

Human Goat Opossum Gallus Lemur Mouse Rabbit Rat Gorilla
𝐻(𝑋RY
𝑛
) 0.445 0.5024 0.6536 0.5075 0.5016 0.538 0.429 0.5791 0.4698

𝐻(𝑋MK
𝑛
) 0.7452 0.7853 0.6547 0.7212 0.7487 0.7094 0.8099 0.5237 0.7467

𝐻(𝑋WS
𝑛
) 0.641 0.6894 0.6292 0.5756 0.6753 0.8118 0.615 0.7255 0.6302

3. Numerical Characterization of
DNA Sequences

Researchers from computer science and mathematics have
been attracted to study the comparison of DNA sequences.
As pointed out in references [13, 16–28], some related work
has made progress.

Now, we may represent a DNA sequence by a random
numerical sequence based on CGR-walk technique. Gao and
Xu [29] also substantially corroborated the results that long-
range correlations are uncovered remarkably in the data.
In this paper, we explore the tendency of a series of data
by calculating the hurst exponent [30]. And some work
has been done to study the relation between long-range

correlation and hurst exponent [31]. In order to numerically
characterize a DNA sequence given by the CGR, we treat the
hurst exponent as the efficient invariant that is sensitive to this
kind of graphical representation.

Because a DNA sequence can be regarded as an ordered
set of alphabet N = (A, C, G, T), we represent a DNA
sequence as a finite set with 𝑁 elements, denoted as [𝑖] :=
{1, 2, . . . , 𝑁}. For any time series {𝑢

𝑖
}𝑁
𝑖=1

, one candefine several
quantities as follows [30]:

(i) the partial mean

⟨𝑢⟩𝑛 =
1

𝑛

𝑛

∑
𝑖=1

𝑢
𝑖
, 2 ≤ 𝑛 ≤ 𝑁, (4)
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Table 3: Mean square deviations of the CGR-walk sequence {𝑋
𝑛
} of the nine species of in Table 1.

Human Goat Opossum Gallus Lemur Mouse Rabbit Rat Gorilla
𝐷(𝑋RY
𝑛
) 0.3979 0.3927 0.3998 0.4192 0.4054 0.3866 0.4060 0.4266 0.3921

𝐷(𝑋MK
𝑛
) 0.3858 0.3949 0.3500 0.3940 0.3636 0.3871 0.3866 0.3908 0.3838

𝐷(𝑋WS
𝑛
) 0.3590 0.3724 0.3907 0.3411 0.4010 0.3912 0.3742 0.3713 0.3574

Table 4: Similarity/dissimilarity table for the nine DNA sequences in Table 1 based on Euclidean distance between the 3-component vectors
in Table 2.

Species Human Goat Opossum Gallus Lemur Mouse Rabbit Rat Gorilla
Human 0 0.0851 0.2277 0.0936 0.0663 0.1978 0.0715 0.2724 0.0271
Goat 0 0.2087 0.1307 0.0392 0.1484 0.1074 0.2750 0.0778
Opossum 0 0.1692 0.1846 0.2229 0.2734 0.1788 0.2056
Gallus 0 0.1036 0.2385 0.1248 0.2581 0.0711
Lemur 0 0.1467 0.1125 0.2432 0.0552
Mouse 0 0.2464 0.2089 0.1976
Rabbit 0 0.3416 0.0767
Rat 0 0.2660
Gorilla 0
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Figure 3: CGR-WS of the first 6 bases of exon-1 of human 𝛽-globin:
ATGGTG.

(ii) the partial difference

𝑢 (𝑖, 𝑛) =
𝑛

∑
𝑖=1

(𝑢
𝑖
− ⟨𝑢⟩𝑛) , 2 ≤ 𝑛 ≤ 𝑁, (5)

(iii) the difference
𝑅 (𝑛) = max

1≤𝑖≤𝑛

{𝑢 (𝑖, 𝑛)} − min
1≤𝑖≤𝑛

{𝑢 (𝑖, 𝑛)} , 2 ≤ 𝑛 ≤ 𝑁, (6)

(iv) and the standard deviation

𝑆 (𝑛) = [
1

𝑛

𝑛

∑
𝑖=1

(𝑢
𝑖
− ⟨𝑢⟩𝑛)

2
]

1/2

, 2 ≤ 𝑛 ≤ 𝑁. (7)

Hurst exponent is found to obey the relation:

𝑅 (𝑛)

𝑆 (𝑛)
∼ (

𝑛

2
)
𝐻

, (8)

where𝐻 is called the hurst exponent.
So we can compute the hurst exponent of RY-, MK-

and WS-CGR-walk sequences and characterize the coding
sequences of the first exon of𝛽-globin gene of the nine species
in Table 1. The results are listed in Table 2.

Besides, there are other numerical characterizations of
random sequences, such as the mean, variance, mean square
deviation, and so on. Here we choose the mean square
deviation of CGR-walk sequence as follows:

𝐷(𝑋𝑘
𝑖
) = [

1

𝑁

𝑁

∑
𝑖=1

(𝑋𝑘
𝑖
− 𝜇
𝑋
𝑘

𝑖

)
2

]

1/2

. (9)

In (9) 𝑘 means the classification of RY-, MK-, and WS-
sequences, and 𝜇

𝑋
𝑘

𝑖

is the mean [13]. We then present the
mean square deviations of three kinds of the CGR-walk
sequences {𝑋

𝑖
} in Table 3.

4. Similarity and Dissimilarity among
the Coding Sequences of the First Exon of
𝛽-Globin Gene of Different Nine Species

Here we construct the three-component vectors in this
way, whose components, respectively, are values of hurst
exponent and mean square deviation. The analysis of sim-
ilarity/dissimilarity among DNA sequences represented by
the three-component vectors is based on the assumption that
two DNA sequences are similar if the corresponding vectors
point to one direction in the 3D space. Alternatively we can
investigate the similarity among the vectors by calculating
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Table 5: Similarity/dissimilarity table for the nine DNA sequences in Table 1 based on Euclidean distance between the 3-component vectors
in Table 3.

Species Human Goat Opossum Gallus Lemur Mouse Rabbit Rat Gorilla
Human 0 0.0171 0.0479 0.0290 0.0481 0.0342 0.0173 0.0317 0.0063
Goat 0 0.0490 0.0410 0.0442 0.0212 0.0157 0.0342 0.0187
Opossum 0 0.0691 0.0180 0.0394 0.0407 0.0526 0.0481
Gallus 0 0.0686 0.0602 0.0364 0.0313 0.0333
Lemur 0 0.0317 0.0353 0.0455 0.0499
Mouse 0 0.0258 0.0449 0.0344
Rabbit 0 0.0213 0.0220
Rat 0 0.0380
Gorilla 0

the Euclidean distance between their end points. Apparently,
the smaller the Euclidean distance is, themore similar the two
corresponding DNA sequences are.

In Tables 4 and 5, we list the values of Euclidean distances
between the 3-component vectors separately including hurst
exponent and mean square deviation. We observe that the
smallest entry is always the human-gorilla pair. Furthermore,
the largest entries are associated with these rows belonging
to opossum (the most remote species from the remaining
mammals) and gallus (the only nonmammalian representa-
tive).We believe that these results are not accidental, and they
coincide with other results in [13, 16–28].

5. Conclusion

DNA sequences play an important role in modern biological
research because all the information of the hereditary and
species evolution is contained in these macromolecules. How
to gain more information from these DNA sequences is still
a very challenging question. Description, comparison, and
similarity analysis of DNA sequences still occupy important
positions.

In this paper, we first construct three kinds of CGR spaces
according to the elements of the minor diagonal because the
four bases can be classified into R-Y,M-K, andW-S according
to their chemical structures. Then we describe a DNA
sequence by CGR-walk and convert it to a digital sequence.
And we outline some efficient invariants of DNA sequences.
As an application, we compare the similarity/dissimilarity
of exon-1 of 𝛽-globin genes for nine species. From the
above tables, we can conclude that the results we got are
consistent with known evolutionary facts. Therefore, the
method proposed in the paper is visual and efficient.

On one hand, our work can be treated as an effective
application of CGR. On the other hand, our method is a valid
supplement to graphical representation ofDNA sequences. In
comparisonwith other graphical representations of biological
sequences, our approach has the following advantages.

(1) Our graphical representation based on CGR con-
siders the chemical structure classification of the
nucleotides and thus may provide more biological
information.

(2) It provides amore simple way of viewing, sorting, and
comparing various gene structures, even for longer
DNA sequences.

(3) Our graph is more sensitive, so it can numerically
characterize the DNA sequences in a more exact way.
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