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For those semigroups, which may have power type singularities and whose generators are abstract multivalued linear operators,
we characterize the behaviour with respect to a certain set of intermediate and interpolation spaces. The obtained results are then
applied to provide maximal time regularity for the solutions to a wide class of degenerate integro- and non-integro-differential

evolution equations in Banach spaces.

1. Introduction

Let X be a complex Banach space and let {7 4(¢)},5, be a
semigroup of operators on X, which is generated by a multi-
valued linear operator A : Z(A) € X — X and which may
have a power type singularity at the origin t = 0, that is,
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for some nonnegative constant C, and nonpositive exponent
v, where Z(X) denotes the Banach algebra of all endomor-
phisms of X endowed with the uniform operator norm. In
this context our aim here is twofold. The first is to characterize
the behaviour of {T ,(f)},5, with respect to some intermedi-
ate and interpolation spaces between X and the domain Z(A)
of A. The second is to investigate how this behaviour reflects
on the question of maximal time regularity for the solutions
to a class of degenerate integro- and non-integrodifferential
initial value problems in X.

The class of operators we will deal with consists precisely
of those multivalued linear operators A whose single-valued
resolvents satisfy the following estimate:
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Here, I is the identity operator, C is a positive constant, 3 €
(0,1], and X, is the complex region {z € C Rez >
—c(|Smz[+1)%,Sm z € R}, ¢ > 0, € [B, 1]. It thus happens
(cf. [1-3]) that A is the infinitesimal generator of a semigroup
of linear bounded operators in X satistying (1) with v = v, 4,
where Vo = B-1)/a.

To outline the motivations of our research, let us assume
for a moment that A is a single-valued linear operator satisfy-
ing (2). It is well known that if = 1, then A is the infinites-
imal generator of a bounded analytic semigroup. For this
case, an extensive literature exists concerning the behaviour
of {T (1)} with respect to the real interpolation spaces
(X,@(A))%p, y € (0,1), p € [1,00], and its applica-
tion to questions of maximal regularity for the solutions
to nondegenerate (possibly nonautonomous) integro- and
non-integrodifferential abstract Cauchy problems. See, for
instance, [4-11]. Due to (1) with v = V18 the case of & =
1 and B € (0,1) is definitely worsened and the literature
for it is considerably less conspicuous, although estimate of
type (2), with (Re + ISmAP)™! in place of (|A| + 1)_ﬁ,
goes back even to [12, Remark p. 383] in the ambit of Abel
summable semigroups admitting uniform derivatives of all
orders. One of the main problems with the case 8 € (0,1) is
that some equivalent characterizations of (X, Z(A)),, , begin
to fail (cf. [13]), so that some spaces which were just real



interpolation spaces between X and 2(A) in the case =
1 become only intermediate spaces in the case § € (0, 1).
However, avoiding questions of interpolation theory and of
maximal regularity, a quite satisfactorily semigroup theory
for the single-valued case with 3 € (0, 1) and its application
to the unique solvability of some concrete partial (non-
integro-) differential equations have been developed in [14-
18]. Since the multivalued case embraces the single-valued
one, our contribution in this field is to fill this gap, supplying a
theory for the behaviour of singular semig » intermediate and
interpolation spaces which, in the case 3 = 1, reduces to that
in [9, 11]. As an effect of this theory, there is the possibility
of investigating questions of maximal time regularity for an
entire class of nondegenerate evolution equations which does
not fall within the case § = 1.

The case when A is really a multivalued linear operator
arises naturally when we shift our attention to degenerate
evolution equations of the type considered in [1-3]. There, a
semigroup theory for multivalued linear operators was intro-
duced as a tool to handle degenerate equations by means of
analogous techniques of the nondegenerate ones. Such a the-
ory has been then successfully applied to questions of maxi-
mal regularity for the solutions to a wide class of degenerate
integro- and non-integrodifferential equations. We quote [2,
19-23] where, in general and unless 8 = 1, it is shown that
the time regularity of the solutions decreases with respect
to that of the data. In this respect, we mention the recent
results in [20] where, under an additional condition of space
regularity on the data and provided that o and f are large
enough, the loss of time regularity is restored. Regrettably
(cf. the appendix below), we have found some inaccuracies
in [20, Section 4], and for this reason we must indicate some
changes to that paper. On the other side, fortunately, the basic
idea in [20] is correct and remedy can be applied to all the
inappropriate items. Furthermore, unexpectedly, we will see
that the more delicate approach followed in this paper not
only corrects the mistakes in [20], but also gives rise to an
effective improvement of the achievable results. In fact, here,
we will straighten out, refine, and extend [20], enlarging the
class of the admissible spaces to which the data may belong,
weakening the assumption for the pair («, ), and complicat-
ing the structure of the underlying equations. This is why we
will first analyze the behaviour of the semigroup generated by
A with respect to some intermediate and interpolation spaces
which turn out to be equivalent only in the case § = 1. Indeed,
the phenomena exhibited in [13] for the single-valued case
extend to the multivalued one (cf. [24]), and, until now, for the
mentioned behaviour there exist no more than some partial
results obtained in [2, 19, 24].

We now give the detailed plan of the paper. In Section 2,
for a multivalued linear operator A having domain Z(A)
and satisfying (2), we introduce the corresponding generated
semigroup {e"*},.,. This leads us to define also the linear

bounded operators [(—A)9]°etA, Red > 0,t > 0, ([(-A)°]°
e = ¢) and to recall the fundamental estimates for
their £(X)-norm. For the operators [(—A)e]"etA a semi-
group type property is proven in Proposition1l. We then

introduce the spaces we will deal with in this paper, that is,
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the interpolation spaces (X,QZ(A))W and the spaces XVP,
y € (0,1), p € [l,00]. Special attention is given
to the embeddings linking these two classes of spaces
which, in general, are equivalent only in the case f =
1. Some relations existing between the spaces X’ for
different values of y and p are proven in Proposition 2
and discussed in Remarks 3-5. We conclude the sec-
tion recalling the estimates proven in [19, 24] for the
norms [[(~=4)°1'ell g xaan,,» Red = 0, and [[(=4)']

104
etA||$(Yyp;X), Yf e {(X, 2(A)),,» X"P}.In Remarks 7 and 8 we
explain why, unless we renounce to optimality, in the case § <
1 these estimates can not be directly extended to the norms
070 070

I-AT e g xxmry and II=AT g yrn Reb = 1,
respectively.

In Section 3, we investigate the behaviour of the operators
[(—A)e]"etA with respect to both of the spaces (X, D(A)y,p
and XQ’P . First, in Proposition 9, we deal with the norms

I [(_A)9]°etA||$(X;X§p), Rel > 0, and we show that, except for

replacing (X, 2(4)),,, with XV if p = 0o and with Xﬁy’p
it p € [1,00), the same estimates of [19] for the norms
I [(—A)e]oetA||g(x;(x,9;(A))w) continue to hold. The second sig-
nificant result is Propositfon 12 where, extending those in [24]

to values of 6 other than one, we establish estimates for the
norms [[(~4)°) ey yrx) Red = L YF € {(X, D(A)),,,,

X"F}. Asabyproduct we deduce the basic Corollary 14, which
in Section 5 will be a key tool in proving the equivalence
between the following problem (3) and the fixed-point equa-
tion (179). The estimates in Proposition 12 are then merged
together with those in [19] to achieve estimates for the norms
" [(—A)e]°etA||3((;{@(A))%P’(X@(A))&P), Red = 1. In particular,
two different estimates are obtained, if y + 8 < 1 or not. For
ify+ 8 < 1, then (cf. the proof of Proposition 16) we can take
advantage of the reiteration theorem for interpolation spaces
and obtain estimates that, unless 3 = 1, are better than those
rougher estimates derived in the general case y,6 € (0, 1) (see
Remarks 17 and 18). We stress thatif § = 1,0 € Nand A
is single-valued, then we restore the estimates in [9]. Finally,
in Proposition 20, a combination of Propositions 9 and 12

ields the estimate for the norms |[(~A)?] e PP PN
i imate for ms (A 1e 0 o0,

Red > 1. Since B < 1, the spaces X7 are, in general, only
intermediate spaces between X and 2(A) for o € (0, ); here
the reiteration theorem does not apply and a weaker result is
obtained (cf. (101)-(103)).

The estimates of Section 3 are applied in Section 4 to
study the time regularity of those operator functions Q;, j =
1,...,6, that we will need in Section 5. In particular (cf.
formula (106)), we modify the definition of Q, in [20, Section
4] in order that it is well defined, at least when acting on
functions g € C°([0,T];X), 8 € (2 - & — B)/a, 1) (cf.
Corollary 26). Consequently, operators Q; and Q, in [20]
change too, and the new Q; and Qg4 should be introduced
(cf. formulae (107)-(110)). The Hoélder in time regularity of
the Q]-’s is characterized in Lemmas 22, 24, 30, and 32 and
Propositions 29 and 36. The main feature of these results is
to show that the loss of regularity produced by Q, and
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Qs can be restored, in Q; and Qg respectively, employing
the regularization property established in [20, Section 3] for
a wide range of general convolution operators.

In Section 5 we analyze the maximal time regularity of
the strict solutions v to the following class of degenerate
integrodifferential equations in a complex Banach space X:

% Mv(t) = [AJM+L]v(t)+ Z% (k,»l,L,-lv) (1)

i=1

cSh Oyt O, tely, O

i=1

Mv(0) = Mv,.

Here, I = [0,T], A, € C,ny,n, € N, hi2 Iy — C, Vi, € X,
i, = 1,...,n,, whereas, Z being another complex Banach
spaceand & : ZxX — X beinga bilinear bounded operator,
ki1 : I — Z,and 3{(kil,Li1 v)(t) = ,[(: 97’(19-1 (t=s),L; v(s))ds,
i, = 1,...,n,. Of course, if Z = C, then 9 may be the scalar
multiplication in X. As M, L,and L; , i; = 1,...,n;, we take
closed single-valued linear operators from X to itself, whose
domains fulfill the relation D (L) < ﬂzlzl (2(M) nD(L;)],
and we require L to have a bounded inverse, allowing M
to be not invertible. Hence, in general, A = LM is only
a multivalued linear operator in X having domain Z(A) =
M(2(L)). Assuming that A satisfies (2) and that the data kil,
hi, y;, and f, i = 1,...,m, | = 1,2, are suitably chosen,
problem (3) is then reduced to an equivalent fixed point-
equation for the new unknown w = L(v — v,), v, € D(L).
It is here that the results of Sections 3 and 4 play their role,
leading us to Theorem 48. In that theorem, provided that
5a +2f3 > 6, we will prove that if k; € C™ (Ir; Z), h; € C*
(Ir;C), y;, € Y;iz, Y;iz € {(X,@(A))W, Xﬁz”}, and f € C*
(Ir; X) for opportunely chosen 7;, 0;, y;, and u, ij =
L,...,m, I = 1,2, then problem (3) has a unique strict
solution v € C'(I;3D(L)) satisfying v(0) = v, and
Lv, dMv/dt € C*(I15 X), where T = min; _;_, -1 ,{#; 0, }
(cf. Remark 51). Section 5 concludes with applications of
Theorem 48 to integral and nonintegral subcases of (3), (cf.
Theorems 52-54 and 56). We stress that Theorem 48 repairs,
generalizes, and improves [20, Theorems 5.6 and 5.7], where
similar results were proven only for the case (1, 1’12,Y$ ) =
(1,1, Xﬁ’p ) and under the stronger condition 3 + 83 > 10.
In Section 6, we give an application of Theorem 48 to a
concrete case of problem (3) arising in the theory of heat con-
duction for materials with memory. In particular, we show
how Theorem 48 characterizes the appropriate functional
framework where to search for the solution of the inverse
problem of recovering both v and the vector (ky, ..., k, ), <
ny, in (3) with (i,,1m,) = (i, m) and by =k; ,i; = 1,...,m;.
Finally, in the Appendix we explain how to amend [20,
Theorems 5.6 and 5.7] in accordance to Theorem 48.

2. Multivalued Linear Operators,
Singular Semigroups, and the Spaces
(X,2(A)), , and xnP

Let X be a complex Banach space endowed with norm || - ||
and let 22(X) be the collection of all the subsets of X. For
anumber A € Cand elements %, 7, % € P(X)\ 0, A%, and
7"+ W denote the subsets of X defined by {Au : u € %} and
{v+w:v e Z,w e W}, respectively. Then, a mapping A
from X into P(X) is called a multivalued linear operator in
X if its domain D(A) = {x € X : Ax #0} is a linear subspace
of X and A satisfies the following: (i) Ax + Ay C A(x + y),
for all x,y € D(A); (ii) AMAx ¢ A(Ax), forall A € C, for all
x € D(A). From now on, the shortening m. I. will be always
used for multivalued linear.

The set R(A) = [Uyega) Ax is called the range of A. If
R(A) = X, then A is said to be surjective. The following
properties of a m. . operator A are immediate consequences
of its definition (cf. [1, Theorems 2.1 and 2.2]): (iii) Ax + Ay =
A(x+ y),for all x,y € D(A); (iv) A\Ax = A(Ax), for all A €
C\ {0}, for all x € 2(A); (v) A0 is a linear subspace of X
and Ax = y + A0 for any y € Ax, x € D(A). In particular, A
is single-valued if and only if A0 = {0}.

If Aisan m. 1. operator in X, then its inverse A" is defined
to be the operator having domain DA™Y = R(A) such that
Aily ={xeDA):yecAx},yce DA™ AVisan m. L.
operator in X too, and (A7) = A Theset A'0 = {x €
D(A) : 0 € Ax} is called the kernel of A and denoted by
N(A). If /(A) = {0}; that is, if A is single-valued, then A
is said to be injective. Observe that (v) yields Ax = A0 if and
only if x € /(A).

Given % € P(X) \ 0, we write A(%) = U, cna(a) Ath
so that, in particular, A(X) = A(2(4)) = R(A). It Aj
j = 1,2 are m. . operators in X and A € C, then the scalar
multiplication AA |, the sum A, + A,, and the product A | A,
are defined by

P2(0A)=2(4)),

(M) x =M x, xeD(AA)),
D(A1+A,)=2(A)ND(A), @

(Al+A)x=Ax+Ax, xeD(A +A4,),

D (A1A,) ={x € D(A,): A, (Ayx) #0},

(A1Ay)x = A (Ayx), xeD(A4,),
where AA;, A, + A, and A, A, are m. |. operators in X and
(A4, = A AT

Let A and B be m. . operators in X. We write A ¢ B if
D(A) € D(B) and Ax < Bx for every x € D(A). Clearly, A C
B c Aifandonlyif A = B.If A ¢ Band Ax = Bx for every
x € D(A), then Bis called an extension of A. Ifa linear single-
valued operator S has domain 2(S) = D(A) and S C A, that
is, Sx € Ax forevery x € D(A), then Sis called a section of A.
With an arbitrary section S, it holds Ax = Sx+ A0, x € D(A),
and %(A) = Z(S) + A0, but this latter sum may or may not



be direct (cf. [25, p. 14]). A method for constructing sections
is provided in [25, Proposition 1.5.2].

If X, j = 1,2, are two complex Banach spaces, then the
linear space of all bounded single-valued linear operators L
from X, = D(L) to X, is denoted by £ (X,; X,) (Z(X,) if
X, = X,) and it is equipped with the uniform operator norm
"L"y(xl;xz) = 511P||,¢||X1g1”Lx”)(2 = iango{"Lx”X2 < K”x"X1 :
x € X,}. Then the resolvent set p(A) of a m. 1. operator A is
defined to be the set {z € C : (zI — A)™' € ZL(X)}, with I
being the identity operator in X. The basic properties of the
resolvent set of single-valued linear operators hold the same
for m. L. operators. First, if p(A) # 0, then A is closed; that is,
its graph {(x, y) € X x X : x € D(A), y € Ax} is closed (cf.
[25, p. 43]). Further (cf. [1, Theorem 2.6]), p(A) is an open set
and the operator function z € p(A) — (zI — A7 e Z(X)
is holomorphic. Finally (cf. [1, formula (2.1)]), the resolvent
equation (A,—A,)(A, I-A) ' (A, I-A)" = (A, 1-A)" (A, I-
AL AL A, € p(A), is satisfied, too. Unlike the single-valued
case, instead, for z € p(A) the following inclusions hold (cf.
(1, Theorem 2.7]):

(zI-A)'Acz(zI-A) ' —TcA@I-A)". (5

Then, in general, z(zI - A)_1 -1,z € p(A), is only a bounded
section of the m. L. operator A(zI — A)~'. Throughout this
paper, we denote this bounded section by A°(zI — A)™', but
we warn the reader that here A does not necessarily denote
a section of A itself. Of course, if A is single-valued, then
A°(zI — A)"! reduces to A(zI — A)™". Notice that (5) implies
that (zI-A) A,z € p(A), is single-valued on Z(A) and (zI -
A)'Ax = (2] - A)_ly with any y € Ax, x € D(A). Another
difference with the single-valued case is that for every z €
p(A) it holds 4 ((zI - A)™") = A0. Indeed, ((zI - A)™')7'0 =
(zI — A)0 = AO0. Therefore, in the m. 1. case, {0} ¢ A ((zI —
AN,z e p(A). However (cf. [24, Lemma 2.1]), if 0 € p(A),
then #(A°(zI — A)™) = {0}, and, in addition, x ¢ A0 if and
only if A°(zI - A)7'x ¢ A0,z € p(A). We also recall that
for every A, A, € p(A) the following slight variants of the
resolvent equation hold (cf. [24, Lemma 2.2]):

Az =A) (NI -A) A (A1 - A)"

—AMI-A) T A I-A)T
(6)
(A =A) A" (M - A) " (A1 - A)

=AMI-A) A (AT-A)

In particular, if 0 € p(A), then, since A°(0I — A)7! = —, the
firstin (6) with (A}, A,) = (0, A) yields A(-A) " A°(AI-A) " =
I - A (M - A" = —A(M - A)7'; that is,

ATAM-A)T =AM -4, Aepd). (?)

Let (A, 2(A)) be am. L. operator in X satisfying the following
resolvent condition:

(H1) p(A) contains a region £, = {z € C : Rez >

—(|Smz|+1)% Smz € R},
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a € (0,1], ¢ > 0, and for some exponent 8 € (0, «]
and constant C > 0 the following estimate holds:

|1 = 4)° <CM+D7F, vies,. (8)

1
”ff(X)
Introduce the family {em}t20 € Z(X) defined by e’ = T and
edo L J A= AN, £ 0, ©)
2mi Jr

whereI' ¢ 2, \ {z € C: Re z > 0} is the contour parame-
trized by A = —c(|y| + 1) +in, 11 € (=00, 00). Then (cf. [1, pp.
360, 361]), {e"},., is a semigroup on X, infinitely many times
strongly differentiable for ¢ > 0 with

DRt = L J AT - A dA,
2mi Jr (10)

t>0, keN={1,2,...},

where Df = d*/dt*. In general, no analyticity should be
expected for e, For if « < 1 in (H1), then %, does not con-
tain any sector A .., = {z € C\ {0} : |argz| < w +
7/2}, w € (0,7/2), and [15, Theorem 5.3], which extends e
analytically to the sector A , containing the positive real axis,
is not applicable. We stress that (9) and /4 ((zI — A = Ao,
z € p(A), imply A0 ¢ N (e for every t > 0, whereas
N () = #(I) = {0}. Hence, if A is really an m. L. operator,
then {0} ¢ A0 C [,5 /(") From the semigroup property
it also follows that /(") ¢ ' (e"?) for t,=>t,=0.
Now, for every 0 € C such that Re 0 > 0 we set

[T = o [ eetar-aran e

Here, for the multivalued function (—/\)‘9 = M"Y we choose
the principal branch holomorphic in the region C \ {z €

C : Rez > 0}, where for principal branch we mean the
principal determination In |z| + i arg(z) of Ln(z). We briefly

recall the main properties of operators [(—A)9]°etA. Of course,

[(~A)°] e = e ¢ > 0. As shown in [26, p. 426], [(=A)F°

e k e N, t > 0, is a section of (—A)e™, so that from (10) we

get

(-D*Dfe™ = [(-A)] ¢ c (-a)e™, t>0, keN.
(12)

Moreover (cf. [19, formula (22)] with 6 > 0 being replaced by
Red > 0), we get
o o t o
[(_A)e] oA [(_A)e] oA _J [(—A)9+1] A de,

Reb >0,

(13)

0<s<t.

Finally, (H1) implies the following estimates (cf. [1, 24,
Section 3]):

01° tA ~ —Re O
(AT ], < ot ™00

NReO>0, t >0,
(X)

(14)
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where the ¢, 54’s are positive constants depending on «, 3,
and 0. Thus, lettmg 0 = 01in (14), we see that if 8 € (0,1),
then the operator function t € (0,00) — e e Z(X) may
be singular at the origin and the semigroup is not necessarily
strongly continuous in the X-norm on the closure 2(A) of
2(A) in X. Notice that if @ + § > 1, then the singularity is a
weak one, in the sense that {e"!},., is integrable in norm in
any interval [0,7], T > 0. Further (cf. [24, Lemma 3.9]), if
a+f > 1,then A0 = (., /(") and if & = 1, then A0 =
N (e?) for every t > 0.

Observe that A0 C ./V([( A)P°e), Re® > 0,t > 0,
so that AO C (Npso H((- A) I°e"), Re 6 > 0. The operators

[(-A)Te

Proposition 1. Let0; € C, Rel); >
Then

[(_A)Bl]"etlA

4 satisfy the following semigroup type property.

0,andlett; >0, j=1,2.

[(_A)62]°et2A _ [(_A)61+62]°e(t1+t2)A' (15)

Proof. First, the function A € p(A) — (—A)e MO -A)7! €
Z(X) being holomorphic for every Re6 > 0 and ¢t > 0, and
the contour I in (11) with (6,t) = (0,,t,) can be replaced with
the contour I’ ¢ 2, \ {z € C : Rez > 0} parametrized by
Y= —c'(|r]| +1)* +in, n € (00, 00), ¢’ €(0,¢), and lies to the
right of I'. Then, for every x € X, from the resolvent equation
we obtain

[(_A)Gl]°et1A[(_A)92]°et2Ax

_<27111> .[r( A)e "

< | (—p) e MAT = AY(ul - A) ' dp|dr
J. ]

_ <L>2 L ()% AL - A)!

27

<[(], e -2y au) x| r

_<2m> j (e - 4)”
(J -0 (A —y)_ld)t>x] dp.

(16)

Now, after having enclosed ' and I on the left with an arc A
of the circle {z € C : |z +¢'| = R}, R > ¢ — ¢/, we apply the
residue theorem and let R go to infinity. To this purpose, we
observe that since the contours I' and I both lie in the half-
plane {z € C: Rez < '}, the arc A ; may be parametrized
in polar coordinates by Re z = —c' + Rcos ¢, Sm z = Rsin g,
@ € (1/2,37/2). Then, for every z € A ; we have
'( Z)9 tz' |Z|§Re Ge—SmGarg(—z)et%ez

Reb I3 ! (17)

< (R + C’) e(7'{/2)|‘xm9|e—tc etRcoqu'

Since t > 0 and ¢ € (71/2,3m/2), the right-hand side of the
latter inequality goes to zero as R goes to infinity, so that
limRHm,zeAR(—z)ee” = 0 for every Ref > Oandt > 0.
The residue theorem together with the fact that I lies to the
right of T thus yields .[r’ (—‘u)e2 etz”(y—)t)_ldy = 2mi(-)1)%2et2
and jr(—/\)e1 o - y)_ld/l = 0. Replacing these identities in
(16) and using the equality (-1)* (-1)% = (-1)%*% which
is satisfied for the principal branch of the function (-1)f =

A e finally find

[(_A)Bl]"etlA[(_A)92]°et2Ax

1 (18)
= — J (-0 AT - A) T d)
2mi Jr
The right-hand side being precisely [(—A)GIJ'G2 IPetitt)Ay the
proof is complete. O

For an m. . operator A satisfying (H1) we introduce now
the spaces (X, 2(A)),,, and X%P. We first specify a topology
on P(A) equipping it with the norm [|x||g4) = infyeAxllyHX,
x € D(A). Since A™' € Z(X), this norm is equivalent to the
graph norm and makes Z(A) a complex Banach space (cf. [2,
Proposition 1.11]). As X, and X, being given normed complex
linear spaces, we will write X; — X, if X; € X, and there
exists a positive constant C,, such that IIxIIX2 < COIIxIIX1 for
every x € X;. If X, — X, — X, thatis, if X; = X,
and the norms | - || X, and | - || x, are equivalent, then we will
write X; = X,. Of course, Z(A) with the norm |- [,
satisfies D(A) — X.In fact, it x € D(A), then for every
y € Ax we have x = A_ly, so that [|lx[ x < A~ lecollylx <
Cllyll . Taking the infimum with respect to y € Ax, we thus
find |x[x < Clixllga) for every x € D(A). IfY is a Banach
space, we denote by C((0,00);Y) the set of all continuos
functions from (0,00) to Y, and for a Y-valued strongly
measurable function g(§), & € (0, 00), we set ||g(£)||L;(Y) =

[ 1g@ILEE/E), g € [Loo), and Ig@l,. o,
supge(o,oo)llg(f)lly. Let py, p; € [1,00) orlet p, = p; = oo,
and for y € (0,1) define p™' = (1 —y)py" + yp;" if po. p; €
[1,00) and p = co if p; = p; = 00. Let us set

(X, 2 (A),,

:{xex:x=vo<£>+v1<f>,fe(o,oo),

vy € C((0,00);X),v; € C((0,00); D (A)),

, 1 (19)
1€7vo (f)"L;O(X) + “E 1 (E)"L;1 @y < oo} ’
”x”(X’@(A))y,p
—j 14 y-1
= inf {”f Yo Bl o0 * &' @® L (9(A))}'
This characterization of the spaces (X,@(A))%P is that

obtained by the so-called “mean-methods’, and it is equiv-
alent to that performed by the “K-method” (cf. [27, The-
orem 1.5.2 and Remark 1.5.2/2]) and the “trace-method”



(cf. [27, Theorem 1.8.2]). Then, due to [27, Theorem 1.3.3],
for every y € (0,1) and p € [1,00] the space (X,@(A))W
is an exact real interpolation space of exponent y between
X and P(A). Observe that by exchanging the role of X and
D(A) and performing the transformation & = 7!, we get
(X, 2(A)),, = (2(A), X),_,,- Also, if D(A) = X, then
(X, 2(4)),,, =X (cf. [27, Theorem 1.3.3(f)]). The definition
of the spaces (X, 9(A))% 18 meaningful even for the limiting
cases (y, p) = (i,00),i = 0,1, whereas (X’Q(A))i,p’ i=0,1,
p € [1,00), reduces to the zero element of X. In particular
(cf. [28, pp. 10-15]), denoting by Y the completion of 2(A)
relative to X and endowing it with the norm | - [|¢x in [28, p.
14], we get (X, D(A))g0o = X and (X, D(A)), o, = V¥, Let
y, € (0,1) and let p; € [1,00], j = 1,2. Then, for y, € (0,,)
and q; € [1, p;], j = 1,2, the following chain of embeddings
holds:

2 (A)

= (X, D (A))100 = (X, 2 (A))), 1

S (XD (A),, — (X, P (A)

Y101
(20)

= (X,2(A)),,1 = (X,2(A))

Y2>92

= (X, D (A)),,p, = D (A).

Lety € [0, 1]. Recall that a Banach space E is said to be of class
J(y, X, 2(A)) N K(y, X, Z(A)) and shortened to E € J(y) N
K(y),if E is an intermediate space between (X, QZ(A)) and
(X, 9(A)) 1> that is, if (X, 9(A))y — E — (X, 9(A))y
From (20) it thus follows that (X, D(A)),,, € J(y) N K(y),
for every y € (0,1) and p € [1,00]. Moreover, since
(X,2(A));; =1{0},i = 0,1, and (X, D(A))g = X, we have
D(A) € J(1)NK(1)and X € J(0) N K(0). Then (cf. [28, p. 12],
[27, Theorem 1.10.2], and [9, Section 1.2.3]), for Vj € (0,1)
and pj € [1,00], j = 0, 1,2, the reiteration theorem yields

(X2 Ay, (XD (A),,)

=(X,2 (A))(I*)’o)%ﬂ’o)’z’l’o’

(X2 (A),,,,24)  =(XD(A)ay,

Y1.P1° 1+YoPo’

(X, (X, D (A)) = (X, 2 (A))

Y2:P2 )yo, Po YoY2:Po*

(21)

Finally (cf. [29, Theorem 1.II and Remark LIII]), we recall

that if X, and X, are two complex Banach spaces and T €

L(X,;X,)issuch that T € Z(Ylk sz), i Xj,j,k =1,2,

then T ¢ Z((Y; ’le)yepo (Y21’ 22)MDO) Yo € (0,1), py €

[1,00], and

) SIS, v 1T,
(22)

”T"y((Yll ’le)V()rPo;(Yll ’Y22 Y0-P0

As a consequence of this general result and the identity

(X2 (A4) = (X, (X, 2 (4))

Y1oP1 )1—)}0,‘90’
(23)

YiP1’ ) Yoo
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from the third in (21) we find that if T € Z(X) is such that
T e 20G(XP(A), ,) ad T e Z(XD(A),, ,;X),
then T ¢ g((x’ Q(A))VOYZ’PO; (X’ Q(A))(l—yo)yl,pox Y] € (0) 1)’
pj € [1,00], j = 0,1,2, and the following estimate holds:

1T 2 (x4 X,P(A)

Yor2p0( da-y0)r1.p0)

(24)

I-yp Yo
s "T||$(X;(X,9(A))n,pl)"T”$((X,9(A))

v %)
Notice that here yyy,+(1-y,)y; € (min{y;, y,}, max{y,, y,}) ¢
(0,1) for every y, € (0, 1). Therefore, if we let y = y,y, and let
0=0-y)y,theny+d <1,y =08/(1-y) >0d,andy, =
v/Yo > y- Hence, in order that the additional inequalities y; <
1, j = 1,2, are satisfied, we have to choose y,, € (y,1-8). Aswe
will see this simple observation will be the key for the proof
of the second estimates (90) in the following Proposition 16.
We recall that for every fixed x € D(A) the map T(A) =
Ax satisfies | Tl oc,x) = lxllxs 1T coay = 1xXlo and
Tl zcxaan,, = IXlxacay,,- Then (22) with X, =Y, =
le =C, X, = Y21 = X and Y22 = D(A) yields the interpola-
tion inequality:

1—
Ik, , < G lxly IxlL

y €(0,1),

(25)

x € D(A), p € [l,00],

with ¢, being the positive constant depending on y and p such
that Ml .o, , < lAl-

As another application of (22) and for further needs, we
also recall that if A satisfies (H1), then A°(zI — A)™' satisfies
the estimate (cf. [24, formulae (4.16) and (4.17)]).

Consider

|

<(C+1)(zl+1D)"F, vzes,

(26)

“y(X)

|41 - A <Clzl+ )P, vzex,

"y D(A);X)

From (26), using (22) with XJ- = le = Y22 =X,j=1,2,and
Y, = D(A),itthen follows foreveryy € (0,1)and p € [1, 00]

"$<(x,9(A)>y,p;X) (27)

<qC+D)7C(lzl + )P, vz es,

where ¢, is the positive constant depending on y and p such
that [|x[|x < c1||x||(X)X)y! .

For y € (0,1) and p € [1, 0o] we now define the Banach
spaces X ¥ by

X”’ {x € X: [x]Xf;" = ||EVA°(EI —A)'x Lo < oo} ,
P
Il = lxli + [x] .

(28)

It is a well-known fact that if A is single-valued and = 1 in
(H1), then (X, 2(A)),,, = X}” (cf. [30, Theorem 3.1] and [27,
Theorem 1.14.2]). On the contrary, if § € (0, 1), then such
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an equivalence is no longer true, as first observed in [13,
Theorem 2] for single-valued operators and, in the case
p = 090, in [2, Theorem 1.12] for the m. 1. ones. Recently,
extending [13] to m. L. operators and [2] to p € [1,00], in
[24, Proposition 4.3] it has been shown that the following
embedding relations hold:

X5 (X, D(4),,, yeO1), pellco], (29)

(X, D(A)),, = XLF P ye(1-B1), pe[l,00].
(30)
Then, as in the single-valued case, (X, SJZ(A))W = XZ’p itp =

1 in (H1). More precisely (see the proof of [24, Proposition
43]),ifx € X%F,y € (0,1), p € [1,00], then

||x||(x,gz(A))y,p < 2||X||X§P> (31)
whereas if x € (X, 2(A)),,pry € (1 - B, 1), p € [1,00], then
Il yree-re < Gl x 2041, (32)

with ¢, being a positive constant depending on S, y and p.
By setting§ = y+ -1,y € (1- 3, 1), from (30) it follows

D(A) = (6D(A))145.5, — X3 = X,

5 €(0,p),

Then, if 8 € (0, 1), the spaces XZ’P, 6 €(0,1), p € [1,00], are
intermediate spaces between X and Z(A) only for § € (0, ),
whereas, when § € [f3,1), they may be smaller than Z(A).
In any case, when 8 € (0, 1), it is not known if the spaces

(33)
p € [l,00].

X‘Z’P, 6 € (0,B), p € [1,00], are only intermediate or just
interpolation spaces between X and Z(A).

Notice that [Xﬁp N A0] = {0}, y € (0,1), p € [1,00].
Indeed, assume that there exists x # 0 such that x € [X’Xp N
AO0] for some y € (0,1) and p € [1, 0o]. Then, since x € A0 =
N((zl = A7), z € p(A), we have A°(EI — A)'x = E(E -
A)'x—x = —xforevery& > 0 and [X]XXP = ||Ey||L;(X)||x||X =

00, contradicting x € X%”. This property plays a key role in
the proof of many of the results in [24]. Further, due to (30), it
implies that [2(A) N A0] = [(X,@(A))Y,P N A0] = {0}, y €
(1 - B,1), p € [1,00]. On the contrary, since {0} may be a
proper subset of [(X, EJZ(A))M NAO0]fory e (0,1-81, <1,
in general it is not true that [D(A) N A0] = {0}. This is true,
instead, if § = 1. In this case the topological direct sum X, =
D(A) ® A0 is a closed subspace of X, and if X is reflexive, it
coincides with the whole X (cf. [3, Theorems 2.4 and 2.6]).

For every y € (0,1) and p € [1,00] from (27), (29), and
(31) it follows

||A°(z1 -A)"

"y(xg’*’;X)
(34)
<20 (C+D)'7C(|2l + )P, vzez,.

Hence, for y € (0,1) and p € [1, 00] we may rewrite (27) and
(34) more compactly as

lz| + 1) P,

‘(zI = A)” Vz €Z,, (35)

”g(y” iX) ~ < &

where Yf € (X, 2(4)),,p X"%P} and ¢, is equal to ¢,(C +
1)'77CY or 2¢,(C +1)' YC” according that Y)‘f’ = (X, 2(4)),,,
or Y}f’ = XZ’P .

With the exception of the case § = 1, in general it is not
clear if embeddings analogous to (20) hold even for the spaces

XZ’p. In fact, using (20), (29), and (30) we can only prove that
ifye(l-p1)and1<g< p < oo, then

X4 (X, 2 (4)),, = (XD (A),, — XL PP, (36)

whereasif 1 - 8 <y, <y, < land p;, p, € [1,00], then

Xy = (X, 2(A))

= (X, D (A)y,p, S

(37)

Y2:P2

What can be proved without invoking (20), (29), and (30) and
using only the definition of the norm || - | X1 is instead the
following result, which extends to the spaces X the embed-
dings (X,(EJZ(A))},D}7 — (X,QJZ(A))Y 2 and (X, 9(A))y —
(XD(A))),pp 0 <1 <1 <1, p € [l,00] (cf. (20) with
(p1> p2) = (p; p) and (py, p,) = (00, p)).

Proposition 2. Let A be an m. I. operator satisfying the resol-
vent condition (HI). Then the following embeddings hold for
every0 <y, <y, <landp € [l,00]:

XWP e xWP, (38)
Y100 V2P
XN s XWP, (39)

Proof. If B = 1 in (HI), then there is nothing to prove since
(X, 2(4)),,, = X% and both (38) and (39) follow from (20).
Therefore, w1thout loss of generality, we assume that 3 €
(0, ] is such that f < aif @ = 1. We begin by proving (38).
Let first p € [1,00). For every x € X7, 0 <y, <y, < 1, we
write

[x]‘;m, =L+, (40)

A

where

A - A <,

Ij—J | =12, (4)

]
(a;,b,,a,,b,) = (0,1,1,00). Using the first inequality in (26)
we find
1
Ls ©r 17t | &7 0 PR
t (42)
_ _ p
< 2P 1l | € < [l ]

wherec, = 2! 7#(C+1)(y,p)""/?. Concerning I,, instead, using
Y2 — Y1 < 0, we get

L :J E(Yz M"EylA (1 - A)’ "P dé
< [T A - A < ey, < 1y,

(43)



Summing up (40)-(43) and setting c; = [(¢,)? + 11V#, it thus
follows ||x||X£2,p = ||x||X+[x]X22,p < (1+c5)||x||X1y;>p,completing
the proof of (38) in the case p € [1,00). Let p = 00. For every
x € XZ"OO, 0 <y, <y, <1, we write

[X]Xff"” = max {l;, I}, (44)

where I; = supEerllﬁyzA"(H - A)71x||X,j =3,4,U; = (0,1),
U, = [1,00). Again, the first inequality in (26) yields

L < (C+1)|xlx sup [E2(E+1)"F]
£e(0,1)

(45)
<2PCc+1) lxll .
Instead, using y, — y; < 0, we have
I, = sup &"7|ENATE - A) x| < [x] e
&ell,00) (46)
< fxlge.

Summing up (44)-(46) and setting ¢, = 2'7P(C + 1), we thus
find IIxIIXf,w = |lxlx + [X]XI\Z’OO <1+ c6)||x||X£1»oo. This com-
pletes the proof of (38) for the case p = co. We now prove
(39). Due to (38) with p = oo, it suffices to assume that p €
[1,00). As above, for every x € X', 0 <y, < y; < 1, we
write [x]fcf’f’ = I, + I,, where I, and I, are defined by (41).

Hence, the same computations as in (42) yield
I, < [ellxllxneo]” (47)
1= [SllAXT® |-

As far as I, is concerned, instead, we have
© cayp-1 P
Ls e [ € < oo ] G8)
a

where ¢, = [(y; - ,)p]/?. Summing up (47) and (48) and
setting ¢ = [(¢,)? + (¢,)F1"?, we deduce Ixllye < (1 +
Cs)||x||X1/Q*°°' The proof is complete. O

Remark 3. Notice that (37) with p; = p, = p yields X'’ —

X1 B <y, <y, < 1,and this latter embedding is
less accurate than (38).

Remark 4. The main problem for extending (20) to the spaces
XXP in the case 8 < 1 is that it is not clear if it holds X7 —
X%P. 1< g < p < co.In fact, the embedding

(XD (4)), = (%D (A)),
(49)

ye(0,1), 1<g<p<oo,

is a consequence of the property of the functional K enter-
ing the definition of the interpolation spaces (X,QZ(A))%P
through the “K-method”, and in particular of its mono-
tonicity (see the proof of [27, Theorem 1.3.3(c), (d)]). With
embedding (49) at hands, to derive (20) it thus suffices to
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prove that (X, 2(A)),, o, — (X, 2(4)),,,0<py, < y <1
(see the proof of [27, Theorem 1.3.3(e)] taking there (A,
A,6,0) = (2(A), X, 1-y,,1-y,) and using (D(A), X), _,,, =
(X, 2(A)),,p)- If we try to repeat the proof of (49) for the
spaces XI;’P , we will be faced with two problems. The first is

that we do not know if the function g(§) = |A* (&I - A)_lxIIX,
& € (0,00), x € X, is monotone decreasing, which would
allow us to prove X7 < X% y € (0,1), p € [1,00). For
if g(£) was monotone decreasing, then for every & € (0, 00)
and x € X%F,y € (0,1), p € [1, 00), we would find

3 d 1/p
() = cg(jo M"f’) 9@
(50)

I d 1/p
<of J, o) < gl
0 u

where ¢, = (yp)/. Taking the supremum with respect to
& € (0,00) in the latter inequality, we would get [x] xve <
c9[x]X£,p, proving XZ’P — XZ’OO, y € (0,1), p € [1,00). The
second problem is that the function & g(&) is not necessarily
bounded for x € X}XP, y € (0,1), p € [1,00), precluding us to
prove ijq,q — X};’p, y € (0,1), g € [1, p). Indeed, from (35)
we can only find & g(§) < ;& (£ + 1)" #7||x[| rr, and when
B < 1, the right-hand side of this inequality gers to infinity

as & goes to infinity. On the contrary, if £ g(£) were bounded,
then for every 1 < g < p < co we would obtain

00 d&
iy, = | @@

Pa
s( sup ng(a) j gL 6D
0 £

£€(0,00)
— [+1P79 [P
= x5 x5

If now in addition g(&) were also monotone decreasing, in
order that [x]yre < ¢[x]xra, from the latter inequality we
would get [x] P (cg)(P ~a)lp [x] x> completing the proof of

X" — X"y € (0,1),1 < q < p < 0o. Due to the former
computations, we can thus conclude that in the case 3 < 1 the
quoted problems are the main obstacles which prevent us to
extend (49) and, as its consequence, (20) to the spaces XZ’p .

Remark 5. Let 0 < y, < y; < 1 be fixed and for every p €
[1,00] and letus set A, = X"P and B, = X""P_ We thus have
the two families of sets & = {A ,} e[y o) and B = {B,} (1,001
Let first 8 = 1. In this case, since (X, D(A)),,p = X’A’p, from
(20) we deduce that the sets A » and B, are related by the
following inclusions in which 1 < g, < g, < 00:

B, CB, CB, CB,CA CAy CA, CAy.  (52)

Now let B < 1. As observed in Remark 4, in this case the
embedding X}? — X%*, 1 < q < p < oo, may be not
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satisfied and the chain of inclusions (52) could not take place.
However, (38) and (39) hold true and for every p € [1,00],
and we have B, € A and B, € A,

We have already pointed out that {e"},., may be not

strongly continuous in the X-norm on Z(A). On the con-
trary, the following result (cf. [24, Proposition 5.2] for the
proof) shows that the things are finer on (X, 2(4)),,, and

Xﬁp . Later, we will need this fact.

Proposition 6. Let A be as in Proposition 2. Ify € (1 - 3,1);
then {4}, is strongly continuous in the X-norm on Yf €

{(X,9(A)) X’;{P}for every p € [1,00].

Y>p’

We conclude the section listing some estimates for the
operators [(—A)9]°etA defined by (11) with respect to the
spaces (X, 2(A)),,, and X"P_ First, in [19, Lemma 3.1] it is
shown that [(—A)6]°etAx € D(A) forevery x € X and that the
estimate ||[(-A)°] e xllg 4y < I[(~A)"*"]"e" x| x is satisfied.
Hence, using (14), we get

<C
2(2(4) ~ ©P

Reb >0,

"[(_A)e]"em

o £(B-Re 0-2)/a
0+ >

(53)
t>0.

Combining (14) and (53) with (25) and letting ¢;, = ¢,
(ca)ﬁ)e)l_y(c‘x,ﬁ,e +1)7, it thus follows (cf. [19, Proposition 3.1])

that for every y € (0,1) and p € [1, co] the following estimate
holds:

< gt FrReO-D/e

LXAXD(A),,)

"[(_A)e]"em

(54)

ReO >0, t>0.

Remark 7. We stress that if 8 < 1, then we can not derive an
estimate for the Z(X; X’I;’p)—norm of [(—A)g]"etA simply by
replacing (X, 9(A))y)p with XXP in (54). This is for two rea-
sons. First, when y € [, 1), we are not assured that [(-A)°]°
ex e X' for every x € X. Forif y € [fB,1), then the
space X7 may be smaller than the domain P(A) to which
[(—A)9]°etAx belongs by virtue of [19, Lemma 3.1]. The sec-
ond reason is that, even limiting to y € (0,f) in order
that 9(A) — Xﬁp, from (31) we only get ||[(—A)9]°etA
xII(X@(A))W < 2||[(—A)9]°etAx||X£,p, x € X, and we do not
know if the right-hand side can be bounded from above by
some constant times t# Y "Re0-D/x| 4| «- Of course, we can

employ (32), but in this way all that we can reach is the
estimate

|| [(—A)o]oem“ < llt(ﬁ—y—me 0-1)/«

LOGXLER)

where ¢;; = ¢,y € (1 -,1) and p € [1,00]. Letting
0 =y + 5 -1, (55) can be rewritten equivalently as

[l T, e, < et

Reb >0,

(2B-6-Re 0-2)/a
(56)
t>0,

where § € (0, ) and p € [1,00]. When 3 < 1, there are good
motivations to believe that estimate (56) is not the best one.
In fact, for instance, when (6, p) = (0, 00), (56) leads us to an
estimate which is rougher than the estimate

[e] iy < @t Se@ DL >0 (57)
as shown in [2, Proposition 3.2], with ¢, being a positive
constant depending on «, f3, and §. Also, (57) ensures that
e"“x, x € X, belongs to Xi’oo for every 6 € (0,1) and not
only for § € (0, B) as (56) suggests. Furthermore, due to (31),
estimate (57) yields (54) with (6, y, p) = (0,8, 00). This leads
us to believe that (57) can be improved and that estimate (54)
holds the same if XZ’OO is taken in place of (X, D(A))y,00-

Now let Y/ € {(X, Z(A)),,, X4}y € (0,1), p € [1,00].
As far as the estimates for the & (Yf ; X)-norm of operators
[(—A)6]°etA are concerned, instead, at the moment only the
following estimates for the case 6 = 1 are available (cf. [24,
Lemma 5.1]):
< gt PR

" [(—A)1 ]oetA P

y €(0,1),

with ¢, being a positive constant depending on «, 3, y, and p.
Estimates (58) are successfully applied in [24, Corollary 5.4]
to prove that if « + 8 > 1, then the map t — e is Holder
continuous from [0, c0) to =?(Yf; X),y e 2Q-a-p1),
p € [1,00], with Holder exponent 0 = (a« + 8 + y — 2)/cx.
In Section 3 we will extend (58), proving some estimates for
the Q(Y;’;X)-norm of [(-A)?1°e", Re 6 > 1, which reduce
to (58) in the case 6 = 1.

(58)

t>0, p € [1,00],

Remark 8. Observe that an estimate for the norm || [(—A)9]°
lyrn Red = 1t > 0,YF € (X, D(A)),,. X} Ly €
(0,1), p € [1,00], can be obtained combining (14), (15), and
(58). Indeed, using (15), for every Re@ > 1,t > Oand x € Y)f’,

we have

7T,

N T
< Jlar el e ],

Therefore, due to (14) and (58), from (59) we deduce that
||[(_A)9]Qeml|y(¥f X) = Cl4t(2/3+y—me e

(60)

Reb>1, t>0,
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where y € (0,1), p € [l,00] and ¢y = 22+ Re 6-y=2p)/«
Ca,p0-1€13- As we will see in the next section estimate (60) is
not optimal, in the sense that the negative exponent (23 +
y — Rel — 2)/a can be refined; of course, unless f =

The main reason to believe that (60) can be improved is
that its derivation consists of two steps: the first in which
[(- A) e is decomposed with the help of (15), and the
second in which (60) is obtained combining estimates of
very different nature, such as (14) and (58). It is thus to be
expected that in this double step derivation some regularity
goes missing and that a better result can be reached analyzing

more detailedly [(— AT e x for x € Yf )

3. Behaviour of [(—A)°]¢ in
(X,2(4A)),,, and xnr

According to Remark 7 we begin by improving (54), showing
that the same estimate holds with (X, QZ(A))% » being replaced
by X%, if p = coand by Xﬁy’P if p € [1, 00). Throughout this
and the next section, A will be an m. 1. operator in X having
nonempty domain Z(A) and satistying the resolvent condi-
tion (H1) of Section 2.

Proposition 9. Let Ref >
Then, there exist positive constants ¢
&, 3, v, 0, and p such that

[l

» j = 15,16, depending on

< Clst(ﬁ—y—m ef-1)/a

FOGXL) NG
t>0, p=oo,
61° tA (B-y-Reb-1)/a
“A || < :
|l oy = e (62)
t>0, pefl,00).

Proof. If B = 1, then (X, 2(A4)), , = X, and (61) and (62)
with ¢; = 6, j = 15,16, follow gy takmg B =1in(32) and
(54). Therefore, without the loss of generality, we assume that
B € (0,a]issuchthat § < aifa = 1. Let 0 € C, ReO > 0,
y € (0,1), and p € [1,00) be fixed and let x be an arbitrary
element of X. Then, for every t > 0 we have

" [(_A)eremx

5,00
XA

JleatTen,

”?A"(EI B A)—l[(_A)9]°etAx|l

Ly (%)
(63)

[T e,

=T+ e - [carTes

Ly’
(64)
Of course, from estimate (54) we find
0 ot4 _)—Re 6
“[(—A) |e x||X < ¢, perollxlt e O,
(65)

t>0,

>0,y € (0,1) and let p € [1,00].
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with Cp being such that [ly[, < Cy,p"y"(x,gz(A))W’ y e (X

9(A))%p, p € [1,00]. It thus suffices to investigate only the
second terms on the right-hand side of (63) and (64). We
begin by proving (61). First, using the second identity in (6),
for every & € (0, 00) we get

EAE - A [(-A)°] x

= ny( V% AT ET - AT - A) TxdA

B 0 A

o] j(m (-5 ] AT - Ay

- zij F N M A= B AT - A)  xd)
=-ij EEN A - AL - 4) " - 1] xdA

2
=2ijsy< WP -8 - A xdA.
(66)

Here we have used twice the equality J‘r(—)t)eet’\ A=-8671dA =
0, & € (0,00), which follows from Cauchy’s formula after
having enclosed T on the left with an arc of the circle {z €
C: |z +c| = R}, R > 0, and letting R to infinity. From (66),
using [(AI = A) Mg < CUAM + 1P < CINP X € 2, it
follows that

|&rar@r- a7 A e
< Cm) ' xlix

y J FY AR Gfﬁefﬁmf)arg(ﬂ\)etﬂieAM _ Elfl 1|
T

< C(ZTL')_I e(7'[/2)|Sm 0| "x”X

E) +2Re9ﬁt‘)1e)u
X A
J, ()

-

Now, since Re A < —¢ <0 for every A €T and since £ € (0, 00),
we have

[dA].
(67)

=P4EY‘§&2FZ )
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Therefore, for every A € ' and & € (0,00) the following

inequality holds:
Gl G <G T ()
V(1 Z )R

PGy
where we have used the fact that the function f(s) = s"(1 +

52)_1/2, s >0,y € (0, 1), attains its maximum value c, at the
1/2

-1/2

(69)

sy

point s, = y2(1 - y)"/%. Coming back to (67) and setting
¢y = C(2n)_1e("/2)|sm6|cy, we thus find (here we use also that
on T it holds [A| > ¢, so that Red = —c(|SmA| + 1)* > —¢

1+ cHHA):

&7 ar@r - a7 AT e x|

+Re - tRel
SmthwyeﬁeeMM

(70)

1

+Re 60— —c(1+c " )*tA*
< cllxly L A Re O-Bemelise AT 4

[oe)
Re 0-B _—c, tu”
< 2¢, 1%l x J.O e Becuth dy,

where ¢, = ¢(1 + ¢')% Finally, taking the supremum with
respect to & € (0,00) in (70) and performing the transforma-
tion ¢, tu” = s in the integral on the right, we obtain

" EAT(EI - A [(—A)e]oemx "L;,(X> (71)

—y—Re 6-1
< gl £ Fr e O

where ¢;g = 2c17oc71c(iﬁ*yfmee*l)/“E((y +Reb +1 - P)a),
E(x), x > 0, being the Euler gamma function fooo s¥le™ds.
Then, summing up (65) and (71), from (63) it follows that

“ [(—A)G]cemx {B-y-Reb-D)/a

XV S (Cy,ooclo + 618) "x”X
A

Reb>0, t>0.

(72)

Since x € X was arbitrary, this completes the proof of (61)
with ¢;5 = ¢, ,¢10 + 5. Let us now prove (62). For every p €
[1, 00) we write

‘|€[;on(£[ B A)_l[(—A)e]DetAxui* . I, +1, (73)
where 1, = [2 18 A€ - ) (-4 eI @79, j =

1,2, (a;, by, a5,b,) = (0,1,1,00). First, 35) with Y/ = (X,
D(A),,p yields

p

I, < " -A) oetAx”
<[4 X2(4),,

[ e+ 01 ag
0
74

1

Therefore, since (£ + 1)! 7 < cg,, for every & € (0, 1], where

gy = 27 or ¢ ,, = laccording that y € (0,1 - ) or
y € [1-,1), from (54), we deduce that

° P ! -
I < [Cﬁ,ycs]P“[(‘A)G] el ”(x@(A»y,p Jo e (75)

—y-ReO-1 p
= [crgllxllt #7000

with ¢ = cﬁ)yc3c10(ﬁyp)_l/p. As far as I, is concerned,
exploiting (71) and recalling that we have assumed 8 < 1, we
obtain

5=f?“wwﬁm>mﬂemﬁﬁw;§

(76)

_y—Re 0-1)/a1? [ c(B-1)yp-1
S[Cw"xnxf(ﬁy ¢ )/a] L f(ﬁ vp dé

< ey lxllxt #7770,

where ¢y = ¢5[(1—B)yp] /2. Summing up (73)-(76), it thus
follows that

&7 4@ - 2! [-a)°] e

£ (77)

< o ”x”Xt(ﬁ—y—iRe 9—1)/0()
where ¢,; = [(¢;6)” + (c,0)?]1"/. Finally, (65) and (77) lead us
to

01° tA _—Re 01
[[CAT x| i < (Gpio + o) Bt 0,
A

NReO>0, t>0.
(78)

Since x € X was arbitrary, this completes the proof of (62)
with ¢ = ¢, ,¢10 + &1 O

Remark 10. If0 = 0, then (61) is precisely the estimate (57). In
this sense our result improves [2] and shows that (54) holds
the same with (X, 2 (A))%p being replaced with XZ’OO ifp =

oo and Xﬁy’P and if p € [1,00). Also, when 3 < 1, (61) and
(62) are in two aspects better than the estimate (55) deduced
from (54) with the help of (32). First, here we do not need to
restrict y to (1 — f3, 1). Further, despite limiting y to (1 - 3, 1),
(61) and (62) show that [(—A)0]°etAx, Reb>0,t>0,x¢€X,
enjoys more regularity than that predicted by (55). For, since
when < litholds 0 < y+ -1 < By < y, from (38) and

(39) it follows X}XOO — Xﬁy’P — Xfﬁ_l’P, p € [1,00].

Remark 11. We recall that when B < 1 the spaces X7, 0 €
(0,1), p € [1,00], are intermediate spaces between X and
D(A) for 0 € (0, ), but they may be contained in D(A)
for o € [f3,1). Therefore, whereas (61) is satisfied for spaces
X% eventually smaller than Z(A), for (62) to hold we have
to consider only spaces X%, p € [1,00), bigger than D(A).
In fact, letting o = By, we have o € (0, ) for every y € (0, 1).



12

In accordance with Remark 8 we now improve estimate
(58).

Proposition 12. Let Ref > 1, y € (0,1), p € [1,00] and let
b e {(X,@(A))%P,XZ’P}. Then, there exists a positive con-
stant ¢, depending on o, f3, y, 0, and p such that

J-arT

(ﬁ+y79§e671)/o¢’ £>0.

< ot (79)

LX)

Proof. First, using the identity A°(zI — A7 =z(zI-A) -
z € X, for every x € X, we rewrite [(~A)?) e x, Reb > 0,
in the following way:

[(_A)G]"etAx

1 6-1,11
- J( PP A = A) " x d)
1 6-1,10 (80)
- 2mJ( N AT - A x+ 1] xdA
S J( NPT AT = A) M xdd, >0,
271

Here we have used fr(—)t)e’1 e*dA = 0, which follows from

the Cauchy formula applied to (~1)%e" after having enclosed

T on the left with an arc of the circle {z € C : |z + ¢| = R},
R > 0, and letting R to infinity. Let now 0 € C, Re0 > 1
y € (0,1), and p € [1,00] be fixed and let x be an arbitrary
element of Yf . From (35) it then follows that

[l e,

< cysllxlyy L RO A + )P AL, >0,
(81)

where ¢,; = (271) ' e™/2I8m . Now, recalling that || > ¢ >

0 forevery A € I, wehave [A| < [A|+1 < (1 + cHIALA €T
As a consequence, the following inequality holds:

M+ < NPT, vier, (82)

where &, = (1 +c¢ )7 or ¢, = 1 according that y €
(0,1 —ﬁﬁ] orye(1-4,1)((0,1-p]=0if §=1). Therefore,
setting ¢, = 2€3,,63, (81) and (82) yield

o’ e,
w0 ) (83)
< Gullxllyr L plhe O e a0,

with ¢, being as in (70). Finally, the transformation ¢, tu® = s
in the last integral leads us to the following estimate:

[[ca T e x|, < eyt @000, 50, (89)
where 6,5 = a0 ' (P REOVE(Red + 1 - B - y)/a),

E(x), x > 0, is the Euler’s gamma function. Notice that here
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Rel > 1implies Red +1 - -y >2- B~y >0 forevery
B € (0,1] and y € (0,1), so that E((Re0 + 1 - 5 — y)/cx)
makes sense. Since (84) is satisfied for every arbitrary element
x € Y]f’ , the proof is complete with ¢, = ¢;. O

Remark 13. Estimate (79) is better than (60) obtained in
Remark 8 using (14), (15), and (58). In fact, for every f €
(0,a], « € (0,1], y € (0,1) and ReO > 1, the following

inequality holds:
(2B+y-Reb-2)
P = o
(85)
- Reb -1
S(ﬁ+y ¢ ):=p2<0.
o

Then, t” < tP1,t € (0, 1], and (79) is more accurate than (60)
for small values of ¢.

Estimate (79) with 0 = 1 yields the following result which
we will need in Section 5 to prove the equivalence between
problem (170) and the fixed-point equation (179).

Corollary 14. Let a+ 3 > 1 in (HI). Then, for every x € X the
following equalities hold:

A% ds, t>0.

(86)

Al (etA —I)x = (etA - I) Alx = jte
0

Proof. The assertion is obvious for ¢t = 0. Let ¢ > 0 and let
x € X. Commuting A™' € Z(X) with the integral sign, from
(9) and the resolvent equation, we have Aletx = A7y,
which proves the first equality in (86). To prove the second
equality, we first write

(etA - I) Alx = Jt

0 [DrerA] r=t—

sAflx ds
(87)

- Jt [(—A)l]oe(t_s)AA_lx ds,
0

and we show that the latter integral is convergent. Indeed,
since a + 8 > 1, we may consider A'x € D(A) as an element
of (X,QZ(A))H,, wherey € (2 -a - f5,1)and p € [1,00].
With this choice for y, from (79) with 6 = 1 and (25) we
obtain (here we use also ||A_1x||9(A) = inf cp a1yl =
inf cannllylx = lIxll gaary < Ixlx, dueto I ¢ AAT

N S
Then, 1A xl oy, < 1A S 1A < 6
LA™ W Dl )

Jt [(—A)l]ce(t_s)AA_lx ds
0

X
t
i T KO

<ty [ P
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wherec, 5, = ala+ B +y - 2)"!. We now recall that (cf. [24,
formula (3.21)])

(A -4 =[] e, Re (e (1-41],

t>0,
(89)

with (-A)™ being the negative fractional powers of —A
defined by (cf. [24, Section 3]) (27ri) ™" [L(-1)* (A - A)~'dA,
Rel > 1 — f. To complete the proof it thus suffices to apply
(89) with { = 1 to (87) and to recall that [(—A)"]"e"* = "4,
t > 0. Notice that the integral on the right-hand side of
(86) is convergent, too. In fact, from (14), it follows that
|7 e“4xdsly < Gpollxllx [ (8 = 9)FV/%ds = a(a + B -
)78, g ollxll £ HFD/. O

Remark I5. In particular, from (86) it follows thatif e+ > 1,
then f; 4% ds € D(A) for every x € X and (e - Dx ¢

t (- . e
A [ e"94x ds. This extends to m. 1. operators satisfying

(H1) the well-known result for sectorial single-valued linear
operators (see, for instance, [9, Proposition 2.1.4(ii)] and [11,
Proposition 1.2(ii)]).

With the help of (54) and Proposition 12, we can now
derive the following interpolation estimates (90) for the
operators [(~A)’]°e*4, Re® > 1, which are considered as
operators from (X, 9(A))%P to (X, 9(A))5,P. As we will see
in the proof of Proposition 16, here the fact that the spaces
(X,QZ(A))G,P are real interpolation spaces between X and
D(A) plays a key role. For it allows us to exploit the inter-
polation inequality (24) in the derivation of our estimates in
the case y + 0 < 1.

Proposition 16. Let Ref > 1, 9,6 € (0,1), and p € [1,00].
Then, there exist positive constants c;, j = 26,27, depending on
&, 3, v, 8, 0, and p such that for everyt > 0

071°
'l [(_A) ] etAl'3((){’@(A))V,P;(X,Q(A))B,p)

(90)
)/, 6 € (0) 1) >

X t(2[§+y—8—9¥e€—2)/0¢
6 >
- { ify+0 <1

(./Z7t(ﬁ+y—8—9{ e 9—1)/0(’

Proof. For brevity, we will use the shortenings Y? = (X,
9(A))G,P, o € (0,1), p € [1,00]. We begin by proving the
first estimate in (90). Let 6 € C, Rel > 1, p,6 € (0,1)
and p € [1,00] be fixed and let x be an arbitrary element of
Yyp . Moreover, let { and {’ be two arbitrary complex numbers

such that @ = ¢ + ¢’ and whose real parts satisfy Re{ > 0
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and Re' > 1. From the decomposition formula (15) it then
follows for every t > 0:

" [(_A)eremx

P
Y(S

_ |l [-A) ] e[ | e

P
Y(S

o flca o

2(X%5Y0) X

< [lcaxTe|

[(_ A)c’}"e(t/z)A

Il
(91)

Therefore, using (54) and (79) with the triplet (6, y, t) being
equal to ({,8,t/2) and (', y,t/2), respectively, from (91) and
ReO = Re ! + Re ', we deduce that

"[(_A)e]"emx

Z(X:YD) |3(Y§’ ;X)

P
Y&

¢ >(p—5—mec—1)/a< £\ Bry—Rel'-D/a
;)

< C10%2<§

t(2[3+y—579{e 0-2)/

< G "x”Yfr t>0,

where ¢, = 2@Re0v0y20ar o This completes the proof
of the first estimate in (90), due to the arbitrariness of x €

Y)f’ . Let us now prove the second estimate in (90). Let 0 € C,

Red > 1,9,0 € (0,1),y+ 68 < 1,and p € [1,00] be fixed.
Usingy + 8 < 1, wefixy, € (y/(1 -6),1) & (y,1), and we let

Y1 = (1,0)/(y, — y). Clearly, since y, € (y/(1 - 6), 1), we have

1 € (8,1). In addition, it holds:

1—8>V1_8=( 120 —6><Y2_y>=l>y. (93)
N V-V 720 v

Due to (93), we now set y, = y/y, = (y; = 8)/y; € (y,1-0),
so that y = y,y, and 8 = (1 — y,)y,. From (24) with p, = p it
thus follows that

JlcarTe]

FOTyE)
o 1_)’() ° Yo
01° tA 01° tA
<|la] e (-4 , t>0,
“[( ) ] ¢ ZXYE) [( ) ] ¢ L(YE2:X)
(94)

where pj € [1,00], j = 1,2. Applying (54) and (79) with the
pair (y, p) being replaced with (y;, p;) and (y,, p,), respec-
tively, from (94) we finally obtain

ll=arye,

. _ 1- _ _
< [Clot(ﬁ y1—Re & 1)/06] Yo [%Zt(ﬁﬂ/z Re6 1)/“])’0

55vh)

(95)
1=y Yo ([ B+yoy,—(1=y,)y; —Re 6-1]/

< (Cm) O(sz) 0 4[B+1oy2—(1-yo)y —Re o

_ (Clo)ﬁ/yl ((22))’/)/2t(ﬁ+y—6—m69—l)/a’ £>0.

This completes the proof of the second estimate in (90) with
Gy = (Cm)é/y] (sz)y/yz- O
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Remark 17. We stress that if < 1 and y + § < 1, then the
first estimate in (90) is rougher than the second one for small
values of ¢, which justify our special attention to the case y +
0 < 1.Indeed, if B < 1, then for every Re 0 > 1 the following
inequality holds:

(2B+y-06-Reb-2)

37

o
. (B+y-86-Reb-1)
«

(96)

=:p, <0,

so that t” < t” for t € (0,1]. In other words, if $ and
y + § are both less than one, then the second estimate in (90)

establishes that the norm [|[(-A)%]"¢™| LKD), (XD(A)s )
Red > 1, may blow up as t goes to 0, but with an order of
singularity lower than that predicted by the first estimate. In
this sense, though less general, the second estimate in (90) is

better than the first one.

Remark 18. The reason why the second estimate in (90) yields
a better exponent than the first one is the same mentioned
in Remark 8. That is, while the first estimate is obtained in
two steps: decomposing [(—A)e]"em through (15) and then
applying (54) and (79), the second estimate is essentially
derived in a single step, using (24).

The following Remark 19 points out why, with the excep-
tion of the case when § = 1 and A is single-valued, to prove
(90) we can not proceed as in [9, Proposition 2.2.9].

Remark 19. In the optimal case 3 = 1, the exponents in both
estimates (90) coincide equals to v = y — § — Re 0. Hence,
in this special case, the assumption y + § < 1 does not give
any enhancement. Also, if we further assume that 0 € N, then
we restore the same estimates as in [9, Proposition 2.2.9(i)].
In this respect, our result extends [9] to the m. 1. case, even
though our proof really differs from that in [9]. For, there, the
norms in the spaces (X, 2(A)),, pare replaced with the norms
in the spaces 9 ,(o, p), with the latter being the spaces of all
x € X such that 1%l ,@,p) = IXIx + [X],0,p) < 005 where
(Xlo, 00 = ||§<2—ﬁ—">/"‘[(—A)l]"e“uL;(X). It is well known
that if 5 = 1 and A is single-valued, then (X, 2(4)g, =
D 4(0, p) (ct. [31, Theorem 3], [9, Proposition 2.2.2] and [27,
Theorem 1.14.5]). On the contrary, if («, §) # (1, 1) and/or A
is really an m. 1. operator, such equivalence is no longer true
and we have

X3P = (X, D(A))gp = Dy (a0,p), pell,00),

X5P = (X, D (A))go ™ Dp(0,00), p=oc0.

(97)

Differently from the spaces X% and as a consequence of
A0 € (oo H([(—A)']7e™), the spaces D (o, p) contain AO.
It can thus be shown that if « + § > 1, then for every
c€ 2-a-B1l)andg € (0,(« + B+ 0 — 2)/a) (here
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(a+pB+0-2)/a < 1,sincec < 1 < 2 — ) the following
embeddings hold:

04U [Z4 (0. p) \ A0] = XEP — (X, D (4)),»
p€[l,00),
{0} U [D 4 (0,00) | AQ] > X EHFro-2ee0
= (X, D (A) (a4 pro-2)/as00°

with {0} U [D (o, p) \ A0] being endowed with the norm
of D ,(o, p). Obviously, due to (29), it suffices to prove the
embeddings on the right of (97) and on the left of (98). It is
out of the aims of this paper to go into the details of these
proofs, and for them we refer the readers to [24, Proposition
6.3]. Here we want only to make clear that, with the exception
of the case when 8 = 1 and A is single-valued, embeddings
(97) and (98) prevent us from carrying out the proof of
estimates (90) simply by repeating the computations in [9].
Notice that, due to the property [XZ’P N A0] = {0}, from the
second embeddings in (97) and (98) it follows thatif a+f > 1
ando € (2-a—f3,1), then

(98)

XZ’OO — {0} U [9A (0,00) \ AO] PN Xf:‘+[3+a—2)/tx,oo.
(99)

Since (a+f+0-2)/a < o (indeed,ax < 1 < 2—f-0)/(1-0)
implies @ + 3+ 0 — 2 < o), (99) agrees with (38) for p = co.
In addition, if 2« + $ > 2and 0 € ((2 - & — 8)/a, 1), then the
first embeddings in (97) and (98) yield for every ¢ € (0, (& +
B + ao — 2)/«) the following:

X" = (01U (24 (a0, p) \ A0] — X537, p e [1,00).

(100)

Since ¢ < (& + B+ a0 — 2)/a < 0, (100) agrees with (38) for
p € [1,00). Furthermore, if f = 1, then from (29), (30), and
(99) it follows that (X, D(A)), o, = X5 = {0}U[D 4(0,00)\
A0], o € (0,1). This confirms that in the real m. 1. case the
equivalence between XZ’p , (X, 9(A))J)P and 9 (o, p) does
not hold even when f§ = 1.

Using Propositions 9 and 12, we now obtain estimates for
the operators [(—A)9]°etA, Re 6 > 1, considered as operators
from X%” to XaA’p . Clearly, since 8 < 1 the spaces X%” may
be not real interpolation spaces between X and P (A), we can
not proceed as in the proof of the second estimate in (90) and
a weaker result has to be expected.

Proposition 20. Let Red > 1, 9,6 € (0,1), and p € [1,00].
Then, there exist positive constants Cj» j = 28,29, 30, depending
ona, B,y, 06,0, and p such that

u[(_A)e]“etA

| < stt(zﬁﬂ/f@f?(eﬂfz)/a’

LXTXE (101)

p=00, t>0,

01° tA (2B+y—0-Reb-2)/«
-A)’| e “ < ot ,
u[( ) ] 20 > o) @ (102)

pe(l,o0), t>0.
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Moreover, ify € (0,1) and § € (1-3,1) are such that y+3 < 1,
then
llarTe?|

(B+y—06-Re-1)/a
< Gt ,
g(XIya,p;Xiw—l,p) C30
(103)

pell,o0], t>0.

Proof. Due to (61) and (79), in order to prove (101) and
(102) it suffices to repeat the same computations as in (91)
and (92), with the pair ((X,@(A))W,(X,@(A))s’p) being
replaced with (XZ\’OO,X‘Z"’O) or with (XZ{P , Xﬁ‘s’p ) provided
that p = co or p € [1,00). In this way we derive (101) and
(102) with ¢}, = 2ROV j = 15,16, As far
as (103) is concerned, we recall that if X j=1...,4are
four Banach spaces such that X; — X;,, j = 1,2, and
L € Z(X35X,), then L € L(X5X,) with [Lllgx,,x,) <
CiGlILl #(x,;x,)» C1 and C, being the positive constants such
that ||x||Xj+2 < CjIIxIIXj, x € X;, j = 1,2. Applying this
result to L = [(—A)?]"e" with (X, X,, X5, X,) = (X}P, (X,
D(A))5 pr (X, D(A)),, o X5 FP), from (29)-(32) and the
second estimate in (90) we deduce (103) with ¢;; = 2¢,cy;.
This completes the proof. O

Remark 21. The assumption y + § < 1 with y € (0,1) and
0 € (1 - B, 1) implies that y € (0,1 - &) ¢ (0, 3). Therefore
(cf. Remark 11), we conclude that for (103) to hold we have
to consider [(—A)0]°etA, Ref > 1, as an operator between
the intermediate spaces X and X%, where y,e € (0, ),
e=0+p-1,8e(1-B1),y+0< 1L

4. Holder Regularity of Some
Operator Functions

Here, we study the Holder regularity of those operator func-
tions that we will need in Section 5. From now on, with
(Z,-1l;) being a complex Banach space, C([a,b];Z) =
C°%([a,b]; Z) and C‘;([a, b;Z2), 8 € (0,1), a < b, denote,
respectively, the spaces of all continuous and §-Hélder con-
tinuous functions from [a, b] into Z endowed with the norms

lglo sz = SUPte(a,b] lg®Oll, and liglls .z = Ngloapz +
|9ls.ap:z> Where |gls,p., is the seminorm Supa£t1<t25b(t2 -

t)°g(t,) — g(t,)l,. We endow the subspace C5([a, b]; Z) =
{g € C([a,bl;Z) : g(a) = 0}, € [0,1) with the norm
| - lls 0.~ Further, for k € N and § € (0,1) we set Ck([a, bl;
Z) = {g € C([a,b;2) : Dfg € C([a,b}; 20}, gl ppr =
Y6 10! glly 17 (D) = 1),and C**°([a, bl; Z) = {g € C¥([a, b];
Z) : Dfg € Co(abi 2 19lisompr = 19lkaps + 1D
ls.apz Recall that if 0 < 8, < 8, < 1, then C%([a, b]; Z) —
C*([a,b}; Z) and llglls, .7 < max{l, (b = a)* *}igls, 4pz0
g € C%([a, b]; X). Finally, given three complex Banach spaces

(Xj I - lIx,), k = 1,2,3, and a bilinear bounded operator &
from X, xX, to X; withnorm C, thatis, 2 € B(X,xX,; X5)
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and | Pl g(x, xx,5x,) = suP||xk||xk=1,k=1,2”‘@(xl’xZ)lle = Co
we denote by # the convolution operator

H (v,v,) () = L P (v (t=1),v,(r))dr,
te[0,b], b>0,

where v, : [0,b] — X, k = 1,2. Of course, if (X;,X,) =
(C, X;) and if & is the scalar multiplication in Xj, that is,
P(z,x) = zx,z € C, x € X5, then Cy = 1 and F reduces
to the usual convolution operator F'(v,,v,)(t) = jot vt -
r)v,(r) dr. As usual, for every q € [1, 00], we will denote by
q' the conjugate exponent of g.

Now let X; = X and introduce the following linear oper-

ators Qj, j = 1,...,6, where g; € ([0, T}; X), j = 1,2,5,
g, € C%([0,T],X,), 1 = 3,6,k = 1,2, g, € C*([0,T};C),
y € Y2, YP € (X, D(A)),,,, X4P}, p € [1,00], and £ € [0, T],
T > 0 as follows:

t
[Quai] () = jo g (5)ds,

(104)

Y>p’

(105)

[Qu9,] (1) = L [=4)'] ¢4 g, (s) - g, (®] ds,  (106)

Qs (95095,)] ) = [QF (g5, 9,)] . (107)
[Q4 (94 1)1 () = [Q, (941)] (1), (108)
[Qsgs] (1) = [ = 1] g5 (8, (109)

[Qs (96, 96,)] ) := [Qs 7 (96, 96,) ] ©). (110)

with g,y being the function from [0,T] to Yf defined by
(94)(#) = g4(t)y. We will find conditions on §;,6),,0,,y €
(0,1), j = 1,2,5,1 = 3,6,k = 1,2, in order that Q;g; € CYi
([0,T]:X), Ql(gllsglz) € CTI([O7 T]; X) and Q4(94> y) e C™
([0,T];X) for opportunely chosen TjTpT4 € (0,1). We empha-
size of the presence of the increment g,(s) — g,(t) inside the
integral defining Q,g,. As we will see, and differently from
Q,, it is just this presence which makes Q,g, well-defined
for smooth enough functions g,. This is the reason why the
operator Q, as it was defined in [20, formula (4.12)] can make
no sense and has to be replaced with that defined by the
present (106) (cf. the appendix below). We begin our analysis
on the Q j’s with the following result proven in [20, Lemma
4.1]. Since we will need it later, here, removing some misprints
in [20], we report its short proof for the reader’s convenience.

Lemma 22. Let « + 3 > 1 in (HI). Then, for every §, € (0,
(¢ + B — 1)/a), the operator Q, defined by (105) maps ch
([0, T); X) into Cg‘ ([0, T]; X), and for every t € [0, T] satisfies
the following estimate, where p € (a/(x + f— 1 — ad;), 00) as
follows:

t 1/p
“nglnsl,o,r;x <C (@) (J.o I, ||§1,0,5;de> : (1)

Here C,(t) is a nondecreasing function of t depending also on
« B, 8, and p'.
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Proof. Let g, € C‘sl([O,T];X), 6, € (0,(e+pB-1)/a),and t €
[0, T]. From (14) and the Holder inequality with p € (a/(a +
B—-1-ad,),00) & (1,00), for any 7 € [0, ¢], we deduce that

” [Qi91] (T)"X

T
< s [, (=9 g1 g s
a--pp' Ve ([T y "
a—(1— «,
A (N s

1/p
la-(+ad,~B)p 1 ep') o [ [Ty, e
<yl ot e ([ f  as)

(112)

where¢;; = ~a’ﬁ’0(x1/1’, [(x—(l—ﬂ)p']fl/pl.Here(x—(1+tx61—ﬁ)
p' > 0,since p' € (1,a/(1+ a8, - B)).For 1 —1/p > 1~ (a+
B—-1-ad))/a=(1+ab, — f)/«. passing to the supremum
with respect to 7 € [0, t] in (112) we thus find

"ngl "o,o,t;x

. 1/p
[a—(1+a8,~B)p'1/(ep') ;& b
s o PV (g as)

(113)

Now let (since [Q;4,](0) = 0, the case t; = 0 follows from
(112) with T = t,) 0 < t; < t, < t. The change of variable

t —s = rin (105) leads us to [Q,g,1(t,) — [Q,9,1(t)) = Yr_,

(P2 rA
Lt 900 where Lig g, = L e g,(t, —r)drand Ly,

1 g T

jot' erA[g1 (t, —r) — g,(t; — r)] dr. Reasoning as in (112) and
using the inequality t — t{' < (t, — )", p € (0, 1], we get

"Ilitptz’!]l "X

(a--Pp' 1o [ [y e v
<oty —t,) (L ||91“51,o,t2—r;xd”>
1

t 1/p
_ S — ’ ’ B
< csltg“ (1+ad,-p)p']/(ap )(t2 - tl) 1(J0 ||g1 ||§1,0,t—r;Xdr> .

(114)

Similarly, but taking advantage from g, € C%([0,T]; X), we
obtain

'|Iz$t1»t2:gl “X

t
_ 5 _
<Copolts—t1)" L r# 1)/a|g1|51,0,t2—r;xdr

1p
la—(L+ad, ~B)p' )/ (ap'),8 af (*
Sc3lf1a +ad,—p)p']/(ap tll(t2 - tl) I(JO ”gl "gl,o,t—r;Xdr) .

(115)
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Thus, letting ¢, (t) = c31t[“f(”“al’ﬁ)l”]/(“”’) from (114) and
(115) it follows that

“[ngl] (t2) = [Qig1] (tl)"x

t 1/p
< (1) (tal + 1) (t, - tl)al <J-o ||91||§1,o,t-r;xdr> :

(116)
Finally, summing up (113) and (116) and using Iot g ||§1’0,t_r; <
dr = Iot g, IIgl)O)s;de, we derive (111) with C, (¢) = 51(1,‘)(21‘8l +
1). This completes the proof. O

Remark 23. We stress that if we renounce to its Holder
regularity, then for Q, g, to be well-defined it suffices that «
and fare asin Lemma 22 and that g, is merely in C([0, T]; X).
In fact (see the last part of the proof of Corollary 14,
replacing there x with g,(s)), I[Q, g1y < alx + B -
DG pollgilloxt " t € [0,T].

Lemma 24. Let 3a + 5 > 3 in (HI). Then, for every §, €
((3 = 2a — B)/e, 1), the operator Q, defined by (106) maps
C%([0,T]; X) into C ([0, T]; X), v, = (a8, + 2 + f—3)/a €
(0,8,], and foreveryt € [0, T] it satisfies the following estimate:

”Q2g2|lv2,0,t;X < C2 (t) |g2|82,0,t;X' (117)

Here C,(t) is a nondecreasing function of t depending also on
«, 3, and §,.

Proof. Denote by « the number (1 — «)/a. In particular, since
3 + 3 > 3 implies @ € (2/3,1], we have & € [0,1/2). Let
t € [0,T], g, € C>([0,T]; X), 8, € ((3 -2 — )/, 1), and
v, = (a8, + 20+ - 3)/a € (0, 8,]. We notice that (a8, + S -
2)/a = v, + @ — 1land (a8, + 3 — 3)/a = v, — 2. Then, using
(14) with 6 = 1, for every 7 € [0,¢] we obtain

“[ngz] (T)"X

T
~ (6, +-2)
< Ca,ﬁ,1|92|62,0,r;x L (T —s)“ rHB-2)/e g (118)

= c3l9, l82 ,O,T;XTV2+&’

~ —\-1
where ¢;, = ¢, 3,(v, + @) . Hence

1Q92ll0.0x < 2192 |52,o,:;xtwa- (119)

Now let (since [Q,g,]1(0) = 0, the case t; = 0 follows
from (118) with = = t,) 0 < t; < t, < t. We have
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[Q,9,1(t;) = [Qy9,](t)) = Zzzl ]kitl»tz»gz’ where for a function
g:10,T] — X we set

]l;tl,tz,g

= J! flearyermon-earyern

0
x[g(s) - g(t)]ds, (120)

t o
oty 9 = L [(_A)l] e [9(t)—g(t:)]ds,
t, o s
g = | [0 909 - g 1) ds.
First, using (13) with (s,t,0) = (t; —s,t, —s,1),s € (0,¢,), and

(14) with 0 = 2, and letting (¢33, ¢4) = (Ea,ﬁ,z(l - vz)fl, c33v;1),
we get

"Il;tl’tz»gz X

t ty—s
_ 1 2 _ 5,
< Ca,ﬁ,2|92|52,o,tl;x JO “ . 3 3)/rxd§] (t; —s)7ds

1

tT rt-s
~ (a0, +B-3)/ e
Ctx’ﬁ,2|g2|62,0,tl;x JO [J; By f 2 df:| ds

1

IA

tl Vy— Vy—
= C33l92|62,0,t1;x L [(t1 - 5) 2l (t2 - s) 2 1] ds

= C34|92|52,0,t1;x [tilz +(ty =) — 1

< G4 Gals, 0, (2 = t)”
(121)

Let us turn to Jy , o . We first observe that the integral
_[(:1 [(—A)' e is convergent. For, | le [(—A)'] et
~ t - .
dsllx < Gupy [ (6 = 9)FP/%ds < Cpp, . where Cpg, . is
equal to G, g In[t,(t, — t)iff=1andtoa2 -a- )"

Gupal(ty — 1) F2/e (P20 5 g e (0,1). Thus, we
may rewrite it as — _[:Z_tl [(-A)' ] e™dr = I:Z_tl D,edr =
2 2
"4 _ eh24 Consequently,
||]2§t1’tz’§z X

~ (B-1)/ _ s
< Ca B0 [(tz -t) prvley t;ﬁ 1)/“] |g2|62,0,t2;X(t2 —t)"

_ 1q(B-D/a
SC%[;’O{1+ [t2(t, - 1) '] }

(a8, +p-1)/
X |gZ|62,0,t2;X(t2 -1,)" Dl

—~ 20
< 2Coc,ﬁ,0|92|§2,0,t2;x(t2 - tl)v2+ *

>

(122)
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where we have used [¢,(t, — tl)_l](ﬁ_l)/“ < 1 and (ad, +
B-1/a =, +2a. As far as J3; , . is concerned, instead,
reasoning as in the derivation of (118) we find

t

~ &-1
x = Ca,ﬁ,llg2|52,0,t2;x J (t, - S)Vzm ds

"]3#1"2’92 .
! (123)

= C32|92|52,o)t2;x(t2 - f1)y2+a-

Then, summing up (121)-(123) and letting 5(t) = ¢4 +
2Ea,ﬁ,0t2a + C32tlx, we obtain

X

"[ngz] (t2) = [Q9:] (tl)“X = Z ”]k;tl)tz)gz

<5 (h) |!]2|52,o,t;x(t2 -1)".
(124)

Finally, (119) and (124) yield (117) with C,(t) = ¢;,t" " +&,(t).
O

Remark 25. In particular, Lemma 24 establishes that, with the
exception of the case f = 1 in which », = §,, Q, produces a
loss of regularity equal to §, — v, = (3 — 2a — f8)/«.

As Corollary 14, the next result will be needed to prove
the equivalence between problem (170) and the fixed-point
equation (179). From now on, if A" € Z(X) and g €
C°([0,T]; X), & € [0,1), with A™'g we will always mean
the function in C%([0,T]; D(A)) defined by (A_lg)(t) =
Ail(g(t)). Notice that IIAflgII&O’t;@(A) < ligllsosx-t € [0,T].

Corollary 26.

(i) Let 2a + B > 2 in (HI). Then, for every g € C°
([0, T]; X), 6 € (2—a - f)/a, 1),

AT Q9] () = - L g (s)—g ()] ds, tel0,T].
(125)

(ii) Let « + B > 1 in (HI). Then, for every g € C([0,T]; X)

t
(@ (479)] 0=~ | ¢ [g-g0es telo.
(126)

Proof. Of course, it suffices to assume that ¢ € (0,T]. Let us
first prove (i). So, let 2a + 8 > 2, g € C°([0, T]; X), 8 € (2 -
a—-f)/a,1),and t € (0,T], and we observe that both sides of
(125) are well defined. Indeed, replacing the pair (g,, §,) with
(g,96), from (118) we get

1[Q.9] )] x

< 5“,;;,106(065 +a+ ﬁ — 2)*1|g|6,o’t;xt(a8+a+ﬁ—z)/a‘

(127)



18

On the other side, I, , = jot 41 g(s) — g(t)]ds satisfies

"It’g“X < Cupoldloosx J(: (t - 5)@OHF g

(128)

(a+ad+p-1)/a
< C35/915,0xt >

where ¢;; = a(ad +a + - 1) Ca,p0- Then, commuting

A" € Z(X) with the integral signs, using (80) with 6 = 1,
and taking into account (7), we find

AT [ngz] (t)

=A_ljt[ o [ aar- 47l © - g, el as

0

=_H271”J = ATIAAT - A)” dA] (95 (5)—g, (t)] ds

t
= — JO [ﬁ Jr e(t—s)l()d - A)_ldA] [gz (s) - 9a (t)] ds
(129)

Since (27i) " Ir eI — A)7MdL = %794 the proof of
(125) is complete. We now prove (ii). Leta + 8 > 1, g €
C([0,T]; X) and t € (0,T]. Then, for everyy € (2 —a - 3, 1),
the same reasonings made to derive (88), except for replacing
x with g(s) — g(t), yield

[l (a79)] ]«
(130)

< 26,5, ﬁyco"A 1"3 o ||g“0,0,t;Xt(a+ﬁ+y_2)/“

Hence, [QZ(A_1 9)1(t) being meaningful, we obtain (126)
simply applying to it formula (89) with { = 1 and then using
(A4 = =94 s ¢ (0,1). In particular, a better
estimate than (130) holds. For, [Q,(A™ g) t) = f elt=9)A
[g(s) — g(t)]ds satisfies

t
“[QZ (4”9)] (t)"x < 2 g0 9llo045x L (t - ) Vs

< 2536“9 ”o,o,t;xt(Mﬁ_l)/‘x

(131)

where ¢35 = a(ax + - 1)_150()‘6)0. The proof is complete. [

Let us now examine the operator Q; defined by (107). To
this purpose we need the following result which is proved in
[20, Corollary 3.2].

Lemma 27. Let 6; € (0,1), k = 1,2, be such that o3 =
85 +38; € (0, l/p'), p € (1/(1 = 85 ), 00). Then the convolu-
tion operator K defined by (104) maps C% ([0, T]; X,) x
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C* ([0, T]; X,) into CJ*([0,T); X), and for every t € [0,T]
satisfies the following estimate:

“%(g31 » 93, ) ”03 0,6:X

t
<t ~oyt1/p' = G (1) ”gsl “53 OtX1<JO “932

1/p
P
ds .
632 ,0,8:.X,

(132)

Here¢,(t) is a nondecreasing function of t depending also on 85
and &5 . Further, in the cases 85 € (0,1), 6; = 0, and &3 =
85, = 0, the following estimates hold, respectively, as follows:

||‘%(g31’g32) 85, ,0.6X
< Cyt £1-05, (1 + t631) ”931 "g32 004X, (133)
“‘% 93, g3z) OOtX “931”00txl '932 0,0,:X,"

From Lemmas 24 and 27 we obtain the following
Lemma 28.

Lemma 28. Let o and f3 be as in Lemma 24. Then, for every
831 € (B3-2a-pB)/a,1) and 832 € (0,1) such that o, = 631 +
85, € (B-2a—f)/a, l/p'), p € (1/(1-=6;5)), 00), the operator
Q, defined by (107) maps C*1 ([0, T]; X,) x C*([0,T]; X,)
into C;3([0, T]; X), v3 = (@05 + 20 + B — 3)/«, and for every
t € [0, T] satisfies the following estimate:

.|Q3 (g31’g32)

73,0,5;X

<P, (08 (1) |gs,

o
33,:0.6X1\ ) 93,

ds
632,0,5;)(2

(134)

Proof. First, if 831 € (3 = 2a - B)/a,1) and
p € (1/(1 = 85),00), then 1/p" € (6;,1) ¢ (B -2 -
B)/a, 1). Consequently, the assumption o3 = 85 +8;, € ((3-

- B)/e, l/p'), 632 € (0,1), makes sense. Now, Lemma 27
yields %(g3l,g3z) € Cg3([0, T1]; X) for any pair (g31,g32) €
C%([0,T]; X,) x C*([0,T];X,). Then, recalling that
Q3(g5,,95,) = QF(gs,>95,), the assertion follows from
Lemma 24, with §, and g, being replaced by o, and
F (g3, g3, )> respectively. Finally, (134) follows from (117) and
(132). O

We can now restore the loss of regularity produced by Q,.

Proposition 29. Let 5« + 23 > 6 in (HI). Then, for every
0; € (3 -2a - PB)/a,1/2), the operator Q5 defined by (107)
maps C% ([0, T]; X,) x C% ([0, T]; X,) into C* ([0, T]; X), and
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for every t € [0, T] satisfies the following estimate, where p €
(1/(1-285),00) and C4(t) = C, ()G, (t)max{1, ¢ *%2a+F=3)/ay.

||Q3 (g31’ 932)

83,0,1;X

1/
b ds !
83,0,8X,

t
85,0,5X, <L ”g32
(135)

Proof. Let §; € ((3 — 2o — fB)/«,1/2) and let p € (1/(1 -
285),00) & (1/(1 — 85),00). Then, 26; € ((6 — 4a —
2p)/«, l/p') c((3-2a-pP)/a, l/p'). We are thus in position
to apply Lemma 28 with §; = &; = &; from which we
deduce that Q; maps C63([0,T];X1) X C53([O, T1; X,) into
Cg3([0, T; X), vs = (2ad; + 2o + 3 — 3)/a. But, since our
choice for §; implies v; > &5, we a fortiori have the fact that
Q, maps C%([0,T; X,) x C([0, T]; X,) into C2* ([0, T]; X).
Finally, (135) follows from (134) and the estimate || gll%o’t;x <

max{L, > Hglls o0 g € C°([0, T];X), 8 > y. O

<t 727G (1) | gs,

The next Lemma 30 concerns the operator Q. Its proof is
similar to that of Lemma 24, but with the essential difference
that the presence of y € Y}‘f' allows us to use estimate (79)

in place of (14). As a consequence and provided to choose y
large enough, we will achieve a better result in which any loss
of regularity is observed.

Lemma 30. Let 2 + 3 > 2 in (HI) and r € [1,00]. Then, for
everyd, € (0,1) andy € (3-2a— 3, 1) the operator Q defined
by (108) maps C*([0, T;C) x Y, Y7 € {(X,2(A)),,, X'},
into Cg“([O, T]; X), and for every t € [0,T] satisfies the
following estimate:

||Q4 (g4, y)||54)0)t;x <C, (t) t(2a+/3+}'73)/zx|g4|64)0)t;cl|y

i
(136)

Here C,(t) is a nondecreasing function of t depending on «, 3,
Oy yandr.

Proof. Lett € [0,T], g, € C%([0,T];C), 8, € (0,1), and
y € Y;, y € (3-2a—,1),r € [1,00]. As in the proof of
Lemma 24 we set @ = (1 — a)/a and we observe that, since
20+ > 2 implies & € (1/2,1], here « € [0, 1). Furthermore,
we denote by o, 4, the number (2a + B+y-3)/a€(0,1),s0
that the exponents (8 +y —2)/a and (8 + y — 3)/« appearing
in (79) with 6 = 1 and 6 = 2 may be rewritten, as o, 5, + @~ 1
and o, 5., — 2, respectively. Then, using (79) with 6 = 1, we

By
obtain

11Q4 (9 »)] @5

T —
< szlg4|54,0,r;c||y Y] L (T- 5)6"+0""B’V+a—1d5 (137)

O4+0,, gyt
b

= %7|94|54,o,r;c”)’ V7 € [0,£],

T
Yy

wherecy; = ¢,(8,+0,, +&)". Hence, taking the supremum
with respect to 7 € [0, f], one has

84+0qp,ta

1Q4 (94 ¥ )”0,0,t;X = C37|g4|64,0,t;C||y vit (138)
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Now, let (since [Q4(gy, ¥)1(0) = 0, the case t; = 0 follows
from (137) with v = t,) 0 < t; < t, < t. We have
[Qu(gs VIt — [Qu(gs W) = Zi:l ]k;tl,tz,g4y’ the
Tist, b, s, g [0,T] — X, being as in (120). Using (13) with
(s,t,0) = (t; —s,t,—s,1),s € (0,¢,), and (79) with 8 = 2, and
letting (¢35 C39) = (6o (1 — 64)71,c386;1), we get

”Il;tvtz»fh}' X

< 022|94|54,o,t1;c”)’

Yy

x Jtl “:2_5 E"“’M‘zdé] (t, - s)%ds

0 1—S
t; t)—s s )
+0a By~
vy J [J g ' " dg] ds
v Jo t,—s

Yy

<[ - | e e

= 622|94|54,o,t1;c“}"

= (22|94|54,o,t1;c”)’
(139)

[
t By
Y; 2

< G394 |64,0,t2;C Iy

X Ltl [(l‘1 S R (i 5)6471] ds

Oa,pB, d. 1) 0
yt™ [tl" +(t,—t)" - t;]

= Cyolda |64,0,t2;C Iy

< Cs9|94|54,o,t2;c||)’ Y;tga’ﬁ’y(fz - t1)84-

Now, let us examine Ji; ;. o » k = 2,3. First, using (79) with
0 =1, we find

||]2;tl,t2,g4y "X

t _ s
< alails,anelrly | [ (697 ] (- 1)

B, a « o S,
= C4o|94|54,0,t2;C")’ v [tg (- )" ’MM] (t, =)™

oGPy o 6
< C4o|g4|64,0,t2;c"y”Y;tZ (- 1)
(140)

Instead, the same computations made to derive (137) yield

"]3#1»1‘2’94)’ X

f2 s -1
< Gzz|g4|54,o,t2;c”)’ Y] L (t, =)™ s (141)
1

8440, g+
ty)

= %7|g4|54,o,t2;c”)’

From (139)-(141) and [[[Q4(g4> »)1(£;) — [Q4(gs M1k <
Zzzl kst .95 - it follows that

” [Q4 (9 ¥)] (£5) = [Q4 (9 ¥)] (f1)||x

S,
y;(tz - tl) 4

Y; (tz -

(142)

<G O gyls, oncly
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where &, (t) = ;o +(C37 + )t Finally, summing up (138) and
(142) we get (136) with C,(£) = ¢;,;t*™ + ¢,(t). The proof is
complete.

Remark 31. Notice that if Y; = Xﬁ', then in order to be sure
that the conclusions of Lemma 30 hold with y which really
belongs to some intermediate space between X and 2(A) we
have to choose y € (3 — 2a — 3, 3). This is possible, provided
that the stronger assumption 2« + 3 > 3 — 3 > 2 is satisfied.
Otherwise, if2a+f3 € (2,3-], 3 < 1,theny € (3-2a—-,1) ¢
[5,1) and y may be contained in D(A).

Finally, for the operator Q5 we have the following result.
Again a loss of regularity is exhibited, even though of an
amount smaller than that in Lemma 24 (cf. Remark 33).

Lemma 32. Let 2 + 3 > 2 in (HI). Then, for every 85 €
(2 = a = B)/a, 1), the operator Qs defined by (109) maps
Co([0, T]; X) into C ([0, T); X), 75 = (a5 + o + - 2)/ax €
(0,85], and for every t € [0, T] satisfies the following estimate:

1Qsgs ”vS,O,t;X < Cs(t)|gs |65,0,t;X’ (143)

Here Cs(t) is a nondecreasing function of t depending also on
«, 3, and §s.

Proof. Let g5 € C*([0,T]; X), 85 € (2 — a — B)/a, 1), and
V5 = (@05 + o+ f—2)/a € (0,85]. Wesstill let & = (1 — &)/«
and as in Lemma 30 we have « € [0, 1). Further, observe that
s+ (B-1)/a = vs + @ € (0,85]. Let t € [0, T]. Then, using
(14) and g5(0) = 0, we get

”ngs ||0,0,t;X

(B-Dfex | 1]

~ S5
< sup [T g7 19515057

T€[0,t]

(144)

< [Eoc,ﬁ,o + f(l_ﬁ)/a] |95|65,0,t;Xtv5+a

Now, let (since [Q595](0) = 0, the case t; = 0 follows from
(144) and [[[Qsgs1(t)llx < 1Qsgslly g, x) 0 < £y <, <t. We

have [Qsg5](t,) — [Qsg5](t;) = Zi:l Ukit, .95 where for a
function g : [0,T] — X we let

Ul g = et [9(t) —g(t)]
Unity g = (eIZA - etlA) g(t),

U3;t1,t2,g =g (tl) -9 (tZ) .

(145)

First, since t;ﬁ_l)/“ < (t, - tl)(ﬂ_l)/“ for every 3 € (0,1], we
deduce that

(B-1)/ex

~ s
X < Ca,ﬁ,0t2

”Ul;tl,tz,gS |95|55,0,t2;x(t2 - tl)
) (146)
< Ea,ﬁ,0|g5|55,o,t2;x(t2 - tl)”s*'""
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As far as Uy ; o is concerned, instead, rewriting el —ehd
t ° .

as — [,*[(-A)']’e"*dr and using both g5(0) = 0 and (ads +
1

B —2)/a = v5 — 1, it follows that

2]
~ 85 (B-2)/«
“Uz;tl,tz,g5 XSCOt,ﬁ,llgS|65,0,tl;th L r dr
1

2]
- Vs—1
< Cupal9sls, 00, L reodr
1

(147)

IA

Ea,ﬁ,l’l/;l |g$|55,0,t1;X (t;S _ t’i’s)
< Ea’ﬁ’lvgl|95|55,o,t1;x(t2 _ tl)vs'

. 8
Then, since [|Usy ;o Il < 19sls, 0.,:x(f2 = 1), from (146)
and (147) we find

[1Qsgs] (£2) = [Qsgs] (1) x
(148)

3
< Y |Vktrtnaslx <& O 195ls. 05t = 1)
k=1

where & (t) = ¢, ﬁ,ota+5‘x, A1 v +t%75. Summing up (144) and

(148) we obtain (143) with C5(£) = [§, 5o+t P/*]£ "+ & (1).
This completes the proof. O

Remark 33. 'Thus, with the exception of § = 1, Qs produces a
loss of regularity equal to 85 —vs = 2 —a — )/ < (3 — 2 —
B)/e. In this sense Q5 behaves better than Q,.

Remark 34. Notice that, under the weaker assumptions o +
B > 1and g; € C([0,T]; X), (86) with x = g5(¢),t € [0,T],

yields A7 [Qsg5](1) = [Qs(A7 g)I(1) = [; ™4 gy(1)ds.

Similarly as we have done in Proposition 29 for restoring
the loss of regularity produced by Q,, we now show how
Lemma 27 allows to restore that produced by Q5. We begin
with the following version of Lemma 28 relative to Qg, and
which is obtained combining Lemma 27 with Lemma 32
instead of Lemma 24.

Lemma 35. Let o and f3 be as in Lemma 32. Then, for every
661 € (2-a-p)/a, 1)and862 € (0,1) such thatog = 661+562 €
(2-a-PB)a,1/p"), p e (1/(1 - 86, ), 00), the operator Qg
defined by (110) maps C% ([0,T]; X,) x C% ([0, T]; X,) into
Coe([0, T]; X), vg = (aog +a+ B—2) /e, and for everyt € [0,T]
satisfies the following estimate:

||Q6 (g61’ 962)

V6,0,1;X

1/p

, t
< 03 0 gl o0, (L o, ,o,s;des)
(149)

Proof. First, if(S61 € ((2-a—-p)/a,1)and p € (1/(1—661),00),
then 1/p' € (661, 1) ¢ ((2 - a« - B)/a, 1). Consequently, the
assumption oy = 661 +862 € (2-a-P)/a, l/p') makes sense,
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provided to choose 862 € (0, 1) small enough. Lemma 27 then
yields #(gs > gs,) € Co¥([0,T]; X) for any pair (gs,» s,) €
C%: ([0, T]; X,) x C* ([0, T]; X,,). Then, since Qq(ge,» gs,) =
Q5% (gs,» gs, ) the assertion follows from Lemma 32, with
the pair (05, g5) being replaced by (d¢, #(gs,» gs,))- Finally,
(149) follows from (143) and (132). O

From Lemma35 we obtain the

Proposition 29 for Q.

analogous  of

Proposition 36. Let 3« + 23 > 4 in (HI). Then, for every
0¢ € ((2 - a - B)/a,1/2), the operator Qg defined by (110)
maps C%([0, T); X,) x C%([0, T1; X,) into C2*([0, T]; X), and
for every t € [0, T] satisfies the following estimate, where p €
(1/(1-28;), 00) and C4(t) = Cs ()& (t) max{1, t@0sarF-2/ay.

"Qs (961’ s, )||56,0,t;X

1/p

p
86,0,5: X, dS)

Proof. Let§g € (2—a—f)/a, 1/2)and p € (1/(1-28;),00) &
(1/(1 = &),00). Then, 28, € ((4 — 2a — 2B)/a, 1/p") <
((2-a—p)/a, 1/p") and we can apply Lemma 35 with 8, = 0
k = 1,2. We thus deduce that Q; maps C%([o, T X,) x
C%([0, T1; X,) into Cp¢ ([0, T]; X), v = (2ad + a + f — 2) /.
But, since 85 > (2 — @ — )/ implies v, > &4, we a fortiori
have the fact that Q; maps C% (o, T X,) x C%([o, T X,)
into Cgs([O, T1]; X). Finally, (150) follows from (149) and

-6,
1Qs(Js,> G, M5, .5 < MAXAL £ HIQ6 (s> G, )M, i T

t
< "7 0PC, (1) ||961 Haﬁ,oxxl (Jo ”%2
(150)

In Section 6 we will also encounter Q; acting on functions
which enjoy some space regularity, that is, functions gs
which are Holder continuous in time with values on Y; €
(X, 2(4)),, X"}, In this case Lemma 32 can be refined,
and the loss of regularity produced by Qs is naturally restored
by the additional condition of space regularity on gs. In
some sense, the forthcoming Corollary 38 is the analogous of
Lemma 30, where the function g, y involved in the definition

of Q4(gy4,> y) (cf. (108)) was of class C54([0, T; Y;).

Lemma 37. Let « + 3 > 1 in (HI) and Y; € {(X,2(4)),,
X’;{r}, y € 2-a-p1),r € [1,00]. Then, for every 85 €
0, (e + B+ y — 2)/al, the operator Qs defined by (109) maps
% ([0, T];Y;) into Cgs([O, T],X), and for every t € [0,T]
satisfies the following estimate:

( —2-ads)/ 8
||Q595”55,0,t;x <yt atfty—2-ads)/a (Zt 5+ 1) "gS “65,0,t;Y;'
(151)
Here ¢y, is a positive constant depending on «, 3, y, and r.
Proof. Lety € 2—a—f,1) € (1 - 1)andlet y, 3, be the

number (¢ + f + y — 2)/a € (0,1), so that the exponent
(B+y-2)/ain (79) with 8 = 1 is equal to Xapy — L
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Let g5 € C*([0,TY;), 85 € (0, xop,)s r € [1,00]. Since
[Q5951(0) = 0, we assume that t € (0, T] and we observe that,
due to Propositions 6 and 12, [Q5 g5 (t) is rewritten as follows:

[Qs95] (1) = [ = 1] g5 () = Tim [ — ] g5 ()

t
lim J D.e* g (1) ds

e—0" Je

(152)

— lim r [(-4)] e g5 (1) ds

e—0" Jg

t o
S Jo [(—A)I] eSAgS (t) ds.

Indeed, for every ¢ € [0,¢) and x € Y;, (79) with 0 = 1 yields

Jt [(—A)l]oeSAx ds

&

x (153)

t
-1
< ol || 577Mds < el (¢ - e,

&
where ¢;; = ¢, X;’lﬁ’y. From (152) and (153) with (¢,t,x) =
(0,7, g5(1)) we thus get

“ngsllo,o,t;x = sup ” [Qs95] (T)"X
7€[0,t] (154)

< Cy1 "gS "0’0’t;Y; tXa,ﬁ,y )

Now,let0 < t; < t, < t. From (152) it follows that [Q5g5](t,)—
[Qsgs](t) = =Y, Vi, t,.9,» Where for every function g :
[0,T] — Yf we have set

Vio = | (A [9(6) -9 (1)) s
(155)

t, o
Vastitrg = L [(_A)l] eSAg (t,) ds.

1

Hence, using (153) with the triplet (e, ¢, x) being replaced

by (0,t,, gs(t,) — gs(t,)) and (t;,t,, gs(t,)), respectively, we
deduce that

” 8
"Vl;tptzﬂs xS C41|g5|55,0’t2;Y;t)1( Pty —t,),
(156)
||V2;t1’tz»gs x < ¢ g5 "0,0,t2;Y; (t, — 1) .
As a consequence, since 85 € (0, y, 5, ],
11Qsg5] (t2) = [Qsg5] (1) x
(157)

< C41tXaﬁ,y_55 (tas + 1) ||g5||55,0,t;Y;(t2 - t1)55.

Summing up (154) and (157), we obtain (151). The proof is
complete. O

Since in Lemma 37 it is not required that g;(0) = 0, the
special case of the constant function g5(t) = x € Yf , b €

[0, T1], is admissible, and we obtain the following result.



22

Corollary 38. Let o, B, andY), be as in Lemma 37, and let x €
Yyr, y € 2-a-51),andr € [1,00]. Then, for every §, €
(0, (a+B+y-2)/«], the function [Q,x](-) := (e*-Dx belongs
to Cg7([0, T]; X), and for every t € [0, T] satisfies the estimate

”Q7x||67,0,t;X < C41t(“+ﬁ+%27“67)/“ (t67 + 1) C41||x||Y;. (158)

Proof. Let gs(t) = x in the proof of Lemma 37, and observe
that Vi, . . reduces to the zero element of X. Estimate (158)
then follows from (154) and the second estimate in (156). [J

For later purposes, we conclude the section with the
following remark.

Remark 39. The condition 5« + 23 > 6 in (H1) required in
Proposition 29 is the strongest among the conditions for the
pair (a, ) required in Corollary 14 and the other results of
this section. Indeed,

S5 +23>6 =3a+2B>6-20>4

=3x+f>4-23
(159)
=20+f>3-a>2

= a+f>2-a>1

Hence, if 5a + 28 > 6, then Corollary 14 and all the results
from Lemma 22 to Corollary 38 are applicable. Next we will
make large usage of this fact, but we warn the reader that, for
brevity and regarding it as acquired, we will not mention it
anymore.

5. Application to Maximal Time Regularity

The results of the previous sections are here applied to correct,
refine, and extend the results in [20] concerning the maximal
time regularity of the solutions to a class of degenerate
abstract evolution equations. Let (X, |- [x) and (Z,| - l,)
be two complex Banach spaces, and consider the following
degenerate first-order integrodifferential Cauchy problem for
v:Ip — X,wherel; =[0,T],T >0,and n;,n, € N:

D, (Mv (t)) = [A(M + L] v(t) + Zl:%(kil,Lil v) (t)
ij=1

3 160
Y Oy, +fO), telp (160)
i=1

Mv(0) = Mv,.

Here % is the convolution operator (104) in which
(X1, X5, X3) = (Z,X,X), whereas M, L, and Lil, i =
1,...,n;, are closed single-valued linear operators from
X to itself, whose domains fulfill the relation (L) <
ﬂZ‘Zl [2(M) 0 D(L;)]. Further, we assume that

L admits a continuous inverse operator L' e 2(X),

ie,0¢€p(l),
(161)
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whereas we allow M to have no bounded inverse. Hence, in
general, A := LM is only the m. 1. operator defined by

DA ={xe (M) :L(M 'x) +0}
={xeRM): M 'xnPD (L) #0}
= {x € R (M) :
there exists y € @ (L) such that y € M"'x}
= {x € B (M) : x = My for some y € D (L)}
=M (2(L)),

Ax = U Ly

yeM'xnD(L)
={Ly: y € @ (L) such thatx = My},

x €D (A).
(162)

Therefore, problem (160) can not be reduced, via the change
of unknown u = My, to an integrodifferential problem
related to single-valued linear operators. On the contrary,
due to (161) and the closed graph theorem, ML_I,L,-1 L' ¢
Z(X),i; = 1,...,n,. As far as the data vector (A, vy, k.. .,
kyhy..o By, 1505 ¥, f) is concerned, at the moment,
we only assume A, € C, vy € DM), k; : Ip — Z, h; :
Ir > Cy eX,ip=1...,ml=12and f: I; - X,in
order that (160) makes sense in X. This minimal assumptions
will be refined later. In general, only strict solutions v to
(160) shall be investigated, where (cf. [22, 23]) by a strict
solution v to (160) we mean that, (L) being endowed with
the graph norm | - [lg) = |- llx + IL - llx, v € CI; D(L)),
Mv € C'(I; X), and (160) holds. Clearly, if M~ is really a
m. L. operator, then Mv(0) = Mv, does not necessarily mean
v(0) = v,, but only v(0) — v, € M'0. As we will see below,
if vy € (L) and the data k; , h; , y; and f,i; = 1,...,m,
I = 1,2, satisfy suitable assumptions, then for a strict solution
v to (160) it just holds v(0) = v,. Throughout the section, Y‘Z,
y € (0,1), g € [1,00], will always denote one between the
spaces (X, 92 (A))V,)q and XZ’q, A being defined by (162). That
is, Yy € {(X,2(A))yq
than a single Y/ is involved in some statement, that is, if we

XZ’q}. To avoid confusion, if more

write x; € lej’ j=1,...,n,n €N, then it is understood that

the same choice has been made for all the Y\Zj in the sense that
ng = (X, 9(A))wj,q or qu/j = XZj’q forevery j=1,...,n.

According to [2, Section 1.6], we recall that the M-modi-
fied resolvent set p,,(L) of L is defined to be the set {z € C :
(zM — L)™' € 2(X)}. The bounded operator (zM — L) 'is
called the M modified resolvent of L. It is easy to prove that
pm(L) € p(A) and that M(zM — L' = (@lI-Az €
pum(L) (cf. [2, Theorem 1.14]). With the notion of M-modified
resolvent of L at hand, we assume that

(H2) pps(L) contains a region £, = {z € C : Rez >
—(ISmz| + D)% Smz € R}, « € (0,1], ¢ > 0, and
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for some exponent f € (0, «] and constant C > 0 the
estimate [M(AM - L) M| g5 < C(IA|+1)# holds for
everyA € X,.

Before we proceed with our analysis we remark that, due
to the wide range of choices for the data vector, problem
(160) contains many subcases at its interior. So, in spite of the
case when at least one between the k;’s is different from zero
and problem (160) is really an integrodifferential one, the

choice k; = 0,4, = 1,...,n,, yields to consider also various
nonintegrodifferential degenerate problems. For instance,
those corresponding to Ay = k; = h; =0and Ay = k; =
f=0,4=1,...,m,1 = 1,2, respectively:
D,(Mv(t)=Lv(t)+ f(t), telp
(163)
Mv(0) = Mv,,
&)
D,(Mv(®) =Lv(t)+ Y h () y,, telp
i2:1 (164)

Mv(0) = Mv,.

Although (164) differs from (163) only in the fact that f
is replaced with 222:1 h;, (£)y;,; nevertheless a very different
result is achieved when the y; s are assumed to belong to Y,

at least for opportunely chosen y; € (0,1),7, = 1,...,n,. As
we will see (cf. Remark 51 and Theorem 56), in this situation
the loss of time regularity for the pair (Lv, D, Mv) with respect
to that of f, typical of the case f < 1 in (H2) (see [21,
Theorem 9], [2, Theorem 3.26], and [22, Theorem 7.2]), can
be restored in order that (Lv, D,Mv) possesses the maximal
time regularity which is the minimal between the time
regularities of the f; ’s. The same phenomenon is carried over
into the integrodifferential case for the following problems,
correspondingto Ay = h; =0,i, = 1,...,m,and Ay = f = 0:

D, (Mv(t)) = Lv(t) + Z H (ki Ly v) () + £ (1),
i=1 (165)

Mv(0) = Mv,,

D, (Mv(t)) = Z H (K, L;v)(t) + Z hy (t) s

i=1

Mv(0) = Mv,,

(166)

t € Ir. When 8 < 1, the loss of time regularity for the pair
(Lv, D,Mv) with respect to that of the vector (k;,...,k, , f)
in problem (165) (cf. [22, Theorem 71] and [23, Theorem 2.1]
for n; = 1) can be restored in problem (166) assuming that
Vi, € Y > i, = 1,...,mn,. In this context (cf. Remark 51

and Theorem 53) the pair (Lv, D,Mv) has the maximal time
regularity which is the minimal between the time regularities
of the k; sand h; ’s.

We stress that, if f = 1, then no loss of time regularity
is observed and all the quoted results agree with the well-
known theory of maximal regularity in spaces of continuous
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functions for the nondegenerate version of (160), corre-
sponding to the case when M = I and L generates an
analytic semigroup. Hence, roughly speaking, one can verify
the consistency of any result on problem (160) with condition
(H2) simply by letting 8 = 1 on its statement, and then
checking if it is compatible with those for the nondegenerate
case. To this purpose, we recall that the question of maximal
regularity for the nondegenerate (possibly nonautonomous)
version of (160) has been deeply investigated by several
authors. See, for instance, [4, 6-8, 10, 32] for problem (165)
with (M, 8,n;) = (I,1,1) and [9, 11] for problem (163) with
(M, ) = (L,1).

Finally, assumption (161) excludes the case of L = 0 in
(160), so that our results cannot be compared with those in [5,
33, 34]. There, assuming that the bilinear bounded operator
& underlying the definition of % is the scalar multiplication
in X, the problem
F(ky, Lyv) (@) + f (@),

Dy (t) = telr, v(0)=v,

(167)

is treated under the following assumptions: (i) L, is a
closed densely defined linear operator generating an analytic
semigroup; (ii) k; : [0,00) — R is absolutely Laplace trans-
formable. Observe that, if (k;, f) = (1,0), then problem
(167) reduces to the abstact wave equation va(t) = L,v(t),
D,v(0) = 0, v(0) = v,, whereas when M = I and A, = k =
hi = f=0,i=1,...,m1=1,2, problem (160) reduces to
the abstract heat equatlon D,v(t) = Lv(t), v(0) = v,. In other
words, whereas [5, 33, 34] are concerned with the hyperbolic
case, here we are concerned with the parabolic one.

Let us now come back to problem (160). Of course,
assumption (H2) implies that the operator A defined by (162)
satisfies (H1), so that it generates a semigroup {e"*},., defined
by " = I and (9) and satisfying (14). Assuming that v, €
D(L), we let

w=L(v-v)) = v=L"w+w, (168)
Then, by setting
E, (1) = A\,A'w (t)
n
+ 3 [# (K, S,w) ) + H (K, i v) ()]
i=1 (169)
&)
+ Z hi, @)y, +vi+ f (), telp
i=1
where A = ML™' € Z(X),S;, = L, L' € Z(X),i, =

I,...,n;, and v; = (A,M + L)v,, we see that v is a strict
solution to (160) if and only if w satisfies (indeed, if v €
CIp; (L)), then w(t) —w(s)ly = ILv(E) —v()]lx <
[v(t) = v()llgyqy — Oass — t ts € Iy, thatis,w € C
(Ir; X). Conversely, if w € C(Ip; X), thenv = Ll'w+ vy €
(L) and (1) = v()lgwy < L Npm +  Diw) -
w(s)llxy — Oass — t,t,s € Iy, thatis, v € C(Ip; D(L)).
Finally, since Mv = A™'w + Mv,, we have Mv € C'(Ip; X)
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if and only if Alw e CI(IT; X)) w e C(Ip; X), Al'w e
C! (Ir; X), and solves to the following problem:

D,(A"w®)=w®) +F, () e A(Aw(®)) + F, (1),
t el

A'w©0)=0 (e, w(0) € AD).

(170)

Now let 2a + B > 2, and assume that k; € C" (I3 2), h; €
C%(I1;C), and f € C*(I; X), where 1, 0, ,p € (2 —a -
Bla, 1), 4, = 1,...,m, 1 = 1,2. Then, if w € C(Iy;X) is a
solution to (170) such that A w € C! (I; X), the function F,,
satisfies

F, e C’(I;;X),

2— o —
2{’1:'1>012’M} € <+/3’1>-

Indeed, & being the smallest Holder exponent, for every i, =
L,...,m, 1 = 1,2, we have A w, hiyi,f € C(I; X) and
H(k, .S, w), H(k;,L;vy) € Co'(I;X) — Cy(Ips X) (cf.
Lemma 27 for the case (831, 632, X, X,) = (111-1, 0, Z, X) with
the pair (g5 ,g3,) being replaced by (in fact, since §; =
L, L™ € 2(X),i) = 1,...,n, ifw € CI;3X), then §; w €
C(I; X), whereas the constant functions K, (t) = Livyt €
Ir, iy = 1,...,m;, obviously belong to C(I7; X)) (k; ,S; w)
and (k; , L; vy), resp.). Consequently (cf. [2, Theorem 3.7 and
Remark p. 54] with u, = 0), the solution A™'w to the
multivalued evolution problem Dt(A_lw) e A(A'w) + E,,
A7 w(0) = 0is necessarily of the form

(171)

6= min
i =1,...,1, k=1,

Aw(t) = [QF,] (),

with Q, being the operator defined by (105). Further (cf. [2,
Remark p. 55] with u, = 0, and where A°¢'* stands for
D,e' = —[(—A)']e") the derivative of A w is given by

telp, (172)

D, (A"w(t) = eF, (t) - [QF,] (1), t el \{0},
(173)

with Q, being the operator in (106). Notice that Q, F,, is well
defined by virtue of (127) with g = F,,. Now let y; ¢ Y):-

and v; + f(0) € Y wherey,,9 € (1-B,1),i, = 1,...,

ny, and r € [1,00]. Since A'w(0) = FH(k; ,S; w)(0) =
3?(k,~l,Ll-1 vo)(0) =0,i; = 1,...,n,, from (169) it thus follows
that F,,(0) := x, is independent on w and

Xo= ) h (0)y, +v, + f(0) €Y],
B2=1 (174)

y= min {yiz,(p} e(1-41).

i,=1,..,1,

Indeed (cf. (20) or (38)), we have Y;_ — Yyr, i =1,...,n,
and Y, — Y], the embeddings being equalities for those
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between the numbers y;,...,y, and ¢ which are equal to
y. Then, under these assumptions on the data, formula (173)
for Dt(Aflw(t)) can be extended until t = 0. For, we have
lim, o D,(A"'w(t)) = x, € A0 + x, and the differential
equation in (170) is satisfied even at t = 0. To see this, we
observe that

"Dt (A_lw (t)) - xO“X < Il )+ IZ,w 5+ I3,w ),

t € Ir\ {0},

(175)

where I;(t) = lI(e"* = Dxglly Ly (t) = e [F,(t) — x,]llx
and I ,(t) = [[Q,F,](t)ll. First, from Proposition 6 we get
lim, ,,+I,(t) = 0. On the other side, using F,, € C°(I; X),
de(2-a-P)/a,1) c((1-p)/«,1), we obtain

Ly (1) < G poll Fullsorxt 0% tel\ {0}, (176)

so that lim, , 4+ 1, ,(t) = 0. Finally, (127) with g = F,, yields
lim, ,+15,(t) = 0, too. Formula (173) thus holds at t = 0
with D,(A™'w(0)) = lim, _, o+ D,(A™ w(t)) = x,.

Remark 40. In [2, Remark p. 55], formula (173) was extended
until + = 0 only under the more restrictive assumption x, €
XZ’OO, y € (1 = B,1). Indeed [24, Proposition 5.2] was not
available at the time of [2] and only the strong continuity of
{et‘d‘}t20 in the X-norm on the spaces X’XOO, ye(l-p1),
was known (cf. [2, Theorem 3.3]). Notice that in the case of
problem (163) the element x, reduces to Lv, + f(0), so that
in the nondegenerate case (M, ) = (I,1) we get back the
classical assumption Lv, + f(0) € (X,QZ(L))W, y € (0,1),
r € [1,00] (see, for instance, [9, Theorem 4.3.1(iii)] and [11,
Theorem 4.5]).

Since (170) implies that w(t) = Dt(A_lw(t)) —F,(t), from
(173) we thus find that

w () = [Qyx0] (8) + (e = T) [F, (t) = xo] - [QF,] (1),

telp
177)

where, according to the notation in Corollary 38, we have set
[Q,x,](t) = (e -1 )x,. In particular, w(0) = 0. We conclude
that, under the previous assumptions on the pair (e, 8) and
on the datavector (ky,....k, by, ... By, yis e v, frvn)s i
w € C(I; X) solves (170), then necessarily w € Cy(I; X). As
a consequence (cf. (168)), the strict solution v to (160) satisfies
the initial condition just in the sense v(0) = v,,.

Introduce the functions f : I; — X and Eiz Ay — Y;iz,
,1,, defined by

h=1,..

fO=f®O-f£0), b ®)=[h &)-h, O]y,

t €l
(178)

Then, replacing F,, with the right-hand side of (169), using
(174), and recalling the definitions of the operators Q)
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j=2,...,6,in (106)-(110), from (177) we deduce that w € C,
(I; X) solves the fixed-point equation

w = w, +w, + Rw, 179)

the functions w;, I = 0, 1, and the operator Rw being defined
by

wy = Q7_x0 + Zl Q6 (kil’Lilvo) + ZZ QS’Eiz + st’ (180)
ip=1

i=1

Wy = Z Qs (kil’Lil"O) - Z Q (hiz’yiz) ~Qf (8

i=1 i=1

m (182)
+ Z [Q6 (kil’ Silw) N Q3 (kil’ Silw)] .

i=1
Conversely, let w € Cy(Iy; X) be a solution to the fixed-
point equation (179), and assume that the pair («, 8) and the
data vector (ky,....k, by, ....h, 5 v Y, fivy) satisty
the assumptions below (170) and (173). Then, as before,
Kk, S w), H(k,,L,v,) € Cy(I;;X) and hy,,f e
Uy X)ip=1,...,m,1=1,2,8 € (2—a—f)/a, 1) being as
in (171). We apply A™' e Z(X) to both sides of (179), and we
show that A™'w satisfies (172) with F, € C(I;; X) as in (169),
so that A™'w is a solution to problem (170). To this purpose,
we take into account Corollaries 14 and 26. Let t € I;. First
(cf. Remark 34 and recall that Q4(-, ) = Q5.7 (-, -)), using (86),
(174), and (178), we get

A, (1)
- Lt e [xo + Z (ki L vp) (£)
i=1
2 h. f@)|d
+,-; L)+ f (t)] s o)

_ Jte“‘s)f‘ [vl 3 (ko Lyvo)

0 i=1
+ Y b )y, + f (t)] ds.
i=1

Instead, due to the definition of Q; and Q,, using (125) we
obtain

Alw, (1)

B Jteﬂ—s)A {i [ (i Liyvo) () = (ki L v ) ()]

0 i=1

+ zz [hiz (s) - hi2 (t)] Vi, + f@)-f (f)} ds.
ih=1

(184)
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Therefore, from (183), (184), and the definition (105) of Q, it
follows that

Al [wy +w,] ()

= [Ql <v1 + Z K (Ki» L vo) + Z hi v, +f>] ),
i=1 i=1
(185)

the left-hand side being well-defined due to Remark 23. As
far as A”'[Rw](¢) is concerned, we first observe that, w being
in C(Ip; X), from formula (126) and Remark 34 it follows
that [QZ(Aflw)](t) and [QS(Aflw)](t) are both well defined

and equal to — jot e 94 w(s) - w(t)]ds and fot e 94y (1) ds,
respectively. Consequently

Qs (47w) -, (4'w)] @)
t (186)
_ J 94y (5) ds = [Qw] (£) .

0

Hence, commuting A~ € Z(X) with both the integral sign
and the semigroup, one has

AT Qs (A7 w) - Q (A7 w)] (1) = [Q (A™w)] (t2i87)

Similarly, since Remark 34 and formula (125) yield
A Qs (K 5,0)] 0= [ 945 (k5 0) 0 s,
0
A_l [Q3 (kil’silw)] (t)

[ A (5 8,0) 9 (5,0 0]
(188)
we find that
AT Qg (ki S, w) = Qs (K, S, w) | ()
= [Q (ki S,w)] @),

(189)

i=1,..
that

AT [Rw] (1) = [Ql (AOA‘lw + Z x (ki1>3i1w)>] OF

i=1

.»1;. In conclusion, from (187) and (189) it follows

(190)

Summing up (185) and (190), we finally obtain Alw(t) =
[Q,F,](t), F, being as in (169). This completes the proof of
the equivalence between problem (170) and the fixed point
equation (179), provided that the data satisfy the mentioned
assumptions.

Remark 41. We can summarize the previous reasonings as
follows: problem (160) has been reduced to the fixed-point
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equation (179) for the new unknow w = L(v —v), v, € D(L).
This fixed-point argument is similar to that first successfully
applied in [4, 7, 8, 32] to problem (165) with (M, B,n,) =
(I, 1,1) and then generalized in [23] to the degenerate case.
A different approach has been followed in [6, 10] for the
nondegenerate case and in [22] for the degenerate one. There,
assuming that k, is absolutely Laplace transformable (cf.
[6, 22]) or of bounded variation (cf. [10]), problem (165) with
n, = lissolved by constructing its relative resolvent operator.
We quote also [35] where the method of constructing the fun-
damental solution for the equation without the integral term
is applied to a class of concrete degenerate integrodifferential
equations.

From now on, for5cx+2ﬁ >6,5¢€(0,a],x €(0,1], and

ve(3-2a-p)|a1), 1,5, < (3-2a-p)/a,1/2) € (0,1/2)
will denote the interval defined by

Ia,ﬁ,v

3-2a - . 3-2 1
(Taﬁ,v], 1fv€< ;X B,z), (191)

(2B 1), irye[La),
o 2 2

Clearly, if v, p € (3 -2a— f§)/a, 1), v < p, then I apy € Lapp

Lemma42. Assume (161), and let 5+2f3 > 6 in (H2). Assume
thatk; € Chi(I; Z), i, € (3 =2a~-P)fe 1), iy =1,...,m,
and letn = min; _; _, #; . Then, for every fixed & € I, 4, the
operator R defined by (182) maps continuously C°(Ip; X) into
Cg(IT; X), and for every t € I satisfies the following estimate,
where p € (1/(1 - 26), 00):

t /p
IRlsor < e () [ ol ) o we € (1:X).
(192)

Here ¢,,(T) is a positive constant depending only on T, A, «,
ﬂ: 11,'1; 8) P: "kil "’71'1 0,T:Z and "Si1 ”Z(X)’ il = 1) ceed n1~

Proof. Letk; € C'i(Ip; Z), i, € (B =20 - B)a, 1), iy = 1,
..»1y, and let us fix an arbitrary number § € I, g,, where
7 = min; _; , 7;. In particular, since 0 <5 < n;, we have

) . s
k; € C°(Ir; Z) with |k; ||6,0,t;z < max{l,t" Hik;, II%)OJ;Z,

i; = 1,...,n,. Now let w € C‘S(IT;X) and t € Ij. First,
formula (186) being applicable, we rewrite (182) as

Rw = 1,Qw + z [Q6 (Ki, S, w) - Qs (ki Sw)] . (193)
i=1
Now, we notice that 5« + 25 > 6 implies that
oc+/3—1:5(x+2,8—3oc—2>4—3oc21' (194)
o 20 20 2
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Since (1 -B)/a < 2—-a-p)/a < (3-2a-ff)/a, from (194)
it follows that § € I, g € (3 —2a - B)la,1/2) € (2 -« -
B, 1/2) ¢ ((1 - ﬁ)/oc, (o + B —1)/«), and, consequently,

104 < 1
a+f-1-ad 1-28

(195)

We conclude (cf. Remark 39) that Lemma 22 and Proposi-
tions 29 and 36 are applicable with § € I, 4, and p € (1/(1 -
20), 00). Then, using estimates (111), (135) and (150) with the
pair (g;,6;) and the quintuplets (g; , g,,, 6, X;, X,), I = 3,6,
being replaced, respectively, by (w, 6) and (indeed, since §; =
L, L' € Z(X),ifw € C°(I;; X), then S; w € C°(I1; X) with
"Sil w||8,0,t;X < ”Sil "Z(X) "wHS,O,t;X’ il = L., nl) (kil > sil w,
6,2,X), i, =1,...,n, from (193) we finally obtain

[Rwlls o,x < "AOQIwHS,O,t;X

"Qz (kil »Si, w)“é,o,t;X

1=3,6,i,=1,...n, (196)
t 1/p
< (1) | ol )
Here we have set ¢,(T) = [AGIC(T)  +
—26—
(R VP o ¢ ] | I N o where

C/(T),1=1,3,6, are the values at t = T of the functions C(t)
in Lemma 22 and Propositions 29 and 36. This completes the
proof. O

Remark 43. Assume that in Lemma 42 the Holder exponents

,,,,,

to ((3 - 20 — ﬁ)/oc, 1/2). In this case (cf (191)) the choice
0 = # is admissible, and the meaning of Lemma 42 is that
the operator R defined by (182) preserves the minimal of the
time regularities of k..., k,, .

Corollary 44. Let the assumptions of Lemma 42 be satisﬁed
and let 1 and R be as there. Then, for every fixed § € 1, g, the
sequence {R"}72, (R® =L R" =RR"',neN) satisfies the

following estimates, where w € C‘S(IT; X)and p € (1/(1 -
26), 00):

n

IR w5 0x < [caz (T)]n(t—>l/p||w||5oT-Xa
o nl o (197)

tel, neNU{0}.

Proof. Reasoning as in [23, p. 468] we prove (197) by
induction. Since for every fixed & € I, g, the operator R maps
C‘S(IT, X) in Cg(IT, X), replacing w with R"w in (192) and
introducing the sequence of scalar nonnegative nondecreas-
ing functions {¢,}; defined by ¢,(t) = |[R"wllsq.x> t € Ir,
from (192) we obtain

t 1/p
Puir (£) < ¢ (T) <L |n (5)|Pd5> ) (198)

tel, neNU{0}.
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Then, applying to (198) an induction argument in which the
first step of the induction follows from (192), we immediately
deduce the following estimates:

n

VP
¢Aggkgﬁﬂ<a> lwlls,o,r.x> (199)

tel, neNuU{0}.

The proof is complete. 0

Lemma 45. Let 5o + 2f3 > 6 in (H2) and v, € ﬂ?llzl D(L;).
Assume that k; € C(Ip;Z), by € C%(Ir;C), and y; €
Y;iz, where 1; ,0;, € ((3 - 2a — B)la, 1), Y, € 3-2a-
B, i = 1,...,m, 1 = 1,2, and r € [l,00]. Let 7, =
miniZ:l’,'.,nl’l:l,z{nil,aiz}. Then, for every fixed § € Lo g the
function w, defined by (181) belongs to Cg(IT; X), provided that
feC I X), p €[+ o 1), g = (3= 2 = B)/ax.

Proof. Letus fixd € I p., 7 = min;_;_, 1-1,{1; >0} Of
course, kil € C5(IT;Z) and hiz € C‘S(IT; O),i =1,...,m,
I = 1,2. Then, Proposition 29 and Lemma 30 applied
with the quintuplets (g; , g5, 83, X, X;) and the quadruplet
(ga> ¥, 04, y) being replaced, respectively, by (the constant
functions «; (t) = L; vy, t € Ir,i = 1,...,n,;, being obviously
of class C°(Ip; X)) (ki L; vy,0,2,X) and (h;,y,;,0,v;)
imply that Qy(k;,L; v,),Qu(h,y;) € ColpX), ij =
L...,m, 1 = 1,2. Now, since 6 € I3, < (3 - 2a -
B)/«,1/2) € (0,1/2), the number § + Hap satisfies

3-2a-p
o

6-3a-2p

1, (200
b (200)

<O <O+ yp <

and assumption f € CH(IpsX), 4 € [0 + pyp 1), is
meaningful. Lemma 24 with (g,,8,) = (f,u) then yields
Q,f € C;“”"”(IT;X), Vopu = (op + 200 + B — 3)/a. Since
Vb 2 VoSt = S,wegetQ, f € Cg(IT;X), too. Summing
up, we get the assertion. O

Before considering the function wy in (180), we introduce
the following notation. In the sequel, for 3& + 23 > 4, 8 €
(0,a],x € (0,1],and v € (2 - - B/, 1), Japw € (2-a-
B)/a, 1/2) € (0,1/2) will denote the interval

(M,v], ihe(ﬂ)l))

o o 2
Ja, By = (201)

(M,l), ifye [1,1>.

o 2 2

Notice that, since 2—a—f5)/a < (3—-2a—f8)/w, if the stronger
condition 5« + 25 > 6 is satisfied, then (191) and (201) yield
Iopy S Jupy for every fixed v € ((3 - 2a — B)/a, 1). The
introduction of the intervals J, 5, is justified by Lemma 46,
which requires a weaker condition on the pair («, 3) than the
one in Lemmas 42 and 45.

Lemma 46. Let 30 + 23 > 4 in (H2), and let v, € D(L).
Assume that k; € C"(I;X), h;, € C=(I13C), y;, € Y,
i
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and v; + f(0) € Y(;, where 1; ,0;, € ((2 — a = B)/a, 1),
Vipp € (4=2a=-2B,1),4 = 1,...,m, 1 = 1,2, r € [1,00],

.....

min, _y 12805 0y Xapy b Where xo g, = (6 + f+y—2)/a
Then, for every fixed & € ], g, the function wy defined by
(180) belongs to CS(Iy; X), provided that f € C*(Ip; X), y €
[0+ 0ups1)s Oup=02—a-pf)a

Proof. Observe that (cf. (159)) all the results from Lemma 32
to Corollary 38 will be applicable. First, since 2o + 23 >
4-o > 3,thechoiceyi2,go €(d-2a-2B1),i, =1,...,n,
is meaningful. Moreover, since y = min; _; , {y;,¢} €
(4 - 2 — 2f,1), the number y,5, = (¢ + f +y -
2)/« satisfies Xapy € (2 -a- ,g)/oc,l). Hence, 7, =

min, _y o120 01 Xapyt € (2 = a = B)/a, 1), too, and
Ja Bz, is well defined. Now; let § € J,, g be fixed. Due to (20)

or (38), the element x,, defined by (174) belongs to Y; , whereas
the functions Eiz defined by (178) are of class Cg(IT; Yy’i ) —
Cg(IT; Y;). Then, since y € (4 —2a - 2B,1) € 2 - «a -
B, 1), from Lemma 37 and Corollary 38 applied with the pairs
(g5, 05) and (x,8;) being replaced by (Tliz,(?) and (x,,0),
respectively, we deduce that QSEiZ,Q7x0 € Cg(IT;X), i, =
L,...,m,. In addition, since the k; ’s and the constant func-
tions ; (f) = L; v, belong to C°(Iy; X), from Proposition 36
applied with (gg » gs,» X1, X,) = (k; , L; v, Z, X), it follows
that Qq(k; , L; v,) € Cg(IT; X), i, = 1,...,n,. Finally, since
d¢€ Japr, € (2-a—-p)/a,1/2), the number & + Qup satisfies

2—o- 4-a-2
2-a-p 4-a-28

o (202)

>

<O <8 +up<

and the assumption f € C*(Ip; X), 4 € [8 + g4 p, 1), makes
sense. Then, the function f = f — f(0) being of class
CH(Ip; X), Lemma 32 applied with (gs,85) = (f,u) yields
Qsf « Cz“‘ﬁ’”(IT; X), Vopu = (ap + o + B —2)/a. Since
Vapu 2 Vaporo, = 8, we conclude that Qs f € C‘g(IT; X),
too. Summing up, we get the assertion. O

Remark 47. We stress that, if § € (0,1) in (H2), then 0 <
Pap < Hqp> S0 that in both Lemmas 45 and 46 we have to

assume that f € CH(I;; X) with g > §. This is necessary
in order to restore the loss of regularity produced by the
operators Q, and Qs.

We can now prove the main results of the section.

Theorem 48. Assume (161) and v, € D(L), and let 5a+23 > 6
in (H2). Assume that k; € C" (I3 Z), h; € C72(I; C), y; €
Y;iz, and v, + f(0) € Y, where n; ,0; € ((3 - 2a - B)/a, 1),
Vi@ € (5-3a-2B1),4 =1,...,m 1 = 1,2, r € [1,00],
and vy = (A\M + L)v,. Let y = min; _;_, {y,, ¢} and 7 =
mini,:l,...,nl,l:I,Z{r]il > 01'2’ Xa,ﬁ,y}’ where Xoc,ﬁ,y = ((X+ﬁ+))—2)/06.
Then, for every fixed & € I, g, problem (160) admits a unique
strict solution v € C‘S(IT; D(L)) satisfying v(0) = v, and such
that Lv, D,Mv € C°(I; X), provided that f € C*(I;; X), u €
[0+ pop> 1)y Hop = 3= 2a = P)/ex.
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Proof. Of course, due to (159), the assumption y, ,¢ € (5 -
3¢ — 23,1), i, = 1,...,n,, makes sense. In addition, since
y =min; ;o {y,,¢} € (5-3a-2p,1), we have x, 5, =
(a+B+y-2)/a € (3-2a— f)/a, 1). Therefore, by virtue of
the choice of the Holder exponents #; and o; , the number
T o= mingy 007 lz’X‘xﬁV} belongs to (3 = 2 —
B)/a, 1) too, and the interval I, wpor 18 well defined. Further, the
numbers #, 7;, and 7, being as in the statements of Lemmas
42, 45, and 46, respectively, we have T=17 <17 <K Asa
consequence, since I 5. < Ioyg. < Iop, and Iaﬁ‘r € Japr
all the mentioned lemmas are apphcable with & € I, 5.. To
this purpose, we stress that since ((3—-2a—f8)/a, 1) € (2—a—
B)/a,1)and (5-3a—2pB,1) € (4-2a-2f,1) € (3-2a-p, 1),
the conditions for the applicability of both Lemmas 45 and
46 are fulfilled. Hence, now let § € I, g, being fixed. First,

due to Lemma 42, the operator R = Rlca(l X)> g = Rg,

g € CO(IT, ), a fortiori maps CO(IT, X) into itself. Then,
Cg(IT;X) being endowed with the same norm | - [|5 o .x of
C‘s(IT; X), from (197) we obtain the estimates

n\ 1l/p
"ﬁnuy(cg(IT;X» < [ep (D] (T ) , neNU{0},

()

In particular, (203) yields that Y°° R converges in

(203)

< (Cg (I; X)). From generalized Neumann’s Theorem it thus
follows that 1 € p(ﬁ), the inverse (I - R)™' ¢ =Y(C‘g(IT; X))
being precisely Y’ R". Since Lemmas 45 and 46 (both
applied with (observe here that if y € [0 + pup 1),
then the exponent 7,4, in the last part of the proof of

Lemma 46 satisfies 7, 3, > Voo Stiny 2 Vaforons = d. For,

Vaporpg, = @ +1-a)fa=08+1-a)a)f € CH(Ip; X),
p € [8+pypr1) € [0+ pyp, 1)) imply that wy, w, € C (I X),
we conclude that the fixed-point equation (179) admits the
unique solution

[ee]
w= Zﬁ" (wy +w,) € CO (I3 X) . (204)
n=0
Observe now that the data vector (ki,....k,,h;,....h,,

fs Y105 Yu»vi + f(0)) satisfies all the assumptions which
were needed to show the equivalence between the fixed-point
equation (179) and problem (170). Indeed, § < 7 and § <

8 + pyp < p imply, respectively, that k; € (I3 2), h;, €
Co(I;;C) and f € C°UIp X), 4 = 1,...,m, [ = 1,2, whereas,
asin Lemma 46, y = min; _; , {y;,¢} implies that y, ,v; +
f(0) € Y;. Therefore, since A € Z(X),ifw € Cg(IT;X) is
the solution to the fixed-point equation (179), then A 'w €
Cg(IT; X), too, and the function F,, defined by (169) satisfies

F, e C’ (I;;X),

) (205)
xXo=F,(0)= Y h (0)y, +v, +f(0) € Y,,

i,=1
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where § € Lpr & Q2-a-p)a, 1),y e (5-3a-2f3,1) ¢ (1-
B,1), and r € [1, 00]. Consequently, recalling (168), we have
proved that problem (160) has a unique strict global solution
v = L"1w+v0 € C‘S(IT;Q(L)) satistying v(0) = L"lu)(0)+v0 =
vo and such that Lv = w + Lv, € C°(I;; X). As far as the
regularity of D, Mv is concerned, instead, it suffices to observe
that (168), (170), w € C3(Iy; X), and F,, € C°(Iy; X) yield

D,Mv=D,A ' w=w+F, € C (I;; X). (206)

The proof is complete. O

Remark 49. Theorem 48 improves the faulty Thereoms 5.6
and 5.7 in [20] in two aspects. First, the assumption 3« +8f >
10 is weakened to 5« + 23 > 6. In fact, 30 + 8 > 10
implies that 5 + 23 = 3 + 8 + 2a — 63 > 10 — 4« > 6.
Hence, in the special case « = 1, the constraint 8 > 7/8
in [20] reduces to the definitely weaker f > 1/2. Second,
in [20], only for n; = n, = 1 and opportunely chosen y <
B, the data y; and v; + f(0) were assumed to belong to
the intermediate spaces X', whereas here, removing the
assumption y < 3 and considering the general case n,,n, €
N, we allow y;,...,y, and v; + f(0) to belong also to the
interpolation spaces (X, 9(A))W. To emphasize how much
these aspects are decisive, let « = 1 in Theorem 48. Then, if
B € (1/2,2/3] and the choice XZ’r is understood for Yv’,, we
have Vi @ € (2-2B,1) ¢ [B,1), and the spaces Xﬁz’r and
X:’;’r, i, = 1,...,n,, may be smaller than (A). However, the
choice Yvr, = (X, QZ(A))W being admissible, in this situation
too we can solve problem (160) with the data in spaces larger
than 2(A). Further, since 2/3 < 7/8, in this case the results
in [20] would not be applicable. These observations lead us
to conclude that the more delicate approach followed in this
paper with respect to that in [20, Sections 4 and 5], and
especially the sharper results of the present Sections 3 and
4, yield a valuable refinement in the treatment of questions
of maximal time regularity for the strict solutions to (160); of
course, unless that the not too much significant case § = 1 is
assumed in (H2).

Remark 50. The assumption 5« +2f3 > 6 in (H2) implies that
B e ((6-50)/2,«] €(1/2,1] and a € (6/7,1]. In particular,
if « = 1, then Theorem 48 holds with 8 € (1/2,1], ;> 0;, €
A-B1,y,9 € 2-261),4=1..,ml =12 and

thg = 1-B.Hence,y € (2-2,1), x1 3, = p+y-1 € (1-5, ),
and § € I, 5 with 7 € (1 - 3, B), where

I1,ﬁ,1:(l—ﬁ,r], ifre (1_[;)%),

L= (1-8.3), ifre[5.p).

Clearly, if B = 1, then 5&¢ + 2 > 6 is redundant,
and Theorem 48 holds with 7; , 0;, v, ¢ € (0,1),4 =
Looml=12p,=01y=x,,€(01),andd €I,
7 € (0,1), where I, , , = (0,7]if 7 € (0,1/2) and I, ;, =
0,1/2)ifr € [1/2,1).

(207)
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Remark 51. Observe that, if the 17,1 s and o; s are assumed to
vary in the smaller interval U, wp = (B - "o - B)la, (e +
B — 1)/a), then ¢ and the y, s can be chosen such that

T = mini,:l,...,n,,l:l,z{’?z ,0;,}. To this purpose, letting p =
max; ;. -12{1,0;,} € Uyp, it suffices to take y, ,¢ €
Vaﬁp, 12 = 1,...,n2, whereV wpp = R+ap-« —ﬁ 1) ¢

(5 -3« —2B,1). Theny = min; _;_, {y;,¢} € Vyp, and
Xapy = @+ B+y-2)/a > p In other words, provided
that the data vector (yy, ..., y,,,v; + f(0)) is smooth enough,
the pair (Lv, D,Mv) has the maximal time regularities which
is the minimal between the time regularities of the k; s and
h’s.

We conclude with the results which follow from
Theorem 48 for problems (163)-(166).

Theorem 52. Assume (161) and v, € D (L), and let 5a+23 > 6
in (H2). Assume that k; € Cl(Ips Z) and Lvy + f(0) € Y;,
wherenl-1 €((3-2a-P)/a,1),i, =1,...,n,y € (5-3a—
2B,1), and r € [1,00]. Let T = min; _; _, {1 > Xap,}> Where
Xapy = (@ + B +y —2) e Then, for every fixed § € I
problem (165) admits a unique strict solution v € C8(IT; (L))
satisfying v(0) = v, and such that Lv,D,Mv € C°(I;X),
provided that f € CH(I;X), p € [0 + pop 1) pop =
3-2a-p)/a.

Proof. Repeat the proofs of Lemmas 42, 45, and 46,
Corollary 44, and Theorem 48, letting there A, = h; = 0,
i, = 1,...,n,. To this purpose, observe that (169) and (174)
reduce to F,(t) = le: [(H(Kk; ,S; w)(t) + H(k; , L; vo)(£)] +

Lvy + f(t) and x, = Lv, + f(0). Consequently, (180)-(182)

change to w, = Q,x, + Zln‘ 1 Qslk; L vo) + st w, =
_221:1 Qs(k;» L; vo) - Q, f,and Rw = Z 1[Qs (ks S w) =
Q3(kilysilw)]~ O

Theorem 53. Assume (161) and v, € D(L), and let 5a+2f3 > 6
in (H2). Assume that k; € Chi (I; Z), h; € C% (I; C), i, €
Yri ,and Ly, € Yr where ;05 € (3-2a—-P)/a,1), 7,9 €
(5 -3 - 2,8 1), 4 = 1,. ..,nl,l = 1,2, andr € [1,00]. Let
Y= mlll ,,,,, 1, {YIZ (P} and‘r - mln .,nl,l=1,2{’7i1’ai2’ th,ﬁ,y}’
where Xoc,ﬁ,y (a+B+y-2)/a. Yhen for every fixed 0 € I, g
problem (166) admits a unique strict solution v € C‘S(IT; (L))
satisfying v(0) = v, and such that Lv, D,Mv € C°(I; X).

Proof. Let Ay = f = 0inthe proofs of Lemmas 42, 45, and 46,
Corollary 44, and Theorem 48. In this case, (169) and (174)
reduce to F,(t) = 221:1 [(Z(k;,S; w)(t) + F(k; , L vo)(£)] +

Z:l;:l h; (t)y;, + Lvy and x, = Z:?:l h; (0)y;, + Lv,. Hence,

(180)-(182) change to w, = Q,x, + ZZI:I Qs(k; , L; vo) +
Z?;:l Qsﬁzy w, = _221:1 Q3(ki1’Li1V0) - 222:1 Q4(hi2’yi2)>
and Rw = ZZLI [Qs(k; » S; w) — Qs(k; , S; w)]. O

Let us now turn to the degenerate differential problems
(163) and (164).
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Theorem 54. Assume (161) and v, € D(L), and let 5a+2f3 > 6
in (H2). Assume that Lv, + f(0) € Y;, y e (5-3a-241),
r € [1,00], and let x5, = ( + B +y — 2)/a. Then, for every
fixed § € Lo s problem (163) admits a unique strict global

solution v € C‘S(IT;QZ(L)) satisfying v(0) = v, and such that
Lv, D,Mv € C°(I; X), provided that f € C*(I; X), p € [ +
Hap> 1), Hap = 3 -2a- )/«

Proof. Let Ay = k; = h;, = 0,i; = 1,...,m, 1 = 1,2,in
problem (160) and formulae (169), (174) and, (179)-(182).
Then, F, (t) = Lvy + f(t),x, = Lvy, + f(0) and w =
wy + w; = Q;x, + Qsf — Q,f. Consequently, Lemma 42
and Corollary 44 are unneeded, and the proof of Theorem 48
simplifies as follows. First, due to y € (5 — 3o — 23,1) we
have y, 5, € (3 - 2a - B)/«, 1), and the interval I, 0By is

well defined. Hence, let § € I, 5, . being fixed. Since (cf.
(200)) f € CH(IT; X)) ,"l € [6 + ,u(x,ﬁ) 1) - ((3 -2« - /3)/“) 1))
reasoning as in the last part of the proof of Lemma 45 we get
Q,f € Cg(IT; X). Moreover (see the proof of Lemma 46),
since x, € Y,y € 5-3a-2B1) ¢ 2-a-p1)
and f € Ci(IpX), u € [6+ typ1) S [8 + gup 1),
0up = (2—a—f)/a, Corollary 38 and Lemma 32 applied with
(x,8;) = (x0,8) and (gs, 85) = (f,8+0,.p) yield Q;x5, Qs f €
Cg(IT; X). Summing up, we find that w € Cg(IT;X). The
assertion then follows from v = L™ 'w + v, and (cf. (206))
D,Mv=w+Lvy + f. O

Remark 55. We refer to [19, Theorem 5.3] for a result of both
time and space regularity for problem (163). There, provided
that v and & are opportunely chosen and the data satisfy
assumptions similar to those in Theorem 54, it is shown that
DMy € C’(I13(X,2(A)),,), and that the higher is the
order y of the interpolation space where we look for space
regularity, the lower is the Holder exponent § of regularity
in time. Notice that Lv = D,Mv — f has no space regularity,
unless f has too.

Theorem 56. Assume (161) and v, € D(L), and let 5a+2f3 > 6
in (H2). Assume that h;, € C*>(I;C), y;, € Y, , and Lv €
Yq:, where o; € (3 = 2a = B)/a, 1), y,, ¢ € (5-3a =2, 1),
iy=1,...,m,andr € [1,00]. Let y = min; _, _, {y, ¢} and
T =min; _; nz{alz,)(“[;y} where xo 5, = (@ + f+7y—2)/e
Then, for every fixed § € I, g ., problem (164) admits a unique
strict global solution v € C°(Iy; D(L)) satisfying v(0) = v, and
such that Lv, D,Myv € C8(IT; X).

Proof. LetAg = k; = f =0,i; = 1,...,n,, in problem (160)
and formulae (169) (174) and (179)-(182). Then, F,(t) =
anl h (O)y;, + Lvg, xp = Z 1 h, (0)y; + Lvg and w =

wy+w, = Q,x, +Zi2:1 Qshi2 Zi2:1 Q4(hy,, y;)- Therefore, as
in Theorem 54, we do not need Lemma 42 and Corollary 44,
and the proof of Theorem 48 simplifies as follows. Again,

y = min;;_, {y,,¢} € (5 - 3a — 2f,1) implies that
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Xopy € (3-2a—pP)/a, 1), sothatt = min; _y {aiz>Xa,ﬁ,y} €

.....

((3 = 2a - B)/a, 1), and the interval I, 5 is well defined. Let
8 € I, p. be fixed. First (see the proof of Lemma 45), since
¥, € 6-3a-2pB,1) € (3-2a—-f3,1), Lemma 30 applied with
(9 :007) = (h;,y,,8,7,) yields Q(h; , y;)) € CH(I13 X),
i, = 1,...,n,. On the other side (see the proof of Lemma 46),
since x, € Y; and fliz € Cg(IT; Y;,- ) — Cg(IT;Y;), ye(5-
30 -2f,1) € (2—a— 3, 1), from Lemma 37 and Corollary 38
applied with (g5, 85) = (Eiz, d)and (x, §,) = (x,, ) we deduce
that stziz, Q,x, € Cg(IT;X), i, = 1,...,n,. Summing up,
we find that w € Cg(IT; X), and the assertion again follows
from v = L™'w + v, and (cf. (206)) D,Mv = w + Lv, +
222:1 hiz)’iz- O

6. An Application to a Concrete Case

Theorem 48 is here applied to determine the right functional
framework where to search for the solution of an inverse
problem arising in the theory of heat conduction for materials
with memory. To this purpose, let @ ¢ RY, N € N, be
a bounded domain with boundary 9Q of class C*' (cf. [36,
p. 94]). If Q represents a rigid thermal body with memory,
then the linearized theory of heat flow yields the following
equations linking the internal energy e, the heat flux q =
(41> - -->qy)> and the temperature @ (cf. [32, 37-40]):

t

e (t, x) =eO+a(0,x)®(t,x)+J D,a(t—s,x) 0 (s,x)ds,
0

q;(t,x) ==Y b,(0)C;; (x;D,) © (t,x)

i=1

et
_ Z J Db, (t - 5)C; ; (x;D,) © (s, x) ds,
i=1 70
i=1,....N,

D,e(t,x) = =div,q(t, x) + g (¢, x)

N
=- Zijqj (t,x)+g(t,x).
j=1
(208)

Heret € I, I; = [0,T], T > 0, x = (x1,...,x5) € Q, 7, €N,
ey € R,and D, = 0/0t, whereas the C; ;(x; D,.)’s represent the
first-order linear differential operators

N
C~’-(X;D ) = Giik (x)D,,, x€Q,
i,j x ]; i,j Xy (209)

i=1,...,r, j=1,...,N,

where ¢; ;. € C'(Q;R) and D, = 0/0x,i = 1,...,1,
jok =1,...,N. According to the terminology of [39, 40], the
functions a, b, i = 1,...,r,, and g are called, respectively, the
energy-temperature relaxation function, the heat conduction
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relaxation functions, and the heat supply function and we
assume that they satisfy the following conditions:

k
D/a(,x) e C(I;R), k=0,1,2,
' ! (210)
a(0,x)>0, xeQ,
Db e C(IsR), k=0,1,i=1,...,r,
(211)
g eC' (I; x %R).

Notice that, different from [32, 37-40], here the energy-
temperature relaxation function a is assumed to depend also
on the spatial variable x € €. In physical terms, this is
equivalent to say that Q) represents a rigid inhomogeneous
material with memory. Furthermore, in contrast with the
quoted papers where only the cases r; = 1 and C, ;(x; D) =
D, are treated, here we have assumed that the history record

of Q) is kept by an arbitrary number r; € N of heat conduction

relaxation functions and that the C; ;s are the more general
first-order differential operators defined in (209).

By setting
= b0, cC (GR), jik=1...N, (212)
i=1

from (208) and (209), it thus follows that the temperature @
must satisfy the following equation:

a(0,x) D,® (t,x) + D,a (0, x) O (¢, x)

t
+J Dfa(t—s,x)@(s,x)ds—g(t,x)
0

D, [@x (x) D, O (£, x)]
1

Mz

J

Ty

t N
+ Z .[0 Db, (t —s) ZijCi,j (x;D,) ® (s, x)ds.

i=1 j=1
(213)

Let us now assume that a is of the following special form:
2
alt,x) =Y m,()u, ), (x)elxQ, (214)
n=1

where the functions m, and u,,, n = 1, 2, satisfy the following
conditions (cf. (210)):

m, €Ly (Q), n=12,
(215)
m; >0, m, >0,
unecz (IT;R), n:1,2,
(216)
u, (0) =0, u; (0) >0, D,u, (0) > 0.
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Here, Lq(Q) = Lq(Q;R), q € [1,00], is the usual L,
space with norm || - (S (cf. [36, Chapter 7]). Using m,, u;(0),
D,u,(0) > 0, for t € I and x € Q we now set

a (x) = —[uy (0)] "'m, (x) Du, (0) <0,  (217)
a0 = [, 0] 3, (x),  jk=1..,N, (28
N
L(xD,) = ) Dy [aj(x) D] +a(x), (219)
k=1
N
L; (X, x)_[ul (0)] Z Cl]( ;Dx)’
=1 (220)
i=1,...,r,
Ly (3D,) =Ly, (%) = [, (0)] 'm, (x),
(221)
n=1,2,
k(t)=Db (), i=1,...,r,
(222)
Ky o (t) = =Diu, (t), n=1,2,
Gtx) = [ (0] 'g(t,x),
(223)

Ao = —[uy (0)] ' D,u, (0) € R.

Then, since (214)-(216) yield a(0,x) = m;(x)u,(0) and
Dfa(t, x) = me mn(x)Dfun(t), k = 1,2, if we multiply both
sides of (213) by [ul(O)]_1 and use (218)-(223), we are led to
the following basic differential equation for the temperature
©, where n; =) +2:

D, [m; (x)© (t,x)]

= Aomy (x) @O (t,x) + L(x;D,) O (£, x) + g (£, x)

(224)
ZJ k;(t—s)L;(x;D,)® (s,x)ds,

tely, xeQ.

We endow this differential equation with the initial condition
0(0,x) = 0Oy(x), x € Q, and the Dirichlet boundary
condition @(t, x) = 0,t € I, x € 0Q.

We now suppress the dependence on x € (, and we
transform (224) in a degenerate integrodifferential Cauchy
problem in a Banach space X. To this purpose, for every fixed
q € (1,00) and observing that m, € L (Q) implies that

31
IImnuIIq;Q < myllo0llull g for every u € L (Q), n = 1,2,
we set
X=2M)=2(L,,,)=L,(Q), n=12  (225)
DLW =W QNW, Q).  D(L)=W (@,
(226)
i=1,...,7,
M,L, ,, € Z(X), Mu =myu,
(227)
Lt=L, ,(x)u, ueX n=12,
L:9(L)cX—X
(228)
Lu=L(x;D)u, ue (L),
(229)

Lu=L;(x;D)u, ueP(L;), i=1,...,r.
Here (cf. [36, Chapter 7]), W;(Q) = W;(Q; R), k ¢ NuU {0},
q € (1,00), denotes the usual Sobolev space endowed with

the norm |-l g0 (W (Q), 11+ lloga) = Ly(Q) - llgza)),

. k
whereas Wq(Q) denotes the completion of C;°(;R) in

W (Q), C5°(Q;R) being the set of all real-valued infinitely
differentiable functions having compact support in Q. We
further assume that there exists positive constant A;, i =
0,...,7,, such that for every (x,&) € Q x RN the following
inequalities hold:

Z Gk O EE 2 AJEP, =1, m,
jk=1
(230)
Y b(0)A; 2 A,
k=1
where |£]* = Zﬁl & Therefore, from (212), (218), and (230)

we get

Za,kmzﬁk— u (0)] me) Z 6k

k=1 k=1 (231)

> [u (0)] olgl

From (225)-(231) it follows that M, L,and L;,i = 1,...,n,,
are closed linear operators from X to itself, and the relation
2(L) ¢ NLDM) n D(L)] = W;(Q) holds. In
addition, due to (212), (217), (218), and (231), from [36,
Theorem 9.15 and Lemma 9.17], it follows that for every
fixed g € (1,00) the operator L admits an inverse operator
L' e 2(X; W;(Q)). Hence, a fortiori, L' € Z(X) and
so condition (161) is satisfied (observe also that L™' €
ZL(X; W;(Q)) implies that the norms || - ||2,q;(2 and | - g =
I Nlgo + IL - [l are equivalent on P (L). In fact, if v € D(L),
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then ||V||2,q;Q = ||L71LV||2,q;Q < It ||$(X;M/‘12(Q))||V||@(L) <
CiL™ Il 2wz on IVl g0 C being a positive constant depend-
W %

ing on max;;_, ). The closed graph theorem

..... N"aj,kllcl (@R)
then yield ML™',L,L™" ¢ Z(X), i = 1,...,n,. Moreover
(cf. [19, formula (77)], and [41, formula (2.16)]), the following
estimate holds (of course, here X = L q(Q; R) is replaced with
the more general X = L (C)):

[MOM -1, <COM+ 1D, WAex, B=1,
q

1 "52()0
(232)

where 2, = {z € C: Rez > —¢(|Smz| + 1), Smz € R}, ¢
being a suitable positive constant depending on g and
7, | yo,a- Hence, condition (H2) is satisfied with X = L1(Q)
and (a, ) = (1,1/q). Notice that, since m,; may have zeros
in O, M~" is in general a m. 1. operator, so that A = LM ™" is
determined by (cf. (162)):

D(A) =M@ (L) = {my:veD D)},

Au={Lv:ve D (L) such that u =mv}, ueD(A).

(233)

Using the convolution operator % in (104) in which for
the bilinear operator & we take the scalar multiplication in
X, from (224)-(229) we finally obtain that the temperature
O(t) = O(t,-) solves the following degenerate integrodiffer-
ential Cauchy problem in X:

D, (M® (1)) = [A\;M + L] © (t)

+ 2%(1@-,@@) O +g@), telp (234)

i=1
0 (0) = 0.

Now, assume for a moment that we are interested in solving
the inverse problem of recovering both the temperature @
and the memory kernels k..., k, in (234). Clearly, due to
(222), if we recover k;,...,k, , then the heat conduction
relaxation functions bj,...,b, will be known too, unless of
,71. Indeed, by (t) =

b.(0) + Iot k;(s)ds, t € I;. To solve such an inverse problem, we

the r, arbitrary constants b,(0),i = 1,...

need r, additional informations other than the initial condi-
tion ®(0) = ©,, which, in general, suffices only to guarantee
the well-posedness of the direct problem of recovering ® in
(234). Suppose then that the following additional pieces of
information are given:

Y, [MO ()] =g;(t), teln j=1...,r,  (235)

where ¥; € X* = Z(X;R) and g; € C*""/(I;;R), v; € (0,1),
j = 1,...,r;. We will search for a solution vector
(0,ky,..., krl) of the inverse problem (234) and (235) such

that © € C'*°(I;; (L)) and k; € CU(IsR), j = 1,...,7,
with the Holder exponents § and #;, j = 1,...,7,, to be
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made precise in the sequel. We stress that here we will not
solve completely the mentioned inverse problem. For, its
detailed treatment would lead us out of the aims of this
paper. Our intention here is only to highlight how the main
results of Section 5 allow to determine the correct functional
framework in which the solution of the inverse problem has
to be searched. However, a complete treatment of the inverse
problem will be the object of a future paper.

Assuming that ® € C1+6(IT; D(L)) solves (234), we
introduce the new unknown

v(t,x) = D,0 (t,x) &= O (t,x) = O, (x) + Jt v (s, x) ds.
0

(236)
Then, differentiating (234) with respect to time and using
D% (k;, L,®) (¢)

=D, Jt ki(t-s)L,®(s)ds =D, Jt k;(s)L;® (t —s)ds
0 0
“KOLOO + [ KOLDO-9ds
0

—k () L,0, + Jot k. (t = 5) Ly (s)ds,
(237)

we find that v € C°(I; Z(L)) solves the following degenerate
integrodifferential problem:

D, (Mv (1))

=[AoM + L] v (£)+ Y [# (k;, Liv) () + K; (1) y]+ £ (©)

i=1
telp

Mv(0) = Mv,,
(238)

where y; = L,;0y,i=1,...,n;, f = D,gand Mv, = [A;M +
L]1®, + (0, ) (indeed, since M is the multiplication operator
by the function m, independent of ¢, from the differential
equation in (234) with t = 0 we get Mv(0) = MD,0(0) =
[AoM + L1O(0) + g(0)). Of course, (238) is the special case
(i}, iy, 1y) = (i,i,my), h; = k;, i = 1...,n,, of problem (160).
Conversely, assume that v € C5(IT;9(L)) solves (238).
Then, the function © defined by (236) belongs to C'*°
(Ir; (L)) and solves (234). Indeed, using the fact that m,
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does not depend on time and that M, L,and L,,i = 1,...,n,,
are closed, we obtain

D, (MO (t)) — [A,M + L] O ()

=) H (k, Li®) (1) - g (t)
i=1

oo [0)

—[AgM + L] [@0 + Jt v (s) ds]

0

i Z L k=L |oy+ [ v as

t

G0~ j D, (s)ds

0

(239)
= Mv(t) - [A,M + L] ©,

t
- J [AoM + L] v(s)ds
0
oot
- Z J k; (t —s)L;0,ds
i=1 70

) Zl Lt k(- s) [J:Liv(E) df] ds

t

—§<o>—j £ (s)ds.

0

Now, observe that

Mv(t) = Mvy + JtDs (Mv (s))ds
’ t (240)
= [A,M + L] ©, + G (0) + J D, (Mv (s))ds,
0

t t t
j k. (t—s)LiG)Ods:J k. (s) L,0,ds =j k. (s) yids,
0 0 0

i=1,...,n,
(241)

whereas an application of Fubini’s theorem combined with
the changes of variables & = s—r,r —s = randt -s = (
easily yields for every i = 1,...,n, the following:

L k-9 [ L@ as
= Jot ki(t—s) [Ls Liv(s—r) dr] ds

= Lt [Lt ki(t—r)Liv(r—s) dr] ds

33
- L: “; ki (t—s—17)Lv(7) dr] ds
- L: (ko L) (£ - 5) ds
_ Lt‘%(ki’ L) () d¢ = jot%(ki,Liv) (s) ds.
(242)

Therefore, replacing (240)-(242) in (239), it follows for every
t € I that

D, (MO (1)) - [A\;M + L] © (t) - Y K (k;, L,©®) (t) - § (1)

i=1

0

_ Jt {DS (Mv(s)) = [AM + L] v (s)

- le [Z (ki Liv) (s) +k; (s) y;] = f(s) } ds,
in1

(243)

and the latter integral is equal to zero by virtue of (238). Since
from (236) it follows that ®(0) = ©,, we have thus shown
that (234) and (238) are equivalent. Such an equivalence is
the first step in solving the mentioned inverse problem of
recovering the vector (@,k,,...,k, ) with the help of the
additional information (235).

Let us now apply the linear functional ¥, j =1...,r, to
(238). Using

¥, [Df (Mv(1))] = ¥; [MDf'@ ()] = D'y, (MO (1)]

k+1

=D, gj(t), k=01,

(244)

we thus find the following system of r, equations for the r,
unknown ki, ..., k, :

Ty

Z v; [yi] ki (8)

i=1

n (245)
=N;(t) = [Lv] = ) ¥, [F (k;, Liv) ()],
i=1
j=1...,1,
where we have set (recall that k, ., = —-D,u,, n = 1,2, are
known)
N;(t) = (D, = Ag) Dyg; (1) = ¥; [ f (1)]
(246)

2
_Z\P] [yr1+n] krl+n(t)$ j: 1,...,7’1,
n=1
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Therefore, if the matrix % := %$ """ J\;:‘ = (Y[ y]]), i1 », has

determinant det % + 0, then from Cramer s formula it follows
that the solution (ky, ..., k, ) of (245) is given by

k; () = [det %) Zl{Nk(t — 9, [Lv]

n

_ Z\I’k [F (Kk;s L;v) (t)]} U,

i=1

:I~2j (v,kl,...,krl)(t), j=1...,1,

(247)

with % I k,j = 1,...,1,, being the cofactor of the element
Vil y]-] of % (with the convention that %, ; = 1 in the case
of r, = 1). We have thus found a system of r; fixed-point
equations for the r; unknown k..., k, .

Now, let Yy € {(X, 2(A)),,,» X}y € (0,1), 7 € [1,00],
where A is as in (233). Assume that v, in the initial condition
Mv(0) = Mv, belongs to (L) and that

kieC"(I,R),  feC(IpX), ni"’le(il’l)’
q

i=1,...,n,
1
yiEY)f:, v1+f(0)€Y£, yi,(pe<?,l),

p€[1,00],

i=1,...,n,

(248)
where v, = (A\,M + L)v, and ¢’ is the conjugate exponent
of g € (1,00). Then (cf. (179) with (i},i,,n,) = (i,i,n),

(a,3,Z) = (1,1/q,R),and h; = k;,i = 1,...,n;), problem
(238) is equivalent to the fixed-point equation

1
=R(wky,..k, ) 0O+ Y wy(kysooosk, ) (8)
=0

=T (w,ky,....k, ) (®),

w(t)
(249)

where w = L(v — v,) and

W (kl’ e ’krl) =Q;x0 + Z [Qs (ks Livo) + Qs%i] + Q5f~’
i=1
wy (k1>-~-’kr1) = —Z [Qs (ki Livg) + Qq (K1, )] = Qu f,
i=1
R(wrkyok, ) = 1 [Qs (A7) - @y (47'0)]
+ Z Qs (ki S;w) — Qs (k;, S;w)] .
(250)

Here, the Q;s, j = 2,...,6, are defined by (106)-(110), S; =
L,L™", and the functions f, k; and Q,x,, are defined by f(t) =
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f(® = f(0), ki(t) = [k;(t) = k;(0)]y;, and [Q,x,] (1) = (e -
I)x,, respectively, where (cf. (174)) x, = Y1, k;(0)y; + v, +

i=1""1
1(0).

Then, since v = L™'w + v, if we set R;(w, k;,...,k, ) =
R(L'w+vp,ky,.. sk, ), j=1,...,r,and
E(w,kys....k, )
= (T (w.ky....k, ), Ry (wky,. k), (251)
LR, (0K k),

from (247) and (249) we deduce that to solve the inverse prob-
lems (234) and (235) for the unknown vector (®,k, ..., kn ),
it suffices to show that the fixed-point equation

,krl)=5 ’k"l)

has a unique solution. In general, this will be done by proving
that 2 is a contraction map in the Banach space

(wky, ... (wky ... (252)

Z sy My c (Ir; X) x C" (I3 R) x --- x C™ (I5R),
|(for fio o ),
"fO”(SOTX "fl"nlOTR frl 10, TiR
(253)

at least for opportunely chosen Holder exponents § € (0, 1)
and 7; € (1 /q', 1),i = 1,...,r, and, eventually, sufficiently
small values of T > 0. It is just in the choice of § and
the #;’s that the main result of Section 5 plays a key role.
The Hoélder exponents have to be chosen so that the direct
problem (234) in which the k;’s are assumed to be known is
well posed. Due to the shown equivalence between problems
(234) and (238), the well-posedness of the direct problem
(234) is then a consequence of Theorem 48 and formula
(236). More precisely, recalling Remark 50 for the case o = 1,
an application of that theorem yields the following maximal
time regularity result for the solution ® of (234).

Theorem 57. Let X, (M), D(L), and D(L;), i = 1,...,n,,
ny =1 +2,r, €N, be defined by (225) and (226) with q €
(1,2). Let M, L,and L;, i = 1,...,n,, be defined by (227)-
(229) through (209), (212), and (215)-(221), and let (230) and
(231) be satisfied. Further, let (A, D(A)) be defined by (233),
and let Y, € {(X, 2(A)),,,» X4}, v € (0,1), 7 € [1,00]. Let

€ (1/q, 1) and y, 0 € 2/, 1),i=1,...
that

,ny, and assume

k, € C" (IzR), i=1,...,n,

®, € 2 (L),
(AM +L)®;+ g (0,-) = Mv, forsomev, € D (L),
i=1,...,n,

L@, €Y, vi +D,§(0,) € Yy,

€ [1,00],
(254)
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wherek;, i =1,...,n,, gandA,aredefined by (222) and (223)
through (211) and (216), whereas vi = (A(M + L)v,. Let y =
min;_; o, {y, ¢} and T = min;; , {7,y - 1/q'}, and let

.....

Iy yjgr € (l/q 1/2) be the interval defined by (cf. (207) with

B=1/q)
1 11
Ljge = (?’T] , ifTe ( 2)

11 . 1
Il,l/q,‘r:(g)5>> lfTe [E,1>

Then, for every fixed § € I ,, . problem (234), or, equivalently,

(255)

problem (224), admits a unique strict solution ® € C'*°
(Ir; D(L)) satisfying D,©(0) = v, and such that D,M®, LO €
C"°(Ip; X), provided that D,§ € C*(I;; X), u € [0 +1/4',1).

Proof. Apply Theorem 48 with (i,,i,,n,) = (i,i,n,), («, B,
Z) =(1,1/q,R),and h; = k;,i = 1,...,ny, to the equivalent
problem (238). Since M is the multiplication operator by the
function m, independent of ¢, the assertion then follows from
D,® = v € C(I;D(L), D,O(0) = v(0), D,LO® = Lv €
C°(Iy; X) and D’M® = D,Mv € C°(I; X). O

Larger values of g in Theorem 57 can be obtained assum-
ing more smoothness and some order of vanishing for the
functionm,. In fact, let m, € C'(Q) be such that the following
estimate holds for some positive constant K:

1/2
N 2 9
\Y = D <K ,
|Vmy () {le[ 1 ()] } <Klm @I

xeQ, 9¢€(0,1).

Then (232) holds with 8 =
formulae (3.23) and (4.41)]):

1/q being replaced by (cf. [41
B=—1 ifge(2-9.2)

- 9 9) q > >
(257)

B=

2 .
G- if g€ [2,00).

(precisely, in [41 formula (3.23)] it is shown that (JA| +
DIMulge ™" < CyllfllyalMudyg™ "™ + 1155 ")

where u = (AM L) f and g € [2,00). Using (cf. [41,
formula (2.15)]) IMull,q < llmlloolullye < Clmyllga

-9
I f1l 4> we thus find that (IA| + 1)||Mu||2;% 2 o c,lc
"mlnooQ)_qu Ny ||f||q(2 O that is, IMOAM-
L)y < {C,L(Clm, ||00;Q)*1+q2 N2 /a9y 4

1)"2/14C=91) "Under (256) we thus find the following better
result, where g may be greater than two.

)

Theorem 58. Let (256) holds, and let X, (M, D(M)), (L,D
(D), (L, D(L)), i =1,...,ny, be as in Theorem 57, but with
q€(2-92)U(2,4/(2-9)). Let (254) be fulfilled, but with
n; € (1-B,1)andy;, ¢ € 2-2f,1),i=1,...,n,, where B is as
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in (257). Let y = min,_, , {y, ¢} and T = min,_,

y-1} andletl, g, beasin (207) Then, for everyﬁxed6 € 11,;3,1
problem (234), or, equivalently, problem (224), admits a unique
strict solution ® € C1+6(IT; D(L)) satisfying D,®(0) = v,
and such that D,M®,L® € C'*(I; X), provided that D, €
C'IpX),peld+1-p1).

Proof. It suffices to observe that for every 9 € (0,1) and g €
(2-9,2) U [2,4/(2 - 9)), the number f in (257) satisfies 3 >
1/2. Hence, proceeding as in the proofs of Theorem 57, except
for replacing there 8 = 1/gq with 3 as in (257), we get the
assertion. O

Appendix

Here we clarify why the definition of Q, in [20] has to be mod-
ified in accordance to that in this paper. To avoid confusion
with the present notation, we will denote the operator Q, in
[20] with S,. Precisely, in [20, formula (4.12)], S, was defined
as follows:

€[0,T],
(A1)

e j [(CA)'] g, (9) ds,

and considered as acting on functions g, € ng([o, T]; X),
6, € (B-2a-p)/a, 1), 3 + B > 3. Even though g,(0) = 0,
formula (A.1) may have no sense, since

t
"Szgz (t)"X < Ea,ﬁ,l|gz|52,0‘t;x L (t- 5)(ﬁ_2)/a562 ds, (A.2)

and the integral on the right is not convergent, the exponent
(B —2)/a being less or equal than —1. It is for this reason that
g,(s) in (A.1) has to be replaced with the increment g,(s) —
g,(t) as in formula (106) (see inequality (118)) and to intro-
duce the operator Q5 as in (109). Of course, as a consequence,
the definitions of Q; and Q, in [20, Lemmas 4.6 and 4.8] as
S, (93, g3,) and S,(g,y), respectively, have to be changed
too in accordance with the present formulae (107) and (108)
containing the increments # (g , gs,)(s)—# (g3 » g5, )(t) and
[g4(s) — g4(t)]y. To this purpose, we want to make clear that,
contrarily to [20, Lemma 4.4], the statement and the proof of
[20, Lemma 4.8] is correct, since there the function inside the
integral on the right-hand side of (A.1) takes its values in an
opportune intermediate space Xi”. However, the correctness
of that lemma does not suffice to proceed as in [20, Section 5]
to solve problem (160) with n, = n, = 1.

For the reader’s convenience we thus now indicate how
to change the definitions of the functions w;, j = 0,1, and
the operator Rw in [20, formulae (5.8)-(5.10)], and we state
the amended version of [20, Theorems 5.6 and 5.7]. First,
according to [20] where only this case was treated, let n, =
n, = 1 in problem (160), and write k, h, y in place of k, h; and
y,, respectively. Then, under the same assumptions on the
vector (e, 3,k, h, f) as those in the present Section 5, it can



36

be shown that problem (160) with n, = n, = 1 is equivalent
to the fixed-point equation (179), where (cf. (180)-(182))

wy = Qyxg + Qg (ks Lyvp) + Qsh + Qs
wy =-Qs (k, Lyvy) - Qu (hy) - Qo f,
R = [0 (471w) - Qs (47'w)]
+ Qg (k, Sw) — Q; (k, Sw).

Here, x, = v; + h(0)y + f(0), v; = (A;M + L)v,, is the value
att = 0 of the function F,, defined by (169) withn; = n, = 1,
Q,xy, f and hare defined, respectively, by (e —I)x,, f(t)—
£(0) and [A(t) — h(0)]y, S is the operator LIL_1 € £(X),and
the Qj’s, j = 2,...,6, are as in (106)-(110). Formulae (A.3)
replace the definitions of wy, w; and Rw in [20, formulae
(5.8)-(5.10)]. Therefore, from Lemmas 42, 45, and 46 and
Corollary 44 withn, = n, = 1 we obtain the following version
of Theorem 48.

(A3)

Theorem A.1. Assume (161) and v, € D(L), and let 5o+ 23 >
6 in (H2). Assume that k € C'"(I; Z), h € C°(I;;C), y € Yy,
and AyM +L)vy+ f(0) € Y., wheren, 0 € ((3-2a—f5)/a, 1),
0,9 € (5-3a—-2p,1), andr € [1,00]. Let y = min{0, ¢} and
7 = min{n, 0, (a+ f+y—2)/a}. Then, for every fixed & € I, 5
the problem

D, (Mv(t)) = [AJM + L] v(t) + F (k,L,v) (t)

+h(t)y+ (1),
Mv(0) = Mv,

telp, (A4)

admits a unique strict solution v € C°(I;; D(L)) satisfying
v(0) = v, and such that Lv, D,Mv € C‘s(IT;X), provided that
feC'IpsX), ueld+B-2a-p) al).

Theorem A.1substitutes [20, Theorem 5.6 and 5.7]. Notice
that, differently than [20], here only one statement occurs.
In fact, the more suitable procedure followed in this paper
makes the separation in [20] of two distinct intervals in which
y may vary totally unneeded. Finally, letting n, = n, = 1 in
Theorems 52, 5.14, 54, and 56, we obtain the correct versions
of [20, Theorems 5.11, 53, and 5.16] for the subcases of (A.4)
corresponding to the choices A, = h = 0,4, = f = 0,
Ay =k =h=0and A, = k = f = 0, respectively. For
saving space, we leave this easy task to the reader.
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