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A class of nonlinear elliptic problems driven by 𝑝(𝑥)-Laplacian-like with a nonsmooth locally Lipschitz potential was considered.
Applying the version of a nonsmooth three-critical-point theorem, existence of three solutions of the problem is proved.

1. Introduction

Since many free boundary problems and obstacle problems
may be reduced to partial differential equations with dis-
continuous nonlinearities, the existence of multiple solu-
tions of the problems with discontinuous nonlinearities has
been widely investigated in recent years. In 1981, Chang
[1] extended the variational methods to a class of nondif-
ferentiable functionals and directly applied the variational
methods for nondifferentiable functionals to prove some
existence theorems for PDE with discontinuous nonlin-
earities. Soon thereafter, Kourogenis and Papageorgiou [2]
extend the nonsmooth critical point theory of Chang [1],
by replacing the compactness and the boundary condi-
tions. In [3], by using the Ekeland variational principle
and a deformation theorem, Kandilakis et al. obtained
the local linking theorem for locally Lipschitz functions.
In the celebrated work [4], Ricceri elaborated a Ricceri-
type variational principle for Gateaux differentiable func-
tionals. Later, Marano and Motreanu [5] extended Ric-
ceri’s result to a large class of nondifferentiable function-
als and gave an application to a Neumann-type problem
involving the 𝑝-Laplacian with discontinuous nonlineari-
ties.

In this paper, we consider a nonlinear elliptic problem
driven by 𝑝(𝑥)-Laplacian-like with a nonsmooth locally

Lipschitz potential (hemivariational inequality):

− div((1+
|∇𝑢|

𝑝(𝑥)

√1 + |∇𝑢|
2𝑝(𝑥)

)|∇𝑢|
𝑝(𝑥)−2

∇𝑢)∈𝜆𝜕𝐹 (𝑥, 𝑢) ,

a.e. in Ω,

𝑢 = 0, on 𝜕Ω,
(P)

where Ω ⊂ R𝑁 is a bounded domain with 𝐶1-boundary 𝜕Ω.
𝑝 ∈ 𝐶(Ω), 2 ≤ 𝑁 < 𝑝

−
:= inf𝑥∈Ω𝑝(𝑥) ≤ 𝑝

+
:= sup

𝑥∈Ω
𝑝(𝑥) <

+∞, 𝐹 ∈ 𝐶(Ω×R), and 𝐹 : Ω×R → R is a locally Lipschitz
with respect to the second variable. By 𝜕𝐹(𝑥, 𝑢), we denote the
generalized subdifferential of the locally Lipschitz function
𝑢 → 𝐹(𝑥, 𝑢). Our goal is to establish the same results under
different assumptions.

The study of differential equations and variational prob-
lems with variable exponent has been a new and interesting
topic. It arises from nonlinear elasticity theory, electrorhe-
ological fluids, and so forth (see [6, 7]). The study on
variable exponent problems attracts more and more interest
in recent years. Many results have been obtained on this kind
of problems, for example, [8–14]. Neumann-type problems
involving the 𝑝(𝑥)-Laplacian have been studied, for instance,
in [15–18].
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Recently, Rodrigues [19] has considered the existence of
nontrivial solution for the Dirichlet problem involving the
𝑝(𝑥)-Laplacian-like of the type

− div((1 +
|∇𝑢|

𝑝(𝑥)

√1 + |∇𝑢|
2𝑝(𝑥)

)|∇𝑢|
𝑝(𝑥)−2

∇𝑢)=𝜆𝑓 (𝑥, 𝑢) ,

a.e. inΩ,

𝑢 = 0, on 𝜕Ω,
(1)

where Ω ⊂ R𝑁 is a bounded domain with smooth boundary
𝜕Ω, 𝑝 ∈ 𝐶(Ω)with 𝑝(𝑥) > 2, for all 𝑥 ∈ Ω, and 𝑓 : Ω×R →

R satisfies the Caratheodory condition. We emphasize that,
in our approach, no continuity hypothesis will be required for
the function 𝑓 with respect to the second argument. So, (P)
need not have a solution. To avoid this situation, we consider
such function𝑓(𝑥, ⋅)which is locally essentially bounded and
fill the discontinuity gap of𝑓(𝑥, ⋅), replacing𝑓 by the interval
[𝑓1, 𝑓2], where

𝑓1 (𝑥, 𝑡) := lim
𝑠→0+

ess inf
|𝑠−𝑡|<𝛿

𝑓 (𝑥, 𝑠) ,

𝑓2 (𝑥, 𝑡) := lim
𝑠→0+

ess sup
|𝑠−𝑡|<𝛿

𝑓 (𝑥, 𝑠) .
(2)

On the other hand, it is well known that if 𝐹(𝑥, 𝑢) =

∫
𝑢

0
𝑓(𝑥, 𝑡)𝑑𝑡, then 𝐹 become locally Lipschitz and 𝜕𝐹(𝑥, 𝑢) =

[𝑓1(𝑥, 𝑢), 𝑓2(𝑥, 𝑢)] (see [1, 20]).
The aim of the present paper is to establish a three-

solution theorem for the nonlinear elliptic problem driven
by 𝑝(𝑥)-Laplacian-like with nonsmooth potential (see
Theorem 6) by using a consequence (see Theorem 4) of the
three-critical-point theorem established firstly by Marano
and Motreanu in [20], which is a non-smooth version of
Ricceri’s three-critical-point theorem (see [21]). The paper is
organized as follows. In Section 2, we present some necessary
preliminary knowledge on variable exponent Sobolev spaces
and the generalized gradient of the locally Lipschitz function.
In Section 3, we give the main result of this paper and use
the non-smooth three-critical-point theorem to prove it.

2. Preliminary

In order to discuss problem (P), we need some theories
on 𝑊

1,𝑝(𝑥)

0
(Ω) and the generalized gradient of the locally

Lipschitz function. Firstly we state some basic properties
of space 𝑊

1,𝑝(𝑥)

0
(Ω) which will be used later (for details,

see [10–12]). Denote by 𝑆(Ω) the set of all measurable real
functions defined onΩ. Two functions in 𝑆(Ω) are considered
as the same element of 𝑆(Ω) when they are equal almost
everywhere.

Put 𝐶+(Ω) = {𝑝 ∈ 𝐶(Ω) : 𝑝(𝑥) > 1, ∀𝑥 ∈ Ω}.
If 𝑝 ∈ 𝐶(Ω), then write

𝐿
𝑝(𝑥)

(Ω) = {𝑢 ∈ 𝑆 (Ω) : ∫
Ω

|𝑢 (𝑥)|
𝑝(𝑥)

𝑑𝑥 < +∞} , (3)

with the norm |𝑢|𝐿𝑝(𝑥)(Ω) = |𝑢|𝑝(𝑥) = inf{𝜆 > 0 : ∫
Ω
|𝑢(𝑥)/

𝜆|
𝑝(𝑥)

𝑑𝑥 ≤ 1}, and

𝑊
1,𝑝(𝑥)

(Ω) = {𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω) : |∇𝑢| ∈ 𝐿
𝑝(𝑥)

(Ω)} , (4)

with the norm ‖𝑢‖𝑊1,𝑝(𝑥)(Ω) = |𝑢|𝐿𝑝(𝑥)(Ω) + |∇𝑢|𝐿𝑝(𝑥)(Ω). Denote
by𝑊1,𝑝(𝑥)

0
(Ω) the closure of 𝐶∞

0
(Ω) in𝑊1,𝑝(𝑥)

(Ω).
We remember that the variable exponent Lebesgue spaces

are separable and reflexive Banach spaces. Denote by 𝐿𝑞(𝑥)(Ω)
the conjugate Lebesgue space of 𝐿𝑝(𝑥)(Ω) with 1/𝑝(𝑥) +

1/𝑞(𝑥) = 1; then the Hölder-type inequality

∫
Ω

|𝑢V| 𝑑𝑥 ≤ (
1

𝑝−
+

1

𝑞−
) |𝑢|𝑝(𝑥)|V|𝑞(𝑥),

𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω) , V ∈ 𝐿𝑞(𝑥) (Ω)

(5)

holds. Furthermore, if we define themapping 𝜌 : 𝐿𝑝(𝑥)(Ω) →
R by

𝜌 (𝑢) = ∫
Ω

|𝑢 (𝑥)|
𝑝(𝑥)

𝑑𝑥, (6)

then the following relations hold:

|𝑢|𝑝(𝑥) > 1 ⇒ |𝑢|
𝑝
−

𝑝(𝑥)
≤ 𝜌 (𝑢) ≤ |𝑢|

𝑝
+

𝑝(𝑥)
,

|𝑢|𝑝(𝑥) < 1 ⇒ |𝑢|
𝑝
+

𝑝(𝑥)
≤ 𝜌 (𝑢) ≤ |𝑢|

𝑝
−

𝑝(𝑥)
.

(7)

Proposition 1 (see [12]). In 𝑊
1,𝑝(𝑥)

0
(Ω) Poincare’s inequality

holds; that is, there exists a positive constant 𝐶0 such that

|𝑢|𝑝(𝑥) ≤ 𝐶0|∇𝑢|𝑝(𝑥), ∀𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω) . (8)

So |∇𝑢|𝑝(𝑥) is an equivalent norm in𝑊1,𝑝(𝑥)

0
(Ω).

We will use the equivalent norm in the following discus-
sion and write ‖𝑢‖ = |∇𝑢|𝑝(𝑥) for simplicity.

Proposition 2 (see [10]). If 𝑞 ∈ 𝐶+(Ω) and 𝑞(𝑥) < 𝑝
∗
(𝑥) for

any 𝑥 ∈ Ω, then the embedding from𝑊
1,𝑝(𝑥)

(Ω) to 𝐿𝑞(𝑥)(Ω) is
compact and continuous.

Consider the following function:

𝐽 (𝑢) = ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|

2𝑝(𝑥)
)𝑑𝑥,

𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω) .

(9)

We know that (see [1]).
If one denotes𝐴 = 𝐽


: 𝑊

1,𝑝(𝑥)

0
(Ω) → (𝑊

1,𝑝(𝑥)

0
(Ω))

∗, then

⟨𝐴 (𝑢) , V⟩

= ∫
Ω

(|∇𝑢|
𝑝(𝑥)−2

+
|∇𝑢|

2𝑝(𝑥)−2

√1 + |∇𝑢|
2𝑝(𝑥)

)(∇𝑢, ∇V)R𝑁𝑑𝑥,

(10)

for all 𝑢, V ∈ 𝑊1,𝑝(𝑥)

0
(Ω).
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Proposition 3 (see [19]). Set 𝑋 = 𝑊
1,𝑝(𝑥)

0
(Ω); 𝐴 is as shown,

then

(1) 𝐴 : 𝑋 → 𝑋
∗ is a convex, bounded previously; and

strictly monotone operator;

(2) 𝐴 : 𝑋 → 𝑋
∗ is a mapping of type (𝑆)+; that is, 𝑢𝑛

𝑤
→

𝑢 in 𝑋 and lim sup
𝑛→∞

⟨𝐴(𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0 implies
𝑢𝑛 → 𝑢 in𝑋;

(3) 𝐴 : 𝑋 → 𝑋
∗ is a homeomorphism.

Let (𝑋, ‖ ⋅ ‖) be a real Banach space, and let 𝑋∗ be its
topological dual. A function 𝑓 : 𝑋 → R is called locally
Lipschitz if each point 𝑢 ∈ 𝑋 possesses a neighborhood Ω𝑢

such that |𝑓(𝑢1) − 𝑓(𝑢2)| ≤ 𝐿 ‖𝑢1 − 𝑢2‖ for all 𝑢1, 𝑢2 ∈ Ω𝑢,
for a positive constant 𝐿 depending on Ω𝑢. The generalized
directional derivative of 𝑓 at the point 𝑢 ∈ 𝑋 in the direction
ℎ ∈ 𝑋 is

𝑓
0
(𝑢; ℎ) = lim sup

V→𝑢; 𝑡↓0

𝑓 (V + 𝑡ℎ) − 𝑓 (V)

𝑡
. (11)

The generalized gradient of 𝑓 at 𝑢 ∈ 𝑋 is defined by

𝜕𝑓 (𝑢) = {𝑢
∗
∈ 𝑋

∗
: ⟨𝑢

∗
, ℎ⟩ ≤ 𝑓

0
(𝑢; ℎ) ∀ℎ ∈ 𝑋} , (12)

which is a nonempty, convex, and 𝑤
∗-compact subset of 𝑋,

where ⟨⋅, ⋅⟩ is the duality pairing between 𝑋∗ and 𝑋. One says
that 𝑢 ∈ 𝑋 is a critical point of 𝑓 if 0 ∈ 𝜕𝑓(𝑢).

For further details, we refer the reader to the work of
Chang [1].

Finally, for proving our results in the next section, we
introduce the following theorem.

Theorem 4 (see [22, 23]). Let 𝑋 be a separable and reflexive
real Banach space, and let Φ,Ψ : 𝑋 → R be two locally
Lipschitz functions. Assume that there exists 𝑢0 ∈ 𝑋 such that
Φ(𝑢0) = Ψ(𝑢0) = 0 and Φ(𝑢) ≥ 0 for every 𝑢 ∈ 𝑋 and that
there exist 𝑢1 ∈ 𝑋 and 𝑟 > 0 such that

(1) 𝑟 < Φ(𝑢1);

(2) sup
Φ(𝑢)<𝑟

Ψ(𝑢) < 𝑟(Ψ(𝑢1)/Φ(𝑢1)), and further, one
assumes that function Φ − 𝜆Ψ is sequentially lower
semicontinuous and satisfies the (PS)-condition;

(3) lim‖𝑢‖→∞(Φ(𝑢) − 𝜆Ψ(𝑢)) = +∞ for every 𝜆 ∈ [0, 𝑎],
where

𝑎 =
ℎ𝑟

𝑟 (Ψ (𝑢1) /Φ (𝑢1)) − sup
Φ(𝑢)<𝑟

Ψ (𝑢)
, with ℎ > 1.

(13)

Then, there exist an open interval Λ 1 ⊆ [0, 𝑎] and a positive
real number 𝜎 such that, for every 𝜆 ∈ Λ 1, the functionΦ(𝑢)−
𝜆Ψ(𝑢) admits at least three critical points whose norms are less
than 𝜎.

3. Existence Results

In this part, we will prove that there exist three solutions for
problem (P) under certain conditions.

Definition 5. We say that 𝐼 satisfies (PS)𝑐-condition if any
sequence {𝑢𝑛} ⊂ 𝑊

1,𝑝(𝑥)

0
(Ω), such that 𝐼(𝑢𝑛) → 𝑐 and

𝑚(𝑢𝑛) → 0, as 𝑛 → +∞, has a strongly convergent
subsequence, where𝑚(𝑢𝑛) = inf{‖𝑢∗‖𝑋∗ : 𝑢

∗
∈ 𝜕𝐼(𝑢𝑛)}.

By a solution of (P), we mean a function 𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω)

to which there corresponds a mapping Ω ∋ 𝑥 → 𝑤(𝑥) with
𝑤(𝑥) ∈ 𝜕𝐹(𝑥, 𝑢) for almost every 𝑥 ∈ Ω having the property
that, for every V ∈ 𝑊1,𝑝(𝑥)

0
(Ω), the function 𝑥 → 𝑤(𝑥)V(𝑥) ∈

𝐿
1
(Ω) and

∫
Ω

(|∇𝑢|
𝑝(𝑥)−2

+
|∇𝑢|

2𝑝(𝑥)−2

√1 + |∇𝑢|
2𝑝(𝑥)

)(∇𝑢, ∇V)R𝑁𝑑𝑥

= 𝜆∫
Ω

𝑤 (𝑥) V (𝑥) 𝑑𝑥.

(14)

We know that𝑊1,𝑝(𝑥)

0
(Ω) is compactly embedded into 𝐶(Ω)

(by𝑁 < 𝑝
−
< 𝑝

∗
(𝑥)). So there is a constant 𝑐0 > 0 such that

|𝑢|∞ ≤ 𝑐0‖𝑢‖, for all 𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω).

Set Φ(𝑢) = ∫
Ω
(1/𝑝(𝑥))(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|2𝑝(𝑥))𝑑𝑥,

Ψ(𝑢) = ∫
Ω
𝐹(𝑥, 𝑢)𝑑𝑥, 𝑢 ∈ 𝑊

1,𝑝(𝑥)

0
(Ω) and 𝜑(𝑢) = Φ(𝑢) −

𝜆Ψ(𝑢), for all 𝑢 ∈ 𝑊1,𝑝(𝑥)

0
(Ω).

We know that the critical points of 𝜑 are just the weak
solutions of (P).

We consider a non-smooth potential function 𝐹 : Ω ×

R → R such that 𝐹(𝑥, 0) = 0 a.e. on Ω satisfying the
following conditions:

H(j):

(h1) 𝐹(⋅, 𝑡) is measurable for all 𝑡 ∈ R;
(h2) 𝐹(𝑥, ⋅) is locally Lipschitz for a.e. 𝑥 ∈ Ω;
(h3) there exist 𝑎 ∈ 𝐿∞(Ω)+, 𝑐 > 0 such that

|𝑤| ≤ 𝑎 (𝑥) + 𝑐|𝑡|
𝛼(𝑥)−1

, a.e. 𝑥 ∈ Ω, ∀𝑡 ∈ R, (15)

where 𝑤 ∈ 𝜕𝐹(𝑥, 𝑡) and 1 < 𝛼
−
≤ 𝛼

+
< 𝑝

−;
(h4) there exists 𝑞 ∈ 𝐶(Ω) with 𝑝

+
< 𝑞

−
≤ 𝑞(𝑥) <

𝑝
∗
(𝑥), such that lim|𝑡|→0(𝐹(𝑥, 𝑡)/|𝑡|

𝑞(𝑥)
) = 0

uniformly a.e. 𝑥 ∈ Ω;
(h5) sup𝑡∈R𝐹(𝑥, 𝑡) > 0, for all 𝑥 ∈ Ω.

Theorem 6. Let (h1)–(h5) hold. Then, there are an open
interval Λ ⊆ [0, +∞) and a number 𝜎 such that, for every 𝜆
belonging to Λ, problem (P) possesses at least three solutions in
𝑊

1,𝑝(𝑥)

0
(Ω) whose norms are less than 𝜎.

Proof. Weobserve thatΨ(𝑢) is Lipschitz on𝐿𝛼(𝑥)(Ω) and, tak-
ing into account that 𝛼(𝑥) < 𝑝

∗
(𝑥),Ψ is also locally Lipschitz

on𝑊1,𝑝(𝑥)

0
(Ω) (see Proposition 2.2 of [15]).Moreover it results

in 𝜕Ψ(𝑢) ⊆ ∫
Ω
𝜕𝐹(𝑥, 𝑢)𝑑𝑥 (see [24]). The interpretation



4 Abstract and Applied Analysis

of 𝜕Ψ(𝑢) ⊆ ∫
Ω
𝜕𝐹(𝑥, 𝑢)𝑑𝑥 is as follows: to every 𝑤 ∈ 𝜕Ψ(𝑢)

there corresponds a mapping 𝑤(𝑥) ∈ 𝜕𝐹(𝑥, 𝑢) for almost all
𝑥 ∈ Ω having the property that for every V ∈ 𝑊

1,𝑝(𝑥)

0
(Ω) the

function 𝑤(𝑥)V(𝑥) ∈ 𝐿1(Ω) and ⟨𝑤, V⟩ = ∫
Ω
𝑤(𝑥)V(𝑥)𝑑𝑥 (see

[24]). The proof is divided into the following five steps.

Step 1. We show that 𝜑 is coercive.
By (h2), for almost all 𝑥 ∈ Ω, 𝑡 → 𝐹(𝑥, 𝑡) is differentiable

almost everywhere on R and we have

𝑑

𝑑𝑡
𝐹 (𝑥, 𝑡) ∈ 𝜕𝐹 (𝑥, 𝑡) . (16)

From (h3), there exist positive constants 𝑎1, 𝑎2 such that

𝐹 (𝑥, 𝑡) = 𝐹 (𝑥, 0) + ∫

𝑡

0

𝑑

𝑑𝑠
𝐹 (𝑥, 𝑠) 𝑑𝑠

≤ 𝑎 (𝑥) 𝑡 +
𝑐

𝛼 (𝑥)
|𝑡|

𝛼(𝑥)
≤ 𝑎1 + 𝑎2|𝑡|

𝛼(𝑥)

(17)

for a.e. 𝑥 ∈ Ω and 𝑡 ∈ R.
Note that 1 < 𝛼(𝑥) ≤ 𝛼

+
< 𝑝

−
< 𝑝

∗
(𝑥); then by

Proposition 2, we have 𝑊
1,𝑝(𝑥)

0
(Ω) → 𝐿

𝛼(𝑥)
(Ω) (compact

embedding). Furthermore, there exists 𝑐1 such that |𝑢|𝛼(𝑥) ≤
𝑐1‖𝑢‖.

So, for |𝑢|𝛼(𝑥) > 1 and ‖𝑢‖ > 1, we have ∫
Ω
|𝑢|

𝛼(𝑥)
𝑑𝑥 ≤

|𝑢|
𝛼
+

𝛼(𝑥)
≤ 𝑐

𝛼
+

1
‖𝑢‖

𝛼
+

.
Hence,

𝜑 (𝑢)

= ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|

2𝑝(𝑥)
)𝑑𝑥 − 𝜆

× ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
2

𝑝+
∫
Ω

|∇𝑢|
𝑝(𝑥)

𝑑𝑥 − 𝜆∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
2

𝑝+
‖𝑢‖

𝑝
−

− 𝜆𝑎1meas (Ω) − 𝜆𝑎2𝑐
𝛼
+

1 ‖𝑢‖
𝛼
+

→ +∞,

(18)

as ‖𝑢‖ → +∞.

Step 2. We show that 𝜑 is weakly lower semicontinuous.
Let 𝑢𝑛 ⇀ 𝑢 weakly in 𝑊

1,𝑝(𝑥)

0
(Ω), and by Proposition 2,

we obtain the following results:

𝑊
1,𝑝(𝑥)

0
(Ω) → 𝐿

𝑝(𝑥)
(Ω) ; 𝑢𝑛 → 𝑢 in 𝐿

𝑝(𝑥)
(Ω) ;

𝑢𝑛 → 𝑢 for a.a. 𝑥 ∈ Ω;

𝐹 (𝑥, 𝑢𝑛 (𝑥)) → 𝐹 (𝑥, 𝑢 (𝑥)) for a.a. 𝑥 ∈ Ω.

(19)

By Fatou’s lemma, we have

lim sup
𝑛→∞

∫
Ω

𝐹 (𝑥, 𝑢𝑛 (𝑥)) 𝑑𝑥 ≤ ∫
Ω

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥. (20)

Thus,
lim inf
𝑛→∞

𝜑 (𝑢𝑛)

= ∫
Ω

1

𝑝 (𝑥)
(
∇𝑢𝑛


𝑝(𝑥)

+ √1 +
∇𝑢𝑛


2𝑝(𝑥)

)𝑑𝑥

− 𝜆 lim sup
𝑛→∞

∫
Ω

𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥

≥ ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ √1 + |∇𝑢|

2𝑝(𝑥)
)𝑑𝑥

− 𝜆∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 = 𝜑 (𝑢) .

(21)

Step 3.We show that (PS)-condition holds.
Suppose {𝑢𝑛}𝑛≥1 ⊆ 𝑊

1,𝑝(𝑥)

0
(Ω) such that |𝜑(𝑢𝑛)| ≤ 𝑐 and

𝑚(𝑢𝑛) → 0 as 𝑛 → +∞. If 𝑢∗
𝑛
∈ 𝜕𝜑(𝑢𝑛) is such that𝑚(𝑢𝑛) =

‖𝑢
∗

𝑛
‖
(𝑊
1,𝑝(𝑥)

0
)
∗ , 𝑛 ≥ 1, then we know that

𝑢
∗

𝑛
= Φ


(𝑢𝑛) − 𝜆𝑤𝑛, (22)

where the nonlinear operator Φ
: 𝑊

1,𝑝(𝑥)

0
→ (𝑊

1,𝑝(𝑥)

0
)
∗ is

defined as

⟨Φ

(𝑢) , V⟩

= ∫
Ω

(|∇𝑢|
𝑝(𝑥)−2

+
|∇𝑢|

2𝑝(𝑥)−2

√1 + |∇𝑢|
2𝑝(𝑥)

)(∇𝑢, ∇V)R𝑁𝑑𝑥,

(23)

for all 𝑢, V ∈ 𝑊
1,𝑝(𝑥)

0
(Ω). From the work of Chang [1], we

know that if 𝑤𝑛 ∈ 𝜕Ψ(𝑢𝑛), then 𝑤𝑛 ∈ 𝐿
𝛼

(𝑥)
(Ω), where

1/𝛼

(𝑥) + 1/𝛼(𝑥) = 1.
Since 𝜑 is coercive, {𝑢𝑛}𝑛≥1 is bounded in𝑊1,𝑝(𝑥)

0
(Ω) and

there exists 𝑢 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω) such that a subsequence of

{𝑢𝑛}𝑛≥1, which is still denoted as {𝑢𝑛}𝑛≥1, satisfies 𝑢𝑛 ⇀ 𝑢

weakly in 𝑊
1,𝑝(𝑥)

0
(Ω). Next we will prove that 𝑢𝑛 → 𝑢 in

𝑊
1,𝑝(𝑥)

0
(Ω).

By𝑊1,𝑝(𝑥)

0
(Ω) → 𝐿

𝛼(𝑥)
(Ω), we have 𝑢𝑛 → 𝑢 in 𝐿𝛼(𝑥)(Ω).

Moreover, since ‖𝑢∗
𝑛
‖
∗
→ 0, we get |⟨𝑢∗

𝑛
, 𝑢𝑛⟩| ≤ 𝜀𝑛.

Since 𝑢∗
𝑛
= Φ


(𝑢𝑛) − 𝜆𝑤𝑛, we obtain

⟨Φ

(𝑢𝑛) , 𝑢𝑛 − 𝑢⟩ − 𝜆∫

Ω

𝑤𝑛 (𝑢𝑛 − 𝑢) 𝑑𝑥 ≤ 𝜀𝑛, ∀𝑛 ≥ 1.

(24)

Moreover, since𝑢𝑛 → 𝑢 in𝐿𝛼(𝑥)(Ω) and {𝑤𝑛}𝑛≥1 are bounded
in 𝐿𝛼


(𝑥)
(Ω), where 1/𝛼(𝑥) + 1/𝛼(𝑥) = 1, one has ∫

Ω
𝑤𝑛(𝑢𝑛 −

𝑢)𝑑𝑥 → 0. Therefore,

lim sup
𝑛→∞

⟨Φ

(𝑢𝑛) , 𝑢𝑛 − 𝑢⟩ ≤ 0. (25)

But we know that Φ
 is a mapping of type (𝑆+) (by

Proposition 3). Thus we obtain

𝑢𝑛 → 𝑢 in 𝑊
1,𝑝(𝑥)

0
(Ω) . (26)
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Step 4. There exists a 𝑢1 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω) \ {0} such that Ψ(𝑢1) >

0.
By (h5), for each 𝑥 ∈ Ω, there is 𝑡𝑥 ∈ R such that

𝐹(𝑥, 𝑡𝑥) > 0.
For 𝑥 ∈ R𝑁, denote by𝑁𝑥 a neighborhood of 𝑥 which is

the product of𝑁 compact intervals. From (h5) and 𝐹(𝑥, 𝑡) ∈
𝐶(Ω × R), for any 𝑥0 ∈ Ω, there are 𝑁𝑥

0

⊂ R𝑁, 𝑡𝑥
0

∈ R and
𝛿0 > 0, such that 𝐹(𝑥, 𝑡𝑥

0

) > 𝛿0 > 0 for all 𝑥 ∈ 𝑁𝑥
0

⋂ Ω.
SinceΩ ⊆ R𝑁 is bounded,Ω is compact.Thenwe can find

𝑁𝑥
1

, 𝑁𝑥
2

, . . . , 𝑁𝑥
𝑛

such that Ω ⊂ ⋃
𝑛

𝑖=1
𝑁𝑥
𝑖

and 𝑁𝑥
𝑖

⋂𝑁𝑥
𝑗

=

𝜕𝑁𝑥
𝑖

⋂𝜕𝑁𝑥
𝑗

, (𝑖 ̸= 𝑗) and, also, we can find 𝑡𝑥
1

, 𝑡𝑥
2

, . . . , 𝑡𝑥
𝑛

∈

R, and 𝑛 positive numbers 𝛿1, 𝛿2, . . . , 𝛿𝑛 such that

𝐹 (𝑥, 𝑡𝑥
𝑖

) > 𝛿𝑖 > 0 uniformly for 𝑥 ∈ 𝑁𝑥
𝑖

⋂Ω,

𝑖 = 1, 2, . . . , 𝑛.

(27)

Now, set 𝛿0 = min{𝛿1, 𝛿2, . . . , 𝛿𝑛}, and 𝑡0 = max{𝑡𝑥
1

,

𝑡𝑥
2

, . . . , 𝑡𝑥
𝑛

}, and

sup
|𝑡|<|𝑡0|; 𝑥∈Ω

|𝐹 (𝑥, 𝑡)| = 𝑀. (28)

Then, we can find a closed set Ω𝑥
𝑖

⊂ int(𝑁𝑥
𝑖

⋂Ω) such that

meas (Ω𝑥
𝑖

) >
𝑀meas (𝑁𝑥

𝑖

⋂Ω)

𝛿0 +𝑀
, (29)

where meas(𝐴) denote the Lebesgue measure of set 𝐴. We
consider a function 𝑢1 ∈ 𝑊

1,𝑝(𝑥)

0
(Ω) such that |𝑢1(𝑥)| ∈ [0, 𝑡0]

and 𝑢1(𝑥) ≡ 𝑡𝑥
𝑖

for all 𝑥 ∈ Ω𝑥
𝑖

. For instance, we can set
𝑢1(𝑥) = ∑

𝑛

𝑖=1
𝑢
𝑖

1
(𝑥), where 𝑢𝑖

1
∈ 𝐶

∞

0
(𝑁𝑥
𝑖

⋂Ω) and

𝑢
𝑖

1
(𝑥) = {

𝑡𝑥
𝑖

, 𝑥 ∈ Ω𝑥
𝑖

,

0 ≤ 𝑢
𝑖

1
(𝑥) < 𝑡𝑥

𝑖

, 𝑥 ∈ (𝑁𝑥
𝑖

∩ Ω) \ Ω𝑥
𝑖

.
(30)

Then, from (27)–(29), we have

Ψ (𝑢1) = ∫
Ω

𝐹 (𝑥, 𝑢1) 𝑑𝑥 = ∫
⋃
𝑛

𝑖=1
𝑁
𝑥
𝑖
∩Ω

𝐹 (𝑥, 𝑢1) 𝑑𝑥

= ∫
⋃
𝑛

𝑖=1
Ω
𝑥
𝑖

𝐹 (𝑥, 𝑢1) 𝑑𝑥

+ ∫
(⋃
𝑛

𝑖=1
𝑁
𝑥
𝑖
∩Ω)\⋃

𝑛

𝑖=1
Ω
𝑥
𝑖

𝐹 (𝑥, 𝑢1) 𝑑𝑥

≥

𝑛

∑

𝑖=1

𝛿𝑖meas (Ω𝑥
𝑖

)

−

𝑛

∑

𝑖=1

𝑀[meas (𝑁𝑥
𝑖

⋂Ω) −meas (Ω𝑥
𝑖

)]

>

𝑛

∑

𝑖=1

[(𝛿0 +𝑀)meas (Ω𝑥
𝑖

) −𝑀meas (𝑁𝑥
𝑖

⋂Ω)]

> 0.

(31)

Step 5. We show that Φ, Ψ satisfy conditions (1) and (2) of
Theorem 4.

Let 𝑢0 = 0; then we can easily find Φ(𝑢0) = Ψ(𝑢0) = 0.
From (7) and Proposition 1, we have the following:
if ‖𝑢‖ ≥ 1, then

2

𝑝+
‖𝑢‖

𝑝
−

≤ Φ (𝑢) ≤
2 + |Ω|

𝑝−
‖𝑢‖

𝑝
+

; (32)

if ‖𝑢‖ < 1, then
2

𝑝+
‖𝑢‖

𝑝
+

≤ Φ (𝑢) ≤
2 + |Ω|

𝑝−
. (33)

From (h4), there exist 𝜂 ∈ ]0, 1[ and 𝐶3 > 0 such that

𝐹 (𝑥, 𝑡) ≤ 𝐶3|𝑡|
𝑞(𝑥)

≤ 𝐶3|𝑡|
𝑞
−

, ∀𝑡 ∈ [−𝜂, 𝜂] , 𝑥 ∈ Ω.

(34)

In view of (h3), if we put

𝐶4 = max{𝐶3, sup
𝜂≤|𝑡|<1

𝑎1 + 𝑎2|𝑡|
𝛼
−

|𝑡|
𝑞−

, sup
|𝑡|≥1

𝑎1 + 𝑎2|𝑡|
𝛼
+

|𝑡|
𝑞−

} , (35)

then we have

𝐹 (𝑥, 𝑡) ≤ 𝐶4|𝑡|
𝑞
−

, ∀𝑡 ∈ R, 𝑥 ∈ Ω. (36)

Fix 𝑟 such that 0 < 𝑟 < 1. And when (2/𝑝
+
)max{‖𝑢‖𝑝

−

,

‖𝑢‖
𝑝
+

} < 𝑟 < 1, by Sobolev Embedding Theorem
(𝑊1,𝑝(𝑥)

0
(Ω) → 𝐿

𝑞
−

(Ω)), we have (for suitable positive
constants 𝐶5, 𝐶6)

Ψ (𝑢) = ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 ≤ 𝐶4 ∫
Ω

|𝑢|
𝑞
−

𝑑𝑥 ≤ 𝐶5‖𝑢‖
𝑞
−

< 𝐶6𝑟
𝑞
−
/𝑝
−

(or 𝐶6𝑟
𝑞
−
/𝑝
+

) .

(37)

Since 𝑞− > 𝑝
+
≥ 𝑝

−, we have

lim
𝑟→0+

sup
(2/𝑝+)max{‖𝑢‖𝑝

−

, ‖𝑢‖
𝑝
+

}<𝑟
Ψ (𝑢)

𝑟
= 0. (38)

And so, taking into account (32) and (33),

lim
𝑟→0+

sup
Φ(𝑢)<𝑟

Ψ (𝑢)

𝑟
= 0. (39)

From Step 4, there exists 𝑢1 ∈ 𝑊
1,𝑝(𝑥)

0
(Ω) \ {0} such that

Ψ(𝑢1) > 0. Thanks to (32) and (33), we have

0 <
2

𝑝+
max {𝑢1


𝑝
−

,
𝑢1


𝑝
+

} ≤ Φ (𝑢1) , (40)

and so
Ψ (𝑢1)

Φ (𝑢1)
> 0. (41)

By (32), (33), and (39), there exists 𝑟0 < (2/𝑝
+
)max{‖𝑢1‖

𝑝
−

,

‖𝑢1‖
𝑝
+

} ≤ Φ(𝑢1) such that, for each 𝑟 ∈ ]0, 𝑟0[,

sup
Φ(𝑢)<𝑟

Ψ (𝑢) < 𝑟
Ψ (𝑢1)

Φ (𝑢1)
. (42)

By choosing 𝑟 ∈ ]0, 𝑟0[, conditions (1) and (2) requested in
Theorem 4 are verified and so the proof is complete.
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