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1 Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
2Dipartimento di Matematica e Informatica, Università di Catania, 95125 Catania, Italy
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We study holomorphic maps between C∗-algebras 𝐴 and 𝐵, when 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 is a holomorphic mapping whose Taylor

series at zero is uniformly converging in some open unit ball 𝑈 = 𝐵
𝐴
(0, 𝛿). If we assume that 𝑓 is orthogonality preserving and

orthogonally additive on 𝐴
𝑠𝑎
∩ 𝑈 and 𝑓(𝑈) contains an invertible element in 𝐵, then there exist a sequence (ℎ

𝑛
) in 𝐵∗∗ and Jordan

∗-homomorphisms Θ, ̃Θ : 𝑀(𝐴) → 𝐵
∗∗ such that 𝑓(𝑥) = ∑

∞

𝑛=1
ℎ
𝑛

̃
Θ(𝑎

𝑛

) = ∑
∞

𝑛=1
Θ(𝑎

𝑛

)ℎ
𝑛
uniformly in 𝑎 ∈ 𝑈. When 𝐵 is abelian,

the hypothesis of 𝐵 being unital and 𝑓(𝑈) ∩ inv(𝐵) ̸= 0 can be relaxed to get the same statement.

1. Introduction

The description of orthogonally additive 𝑛-homogeneous
polynomial on 𝐶(𝐾)-spaces and on general C∗-algebras,
developed by Benyamini et al. [1], Pérez-Garćıa and Vil-
lanueva [2], and Palazuelos et al. [3], respectively (see also
[4, 5], [6, Section 3] and [7]), made functional analysts study
and explore orthogonally additive holomorphic functions on
𝐶(𝐾)-spaces (see [8, 9]) and subsequently on general C∗-
algebras (cf. [10]).

We recall that a mapping 𝑓 from a C∗-algebra 𝐴 into a
Banach space 𝐵 is said to be orthogonally additive on a subset
𝑈 ⊆ 𝐴 if for every 𝑎, 𝑏 in 𝑈 with 𝑎 ⊥ 𝑏, and 𝑎 + 𝑏 ∈ 𝑈

we have 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏), where elements 𝑎, 𝑏 in
𝐴 are said to be orthogonal (denoted by 𝑎 ⊥ 𝑏) whenever
𝑎𝑏

∗

= 𝑏
∗

𝑎 = 0. We will say that 𝑓 is additive on elements
having zero product if for every 𝑎, 𝑏 in 𝐴 with 𝑎𝑏 = 0, we
have 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏). Having this terminology in
mind, the description of all 𝑛-homogeneous polynomials on
a general C∗-algebra, 𝐴, which are orthogonally additive on
the self-adjoint part, 𝐴

𝑠𝑎
, of 𝐴 reads as follows (see Section 2

for concrete definitions not explained here).

Theorem 1 (see [3]). Let 𝐴 be a C∗-algebra and 𝐵 a Banach
space, 𝑛 ∈ N, and let 𝑃 : 𝐴 → 𝐵 be an 𝑛-homogeneous
polynomial. The following statements are equivalent.

(a) There exists a bounded linear operator 𝑇 : 𝐴 → 𝐵

satisfying

𝑃 (𝑎) = 𝑇 (𝑎
𝑛

) , (1)

for every 𝑎 ∈ 𝐴 and ‖𝑃‖ ≤ ‖𝑇‖ ≤ 2‖𝑃‖.
(b) 𝑃 is additive on elements having zero products.
(c) 𝑃 is orthogonally additive on 𝐴

𝑠𝑎
.

The task of replacing 𝑛-homogeneous polynomials by
polynomials or by holomorphic functions involves a higher
difficulty. For example, as noticed by Carando et al. [8,
Example 2.2], when 𝐾 denotes the closed unit disc in C,
there is no entire function Φ : C → C such that the
mapping ℎ : 𝐶(𝐾) → 𝐶(𝐾), ℎ(𝑓) = Φ ∘ 𝑓 factorizes
all degree-2 orthogonally additive scalar polynomials over
𝐶(𝐾). Furthermore, similar arguments show that defining 𝑃 :

𝐶([0, 1]) → C, 𝑃(𝑓) = 𝑓(0) + 𝑓(1)2, we cannot find a triplet
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(Φ, 𝛼
1
, 𝛼

2
), where Φ : 𝐶[0, 1] → C is a ∗-homomorphism

and 𝛼
1
, 𝛼

2
∈ C, satisfying that 𝑃(𝑓) = 𝛼

1
Φ(𝑓) + 𝛼

2
Φ(𝑓

2

) for
every 𝑓 ∈ 𝐶([0, 1]).

To avoid the difficulties commented above, Carando
et al. introduce a factorization through an 𝐿

1
(𝜇) space.

More concretely, for each compact Hausdorff space 𝐾, a
holomorphic mapping of bounded type 𝑓 : 𝐶(𝐾) → C

is orthogonally additive if and only if there exist a Borel
regular measure 𝜇 on 𝐾, a sequence (𝑔

𝑘
)
𝑘
⊆ 𝐿

1
(𝜇), and a

holomorphic function of bounded type ℎ : 𝐶(𝐾) → 𝐿
1
(𝜇)

such that ℎ(𝑎) = ∑∞

𝑘=0
𝑔
𝑘
𝑎
𝑘 and

𝑓 (𝑎) = ∫

𝐾

ℎ (𝑎) 𝑑𝜇, (2)

for every 𝑎 ∈ 𝐶(𝐾) (cf. [8, Theorem 3.3]).
When 𝐶(𝐾) is replaced with a general C∗-algebra 𝐴,

a holomorphic function of bounded type 𝑓 : 𝐴 → C

is orthogonally additive on 𝐴
𝑠𝑎

if and only if there exist a
positive functional 𝜑 in 𝐴

∗, a sequence (𝜓
𝑛
) in 𝐿

1
(𝐴

∗∗

, 𝜑),
and a power series holomorphic function ℎ in H

𝑏
(𝐴, 𝐴

∗

)

such that

ℎ (𝑎) =

∞

∑

𝑘=1

𝜓
𝑘
⋅ 𝑎

𝑘

, 𝑓 (𝑎) = ⟨1
𝐴
∗∗ , ℎ (𝑎)⟩ = ∫ ℎ (𝑎) 𝑑𝜑,

(3)

for every 𝑎 in 𝐴, where 1
𝐴
∗∗ denotes the unit element in 𝐴∗∗

and 𝐿
1
(𝐴

∗∗

, 𝜑) is a noncommutative 𝐿
1
-space (cf. [10]).

A very recent contribution due to Bu et al. [11] shows
that, for holomorphicmappings between𝐶(𝐾) spaces, we can
avoid the factorization through an 𝐿

1
(𝜇)-space by imposing

additional hypothesis. Before stating the detailed result, we
will set down some definitions.

Let 𝐴 and 𝐵 be C∗-algebras. When 𝑓 : 𝑈 ⊆ 𝐴 → 𝐵 is a
map and the condition

𝑎 ⊥ 𝑏 󳨐⇒ 𝑓 (𝑎) ⊥ 𝑓 (𝑏)

(resp., 𝑎𝑏 = 0 󳨐⇒ 𝑓 (𝑎) 𝑓 (𝑏) = 0)

(4)

holds for every 𝑎, 𝑏 ∈ 𝑈, we will say that 𝑓 preserves orthogo-
nality or it is orthogonality preserving (resp., 𝑓 preserves zero
products) on 𝑈. In the case 𝐴 = 𝑈 we will simply say that 𝑓
is orthogonality preserving (resp., 𝑓 preserves zero products).
Orthogonality preserving bounded linear maps between C∗-
algebras were completely described in [12, Theorem 17] (see
[6] for completeness).

The following Banach-Stone type theorem for zero prod-
uct preserving or orthogonality preserving holomorphic
functions between 𝐶

0
(𝐿) spaces is established by Bu et al. in

[11, Theorem 3.4].

Theorem 2 (see [11]). Let 𝐿
1
and 𝐿

2
be locally compact

Hausdorff spaces and let 𝑓 : 𝐵
𝐶
0
(𝐿
1
)
(0, 𝑟) → 𝐶

0
(𝐿

2
) be a

bounded orthogonally additive holomorphic function. If 𝑓 is
zero product preserving or orthogonality preserving, then there
exist a sequence (O

𝑛
) of open subsets of 𝐿

2
, a sequence (ℎ

𝑛
)

of bounded functions from 𝐿
2
∪ {∞} into C, and a mapping

𝜑 : 𝐿
2
→ 𝐿

1
such that for each natural 𝑛 the function ℎ

𝑛
is

continuous and nonvanishing on O
𝑛
and

𝑓 (𝑎) (𝑡) =

∞

∑

𝑛=1

ℎ
𝑛
(𝑡) (𝑎 (𝜑 (𝑡)))

𝑛

, (𝑡 ∈ 𝐿
2
) , (5)

uniformly in 𝑎 ∈ 𝐵
𝐶
0
(𝐿
1
)
(0, 𝑟).

The study developed by Bu et al. is restricted to com-
mutative C∗-algebras or to orthogonality preserving and
orthogonally additive, 𝑛-homogeneous polynomials between
general C∗-algebras. The aim of this paper is to extend their
study to holomorphic maps between general C∗-algebras.
In Section 4, we determine the form of every orthogonality
preserving and orthogonally additive holomorphic function
from a general C∗-algebra into a commutative C∗-algebra
(see Theorem 16).

In the wider setting of holomorphic mappings between
general C∗-algebras, we prove the following: let 𝐴 and 𝐵

be C∗-algebras with 𝐵 unital and let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵

be a holomorphic mapping whose Taylor series at zero is
uniformly converging in some open unit ball 𝑈 = 𝐵

𝐴
(0, 𝛿).

Suppose 𝑓 is orthogonality preserving and orthogonally
additive on𝐴

𝑠𝑎
∩𝑈 and 𝑓(𝑈) contains an invertible element.

Then there exist a sequence (ℎ
𝑛
) in 𝐵

∗∗ and Jordan ∗-
homomorphisms Θ, ̃Θ : 𝑀(𝐴) → 𝐵

∗∗ such that

𝑓 (𝑥) =

∞

∑

𝑛=1

ℎ
𝑛

̃
Θ (𝑎

𝑛

) =

∞

∑

𝑛=1

Θ(𝑎
𝑛

) ℎ
𝑛
, (6)

uniformly in 𝑎 ∈ 𝑈 (see Theorem 18).
The main tool to establish our main results is a newfan-

gled investigation on orthogonality preserving pairs of oper-
ators between C∗-algebras developed in Section 3. Among
the novelties presented in Section 3, we find an innovating
alternative characterization of orthogonality preserving oper-
ators between C∗-algebras which complements the original
one established in [12] (see Proposition 14). Orthogonality
preserving pairs of operators are also valid to determine
orthogonality preserving operators and orthomorphisms or
local operators on C∗-algebras in the sense employed by
Zaanen [13] and Johnson [14], respectively.

2. Orthogonally Additive, Orthogonality
Preserving, and Holomorphic Mappings
on C∗-Algebras

Let 𝑋 and 𝑌 be Banach spaces. Given a natural 𝑛, a
(continuous) 𝑛-homogeneous polynomial 𝑃 from 𝑋 to 𝑌 is
a mapping 𝑃 : 𝑋 → 𝑌 for which there is a (continuous)
𝑛-linear symmetric operator 𝐴 : 𝑋 × ⋅ ⋅ ⋅ × 𝑋 → 𝑌 such
that 𝑃(𝑥) = 𝐴(𝑥, . . . , 𝑥), for every 𝑥 ∈ 𝑋. All polynomials
considered in this paper are assumed to be continuous. By
a 0-homogeneous polynomial we mean a constant function.
The symbol P(

𝑛

𝑋,𝑌) will denote the Banach space of all
continuous 𝑛-homogeneous polynomials from 𝑋 to 𝑌, with
norm given by ‖𝑃‖ = sup

‖𝑥‖≤1
‖𝑃(𝑥)‖.

Throughout the paper, the word operator will always
stand for a bounded linear mapping.
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We recall that, given a domain 𝑈 in a complex Banach
space𝑋 (i.e., an open, connected subset), a function𝑓 from𝑈

to another complex Banach space 𝑌 is said to be holomorphic
if the Fréchet derivative of 𝑓 at 𝑧

0
exists for every point 𝑧

0
in

𝑈. It is known that 𝑓 is holomorphic in 𝑈 if and only if for
each 𝑧

0
∈ 𝑋 there exists a sequence (𝑃

𝑘
(𝑧

0
))
𝑘
of polynomials

from 𝑋 into 𝑌, where each 𝑃
𝑘
(𝑧

0
) is 𝑘-homogeneous, and a

neighborhood 𝑉
𝑧
0

of 𝑧
0
such that the series,

∞

∑

𝑘=0

𝑃
𝑘
(𝑧

0
) (𝑦 − 𝑧

0
) , (7)

converges uniformly to𝑓(𝑦) for every𝑦 ∈ 𝑉
𝑧
0

. Homogeneous
polynomials on a C∗-algebra 𝐴 constitute the most basic
examples of holomorphic functions on 𝐴. A holomorphic
function 𝑓 : 𝑋 → 𝑌 is said to be of bounded type if it is
bounded on all bounded subsets of 𝑋; in this case its Taylor
series at zero, 𝑓 = ∑

∞

𝑘=0
𝑃
𝑘
, has infinite radius of uniform

convergence, that is, lim sup
𝑘→∞

‖𝑃
𝑘
‖
1/𝑘

= 0 (compare [15,
Section 6.2], see also [16]).

Suppose𝑓 : 𝐵
𝑋
(0, 𝛿) → 𝑌 is a holomorphic function and

let 𝑓 = ∑
∞

𝑘=0
𝑃
𝑘
be its Taylor series at zero which is assumed

to be uniformly convergent in 𝑈 = 𝐵
𝑋
(0, 𝛿). Given 𝜑 ∈ 𝑌∗, it

follows from Cauchy’s integral formula that, for each 𝑎 ∈ 𝑈,
we have

𝜑𝑃
𝑛
(𝑎) =

1

2𝜋𝑖

∫

𝛾

𝜑𝑓 (𝜆𝑎)

𝜆
𝑛+1

𝑑𝜆, (8)

where 𝛾 is the circle forming the boundary of a disc in the
complex plane 𝐷C(0, 𝑟1), taken counterclockwise, such that
𝑎 + 𝐷C(0, 𝑟1)𝑎 ⊆ 𝑈. We refer to [15] for the basic facts and
definitions used in this paper.

In this section we will study orthogonally additive,
orthogonality preserving, and holomorphic mappings
between C∗-algebras. We begin with an observation which
can be directly derived from Cauchy’s integral formula.
The statement in the next lemma was originally stated by
Carando et al. in [8, Lemma 1.1] (see also [10, Lemma 3]).

Lemma 3. Let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 be a holomorphic mapping,

where 𝐴 is a C∗-algebra and 𝐵 is a complex Banach space,
and let 𝑓 = ∑

∞

𝑘=0
𝑃
𝑘
be its Taylor series at zero, which is

uniformly converging in 𝑈 = 𝐵
𝐴
(0, 𝛿). Then the mapping 𝑓

is orthogonally additive on 𝑈 (resp., orthogonally additive on
𝐴

𝑠𝑎
∩ 𝑈 or additive on elements having zero product in 𝑈) if

and only if all the 𝑃
𝑘
’s satisfy the same property. In such a case,

𝑃
0
= 0.

We recall that a functional 𝜑 in the dual of a C∗-algebra𝐴
is symmetric when 𝜑(𝑎) ∈ R, for every 𝑎 ∈ 𝐴

𝑠𝑎
. Reciprocally,

if 𝜑(𝑏) ∈ R for every symmetric functional 𝜑 ∈ 𝐴
∗, the

element 𝑏 lies in 𝐴
𝑠𝑎
. Having this in mind, our next lemma

also is a direct consequence of Cauchy’s integral formula and
the power series expansion of 𝑓. A mapping 𝑓 : 𝐴 → 𝐵

between C∗-algebras is called symmetric whenever 𝑓(𝐴
𝑠𝑎
) ⊆

𝐵
𝑠𝑎
, or equivalently, 𝑓(𝑎) = 𝑓(𝑎)∗, whenever 𝑎 ∈ 𝐴

𝑠𝑎
.

Lemma 4. Let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 be a holomorphic mapping,

where 𝐴 and 𝐵 are C∗-algebras, and let 𝑓 = ∑
∞

𝑘=0
𝑃
𝑘
be its

Taylor series at zero, which is uniformly converging in 𝑈 =

𝐵
𝐴
(0, 𝛿). Then the mapping 𝑓 is symmetric on𝑈 (i.e., 𝑓(𝐴

𝑠𝑎
∩

𝑈) ⊆ 𝐵
𝑠𝑎
) if and only if 𝑃

𝑘
is symmetric (i.e., 𝑃

𝑘
(𝐴

𝑠𝑎
) ⊆ 𝐵

𝑠𝑎
)

for every 𝑘 ∈ N ∪ {0}.

Definition 5. Let 𝑆, 𝑇 : 𝐴 → 𝐵 be a couple of mappings
between two C∗-algebras. One will say that the pair (𝑆, 𝑇) is
orthogonality preserving on a subset 𝑈 ⊆ 𝐴 if 𝑆(𝑎) ⊥ 𝑇(𝑏)

whenever 𝑎 ⊥ 𝑏 in𝑈. When 𝑎𝑏 = 0 in𝑈 implies 𝑆(𝑎)𝑇(𝑏) = 0
in 𝐵, we will say that (𝑆, 𝑇) preserves zero products on 𝑈.

We observe that a mapping 𝑇 : 𝐴 → 𝐵 is orthogonality
preserving in the usual sense if and only if the pair (𝑇, 𝑇)
is orthogonality preserving. We also notice that (𝑆, 𝑇) is
orthogonality preserving (on 𝐴

𝑠𝑎
) if and only if (𝑇, 𝑆) is

orthogonality preserving (on 𝐴
𝑠𝑎
).

Our next result assures that the 𝑛-homogeneous poly-
nomials appearing in the Taylor series of an orthogonality
preserving holomorphic mapping between C∗-algebras are
pairwise orthogonality preserving.

Proposition 6. Let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 be a holomorphic

mapping, where 𝐴 and 𝐵 are C∗-algebras, and let 𝑓 = ∑
∞

𝑘=0
𝑃
𝑘

be its Taylor series at zero, which is uniformly converging in
𝑈 = 𝐵

𝐴
(0, 𝛿). The following statements hold.

(a) The mapping 𝑓 is orthogonally preserving on 𝑈 (resp.,
orthogonally preserving on𝐴

𝑠𝑎
∩𝑈) if and only if𝑃

0
= 0

and the pair (𝑃
𝑛
, 𝑃

𝑚
) is orthogonality preserving (resp.,

orthogonally preserving on 𝐴
𝑠𝑎
) for every 𝑛,𝑚 ∈ N.

(b) Themapping𝑓 preserves zero products on𝑈 if and only
if 𝑃

0
= 0 and for every 𝑛,𝑚 ∈ N, the pair (𝑃

𝑛
, 𝑃

𝑚
)

preserves zero products.

Proof. (a) The “if ” implication is clear. To prove the “only if ”
implication, let us fix 𝑎, 𝑏 ∈ 𝑈 with 𝑎 ⊥ 𝑏. Let us find two
positive scalars 𝑟, 𝐶 such that 𝑎, 𝑏 ∈ 𝐵(0, 𝑟) and ‖𝑓(𝑥)‖ ≤

𝐶 for every 𝑥 ∈ 𝐵(0, 𝑟) ⊂ 𝐵(0, 𝑟) ⊆ 𝑈. From the Cauchy
estimates we have ‖𝑃

𝑚
‖ ≤ 𝐶/𝑟

𝑚, for every 𝑚 ∈ N ∪ {0}. By
hypothesis 𝑓(𝑡𝑎) ⊥ 𝑓(𝑡𝑏), for every 𝑟 > 𝑡 > 0, hence

𝑃
0
(𝑡𝑎) 𝑃

0
(𝑡𝑏)

∗

+ 𝑃
0
(𝑡𝑎)(

∞

∑

𝑘=1

𝑃
𝑘
(𝑡𝑏))

∗

+ (

∞

∑

𝑘=1

𝑃
𝑘
(𝑡𝑎))(

∞

∑

𝑘=0

𝑃
𝑘
(𝑡𝑏))

∗

= 0,

(9)

and by homogeneity

𝑃
0
(𝑎) 𝑃

0
(𝑏)

∗

= − 𝑃
0
(𝑎)(

∞

∑

𝑘=1

𝑡
𝑘

𝑃
𝑘
(𝑏))

∗

+ (

∞

∑

𝑘=1

𝑡
𝑘

𝑃
𝑘
(𝑎))(

∞

∑

𝑘=0

𝑡
𝑘

𝑃
𝑘
(𝑏))

∗

.

(10)

Letting 𝑡 → 0, we have𝑃
0
(𝑎)𝑃

0
(𝑏)

∗

= 0. In particular,𝑃
0
= 0.
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We will prove by induction on 𝑛 that the pair (𝑃
𝑗
, 𝑃

𝑘
) is

orthogonality preserving on 𝑈 for every 1 ≤ 𝑗, 𝑘 ≤ 𝑛. Since
𝑓(𝑡𝑎)𝑓(𝑡𝑏)

∗

= 0, we also deduce that

𝑃
1
(𝑡𝑎) 𝑃

1
(𝑡𝑏)

∗

+ 𝑃
1
(𝑡𝑎)(

∞

∑

𝑘=2

𝑃
𝑘
(𝑡𝑏))

∗

+ (

∞

∑

𝑘=2

𝑃
𝑘
(𝑡𝑎))(

∞

∑

𝑘=1

𝑃
𝑘
(𝑡𝑏))

∗

= 0,

(11)

for every (min{‖𝑎‖, ‖𝑏‖})/𝑟 > 𝑡 > 0, which implies that

𝑡
2

𝑃
1
(𝑎) 𝑃

1
(𝑏)

∗

= − 𝑡𝑃
1
(𝑎)(

∞

∑

𝑘=2

𝑡
𝑘

𝑃
𝑘
(𝑏))

∗

− (

∞

∑

𝑘=2

𝑡
𝑘

𝑃
𝑘
(𝑎))(

∞

∑

𝑘=1

𝑡
𝑘

𝑃
𝑘
(𝑏))

∗

,

(12)

for every (min{‖𝑎‖, ‖𝑏‖})/𝑟 > 𝑡 > 0, and hence

󵄩
󵄩
󵄩
󵄩
𝑃
1
(𝑎) 𝑃

1
(𝑏)

∗󵄩
󵄩
󵄩
󵄩
≤ 𝑡𝐶

󵄩
󵄩
󵄩
󵄩
𝑃
1
(𝑎)

󵄩
󵄩
󵄩
󵄩

∞

∑

𝑘=2

‖𝑏‖
𝑘

𝑟
𝑘

𝑡
𝑘−2

+ 𝑡𝐶
2

(

∞

∑

𝑘=2

‖𝑎‖
𝑘

𝑟
𝑘

𝑡
𝑘−2

)(

∞

∑

𝑘=1

‖𝑏‖
𝑘

𝑟
𝑘

𝑡
𝑘−1

) .

(13)

Taking limit in 𝑡 → 0, we get 𝑃
1
(𝑎)𝑃

1
(𝑏)

∗

= 0. Let us assume
that (𝑃

𝑗
, 𝑃

𝑘
) is orthogonality preserving on 𝑈 for every 1 ≤

𝑗, 𝑘 ≤ 𝑛. Following the argument above we deduce that

𝑃
1
(𝑎) 𝑃

𝑛+1
(𝑏)

∗

+ 𝑃
𝑛+1

(𝑎) 𝑃
1
(𝑏)

∗

= −𝑡𝑃
1
(𝑎)(

∞

∑

𝑗=𝑛+2

𝑡
𝑗−𝑛−2

𝑃
𝑗
(𝑏))

∗

− 𝑡

𝑛

∑

𝑘=2

𝑡
𝑘−2

𝑃
𝑘
(𝑎)(

∞

∑

𝑗=𝑛+1

𝑡
𝑗−𝑛−1

𝑃
𝑗
(𝑏))

∗

− 𝑡𝑃
𝑛+1

(𝑎)(

∞

∑

𝑗=2

𝑡
𝑗−2

𝑃
𝑗
(𝑏))

∗

− 𝑡(

∞

∑

𝑘=𝑛+2

𝑡
𝑘−𝑛−2

𝑃
𝑘
(𝑎))(

∞

∑

𝑗=1

𝑡
𝑗−1

𝑃
𝑗
(𝑏))

∗

,

(14)

for every (min{‖𝑎‖, ‖𝑏‖})/𝑟 > |𝑡| > 0. Taking limit in 𝑡 → 0,
we have

𝑃
1
(𝑎) 𝑃

𝑛+1
(𝑏)

∗

+ 𝑃
𝑛+1

(𝑎) 𝑃
1
(𝑏)

∗

= 0. (15)

Replacing 𝑎 with 𝑠𝑎 (𝑠 > 0) we get

𝑠𝑃
1
(𝑎) 𝑃

𝑛+1
(𝑏)

∗

+ 𝑠
𝑛+1

𝑃
𝑛+1

(𝑎) 𝑃
1
(𝑏)

∗

= 0, (16)

for every 𝑠 > 0, which implies that

𝑃
1
(𝑎) 𝑃

𝑛+1
(𝑏)

∗

= 0. (17)

In a similar manner we prove that 𝑃
𝑘
(𝑎)𝑃

𝑛+1
(𝑏)

∗

= 0, for
every 1 ≤ 𝑘 ≤ 𝑛 + 1. The equalities 𝑃

𝑘
(𝑏)

∗

𝑃
𝑗
(𝑎) = 0 (1 ≤

𝑗, 𝑘 ≤ 𝑛 + 1) follow similarly.
We have shown that for each 𝑛,𝑚 ∈ N, 𝑃

𝑛
(𝑎) ⊥ 𝑃

𝑚
(𝑏)

whenever 𝑎, 𝑏 ∈ 𝑈 with 𝑎 ⊥ 𝑏. Finally, taking 𝑎, 𝑏 ∈ 𝐴 with
𝑎 ⊥ 𝑏, we can find a positive 𝜌 such that 𝜌𝑎, 𝜌𝑏 ∈ 𝑈 and 𝜌𝑎 ⊥
𝜌𝑏, which implies that 𝑃

𝑛
(𝜌𝑎) ⊥ 𝑃

𝑚
(𝜌𝑏) for every 𝑛,𝑚 ∈ N,

witnessing that (𝑃
𝑛
, 𝑃

𝑚
) is orthogonality preserving for every

𝑛,𝑚 ∈ N.
The proof of (b) follows in a similar manner.

We can obtain now a corollary which is a first step toward
the description of orthogonality preserving, orthogonally
additive, and holomorphic mappings between C∗-algebras.

Corollary 7. Let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 be a holomorphic

mapping, where 𝐴 and 𝐵 are C∗-algebras and let 𝑓 = ∑
∞

𝑘=0
𝑃
𝑘

be its Taylor series at zero, which is uniformly converging in
𝑈 = 𝐵

𝐴
(0, 𝛿). Suppose 𝑓 is orthogonality preserving and

orthogonally additive on (resp., orthogonally additive and zero
products preserving)𝐴

𝑠𝑎
∩𝑈. Then there exists a sequence (𝑇

𝑛
)

of operators from 𝐴 into 𝐵 satisfying that the pair (𝑇
𝑛
, 𝑇

𝑚
) is

orthogonality preserving on𝐴
𝑠𝑎
(resp., zero products preserving

on 𝐴
𝑠𝑎
) for every 𝑛,𝑚 ∈ N and

𝑓 (𝑥) =

∞

∑

𝑛=1

𝑇
𝑛
(𝑥

𝑛

) , (18)

uniformly in 𝑥 ∈ 𝑈. In particular every𝑇
𝑛
is orthogonality pre-

serving (resp., zero products preserving) on 𝐴
𝑠𝑎
. Furthermore,

𝑓 is symmetric if and only if every 𝑇
𝑛
is symmetric.

Proof. Combining Lemma 3 and Proposition 6, we deduce
that 𝑃

0
= 0, 𝑃

𝑛
is orthogonally additive on 𝐴

𝑠𝑎
, and (𝑃

𝑛
, 𝑃

𝑚
)

is orthogonality preserving on 𝐴
𝑠𝑎

for every 𝑛,𝑚 in N. By
Theorem 1, for each natural 𝑛 there exists an operator 𝑇

𝑛
:

𝐴 → 𝐵 such that ‖𝑃
𝑛
‖ ≤ ‖𝑇

𝑛
‖ ≤ 2‖𝑃

𝑛
‖ and

𝑃
𝑛
(𝑎) = 𝑇

𝑛
(𝑎

𝑛

) , (19)

for every 𝑎 ∈ 𝐴.
Consider now two positive elements 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ⊥ 𝑏

and fix 𝑛,𝑚 ∈ N. In this case there exist positive elements 𝑐, 𝑑
in𝐴with 𝑐𝑛 = 𝑎 and 𝑑𝑚 = 𝑏 and 𝑐 ⊥ 𝑑. Since the pair (𝑃

𝑛
, 𝑃

𝑚
)

is orthogonality preserving on𝐴
𝑠𝑎
, we have 𝑇

𝑛
(𝑎) = 𝑇

𝑛
(𝑐

𝑛

) =

𝑃
𝑛
(𝑐) ⊥ 𝑃

𝑚
(𝑑) = 𝑇

𝑚
(𝑑

𝑚

) = 𝑇
𝑚
(𝑏). Now, noticing that given

𝑎, 𝑏 in 𝐴
𝑠𝑎
with 𝑎 ⊥ 𝑏, we can write 𝑎 = 𝑎+ − 𝑏− and 𝑏 = 𝑏+ −

𝑏
−, where 𝑎𝜎 and 𝑏𝜏 are positive, 𝑎+ ⊥ 𝑎

−

, 𝑏
+

⊥ 𝑏
−, and 𝑎𝜎 ⊥

𝑏
𝜏; for every 𝜎, 𝜏 ∈ {+, −}, we deduce that 𝑇

𝑛
(𝑎) ⊥ 𝑇

𝑚
(𝑏).

This shows that the pair (𝑇
𝑛
, 𝑇

𝑚
) is orthogonality preserving

on 𝐴
𝑠𝑎
.

When 𝑓 is orthogonally additive on 𝐴
𝑠𝑎
and zero prod-

ucts preserving, then the pair (𝑇
𝑛
, 𝑇

𝑚
) is zero products

preserving on 𝐴
𝑠𝑎

for every 𝑛,𝑚 ∈ N. The final statement
is clear from Lemma 4.

It should be remarked here that if a mapping 𝑓 :

𝐵
𝐴
(0, 𝛿) → 𝐵 is given by an expression of the form in

(18) which uniformly converges in 𝑈 = 𝐵
𝐴
(0, 𝛿), where

(𝑇
𝑛
) is a sequence of operators from 𝐴 into 𝐵 such that
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the pair (𝑇
𝑛
, 𝑇

𝑚
) is orthogonality preserving on 𝐴

𝑠𝑎
(resp.,

zero products preserving on 𝐴
𝑠𝑎
) for every 𝑛,𝑚 ∈ N, then

𝑓 is orthogonally additive and orthogonality preserving on
𝐴

𝑠𝑎
∩ 𝑈 (resp., orthogonally additive on 𝐴

𝑠𝑎
∩ 𝑈 and zero

products preserving).

3. Orthogonality Preserving Pairs of Operators

Let 𝐴 and 𝐵 be two C∗-algebras. In this section we will study
those pairs of operators 𝑆, 𝑇 : 𝐴 → 𝐵 satisfying that 𝑆, 𝑇 and
the pair (𝑆, 𝑇) preserve orthogonality on𝐴

𝑠𝑎
. Our description

generalizes some of the results obtained by Wolff in [17]
because a (symmetric) mapping 𝑇 : 𝐴 → 𝐵 is orthogonality
preserving on 𝐴

𝑠𝑎
if and only if the pair (𝑇, 𝑇) enjoys the

same property. In particular, for every ∗-homomorphismΦ :

𝐴 → 𝐵, the pair (Φ,Φ) preserves orthogonality. The same
statement is true whenever Φ is a ∗-antihomomorphism, or
a Jordan ∗-homomorphism, or a triple homomorphism for
the triple product {𝑎, 𝑏, 𝑐} = (1/2)(𝑎𝑏∗𝑐 + 𝑐𝑏∗𝑎).

We observe that 𝑆, 𝑇 being symmetric implies that (𝑆, 𝑇)
is orthogonality preserving on 𝐴

𝑠𝑎
if and only if (𝑆, 𝑇) is

zero products preserving on 𝐴
𝑠𝑎
. We shall present here a

newfangled and simplified proof which is also valid for pairs
of operators.

Let 𝑎 be an element in a von Neumann algebra 𝑀. We
recall that the left and right support projections of 𝑎 (denoted
by 𝑙(𝑎) and 𝑑(𝑎)) are defined as follows: 𝑙(𝑎) (resp., 𝑑(𝑎)) is
the smallest projection 𝑝 ∈ 𝑀 (resp., 𝑞 ∈ 𝑀) with the
property that 𝑝𝑎 = 𝑎 (resp., 𝑎𝑞 = 𝑎). It is known that when
𝑎 is Hermitian 𝑑(𝑎) = 𝑙(𝑎) is called the support or range
projection of 𝑎 and is denoted by 𝑠(𝑎). It is also known that, for
each 𝑎 = 𝑎

∗, the sequence (𝑎1/3
𝑛

) converges in the strong ∗-
topology of𝑀 to 𝑠(𝑎) (cf. [18, Sections 1.10 and 1.11]).

An element 𝑒 in a C∗-algebra 𝐴 is said to be a partial
isometry whenever 𝑒𝑒∗𝑒 = 𝑒 (equivalently, 𝑒𝑒∗ or 𝑒∗𝑒 is a
projection in 𝐴). For each partial isometry 𝑒, the projections
𝑒𝑒

∗ and 𝑒∗𝑒 are called the left and right support projections
associated with 𝑒, respectively. Every partial isometry 𝑒 in
𝐴 defines a Jordan product and an involution on 𝐴

𝑒
(𝑒) :=

𝑒𝑒
∗

𝐴𝑒
∗

𝑒 given by 𝑎∙
𝑒
𝑏 = (1/2)(𝑎𝑒

∗

𝑏 + 𝑏𝑒
∗

𝑎) and 𝑎♯ 𝑒 = 𝑒𝑎
∗

𝑒

(𝑎, 𝑏 ∈ 𝐴
2
(𝑒)). It is known that (𝐴

2
(𝑒), ∙

𝑒
, ♯

𝑒
) is a unital

JB∗-algebra with respect to its natural norm and 𝑒 is the unit
element for the Jordan product ∙

𝑒
.

Every element 𝑎 in a C∗-algebra 𝐴 admits a polar decom-
position in 𝐴

∗∗; that is, 𝑎 decomposes uniquely as follows:
𝑎 = 𝑢|𝑎|, where |𝑎| = (𝑎

∗

𝑎)
1/2 and 𝑢 is a partial isometry in

𝐴
∗∗ such that𝑢∗𝑢 = 𝑠(|𝑎|) and𝑢𝑢∗ = 𝑠(|𝑎∗|) (cf. [18,Theorem

1.12.1]). Observe that 𝑢𝑢∗𝑎 = 𝑎𝑢
∗

𝑢 = 𝑢. The unique partial
isometry 𝑢 appearing in the polar decomposition of 𝑎 is called
the range partial isometry of 𝑎 and is denoted by 𝑟(𝑎). Let us
observe that taking 𝑐 = 𝑟(𝑎)|𝑎|1/3, we have 𝑐𝑐∗𝑐 = 𝑎. It is also
easy to check that for each 𝑏 ∈ 𝐴 with 𝑏 = 𝑟(𝑎)𝑟(𝑎)

∗

𝑏 (resp.,
𝑏 = 𝑏𝑟(𝑎)

∗

𝑟(𝑎)) the condition 𝑎∗𝑏 = 0 (resp., 𝑏𝑎∗ = 0) implies
𝑏 = 0. Furthermore, 𝑎 ⊥ 𝑏 in 𝐴 if and only if 𝑟(𝑎) ⊥ 𝑟(𝑏) in
𝐴
∗∗.
We begin with a basic argument in the study of orthogo-

nality preserving operators betweenC∗-algebras whose proof
is inserted here for completeness reasons. Let us recall that for

every C∗-algebra 𝐴, the multiplier algebra of 𝐴,𝑀(𝐴), is the
set of all elements 𝑥 ∈ 𝐴

∗∗ such that for each 𝐴𝑥, 𝑥𝐴 ⊆ 𝐴.
We notice that 𝑀(𝐴) is a C∗-algebra and contains the unit
element of 𝐴∗∗.

Lemma 8. Let 𝐴 and 𝐵 be C∗-algebras and let 𝑆, 𝑇 : 𝐴 → 𝐵

be a pair of operators.
(a) The pair (𝑆, 𝑇) preserves orthogonality (on 𝐴

𝑠𝑎
) if

and only if the pair (𝑆
∗∗

|
𝑀(𝐴)

, 𝑇
∗∗

|
𝑀(𝐴)

) preserves
orthogonality (on𝑀(𝐴)

𝑠𝑎
).

(b) The pair (𝑆, 𝑇) preserves zero products (on 𝐴
𝑠𝑎
) if

and only if the pair (𝑆∗∗|
𝑀(𝐴)

, 𝑇
∗∗

|
𝑀(𝐴)

) preserves zero
products (on𝑀(𝐴)

𝑠𝑎
).

Proof. (a) The “if ” implication is clear. Let 𝑎, 𝑏 be two
elements in 𝑀(𝐴) with 𝑎 ⊥ 𝑏. We can find two elements
𝑐 and 𝑑 in 𝑀(𝐴) satisfying 𝑐𝑐

∗

𝑐 = 𝑎, 𝑑𝑑∗𝑑 = 𝑏, and
𝑐 ⊥ 𝑑. Since 𝑐𝑥𝑐 ⊥ 𝑑𝑦𝑑, for every 𝑥, 𝑦 in 𝐴, we have
𝑇(𝑐𝑥𝑐) ⊥ 𝑇(𝑑𝑦𝑑) for every 𝑥, 𝑦 ∈ 𝐴. By Goldstine’s theorem
we find two bounded nets (𝑥

𝜆
) and (𝑦

𝜇
) in 𝐴, converging in

the weak∗ topology of 𝐴∗∗ to 𝑐∗ and 𝑑∗, respectively. Since
𝑇(𝑐𝑥

𝜆
𝑐)𝑇(𝑑𝑦

𝜇
𝑑)

∗

= 𝑇(𝑑𝑦
𝜇
𝑑)

∗

𝑇(𝑐𝑥
𝜆
𝑐) = 0, for every 𝜆, 𝜇,

𝑇
∗∗ is weak∗-continuous, the product of 𝐴∗∗ is separately

weak∗-continuous, and the involution of 𝐴∗∗ is also weak∗-
continuous, we get 𝑇∗∗

(𝑐𝑐
∗

𝑐)𝑇
∗∗

(𝑑𝑑
∗

𝑑) = 𝑇
∗∗

(𝑎)𝑇
∗∗

(𝑏)
∗

=

0 = 𝑇
∗∗

(𝑏)
∗

𝑇
∗∗

(𝑎) and hence 𝑇∗∗

(𝑎) ⊥ 𝑇
∗∗

(𝑏), as desired.
The proof of (b) follows by a similar argument.

Proposition 9. Let 𝑆, 𝑇 : 𝐴 → 𝐵 be operators between C∗-
algebras such that (𝑆, 𝑇) is orthogonality preserving on𝐴

𝑠𝑎
. Let

us denote ℎ := 𝑆∗∗(1) and 𝑘 := 𝑇∗∗

(1). Then the identities,

𝑆 (𝑎) 𝑇(𝑎
∗

)

∗

= 𝑆 (𝑎
2

) 𝑘
∗

= ℎ𝑇((𝑎
2

)

∗

)

∗

,

𝑇(𝑎
∗

)

∗

𝑆 (𝑎) = 𝑘
∗

𝑆 (𝑎
2

) = 𝑇((𝑎
2

)

∗

)

∗

ℎ,

𝑆 (𝑎) 𝑘
∗

= ℎ𝑇(𝑎
∗

)

∗

, 𝑘
∗

𝑆 (𝑎) = 𝑇(𝑎
∗

)

∗

ℎ,

(20)

hold for every 𝑎 ∈ 𝐴.

Proof. By Lemma 8, we may assume, without loss of gener-
ality, that 𝐴 is unital. (a) for each 𝜑 ∈ 𝐵

∗, the continuous
bilinear form 𝑉

𝜑
: 𝐴 × 𝐴 → C, 𝑉

𝜑
(𝑎, 𝑏) = 𝜑(𝑆(𝑎)𝑇(𝑏

∗

)
∗

) is
orthogonal; that is, 𝑉

𝜑
(𝑎, 𝑏) = 0, whenever 𝑎𝑏 = 0 in 𝐴

𝑠𝑎
. By

Goldstein’s theorem [19,Theorem 1.10], there exist functionals
𝜔
1
, 𝜔

2
∈ 𝐴

∗ satisfying that

𝑉
𝜑
(𝑎, 𝑏) = 𝜔

1
(𝑎𝑏) + 𝜔

2
(𝑏𝑎) , (21)

for all 𝑎, 𝑏 ∈ 𝐴. Taking 𝑏 = 1 and 𝑎 = 𝑏 we have

𝜑 (𝑆 (𝑎) 𝑘
∗

) = 𝑉
𝜑
(𝑎, 1) = 𝑉

𝜑
(1, 𝑎) = 𝜑 (ℎ𝑇(𝑎)

∗

) ,

𝜑 (𝑆 (𝑎) 𝑇(𝑎)
∗

) = 𝜑 (𝑆 (𝑎
2

) 𝑘
∗

) = 𝜑 (ℎ𝑇(𝑎
2

)

∗

) ,

(22)

for every 𝑎 ∈ 𝐴
𝑠𝑎
, respectively. Since𝜑was arbitrarily chosen,

we get, by linearity, 𝑆(𝑎)𝑘∗ = ℎ𝑇(𝑎
∗

)
∗ and 𝑆(𝑎)𝑇(𝑎

∗

)
∗

=

𝑆(𝑎
2

)𝑘
∗

= ℎ𝑇((𝑎
2

)
∗

)
∗, for every 𝑎 ∈ 𝐴. The other identities

follow in a similarway but replacing𝑉
𝜑
(𝑎, 𝑏) = 𝜑(𝑆(𝑎)𝑇(𝑏

∗

)
∗

)

with 𝑉
𝜑
(𝑎, 𝑏) = 𝜑(𝑇(𝑏

∗

)
∗

𝑆(𝑎)).



6 Abstract and Applied Analysis

Lemma 10. Let 𝐽
1
, 𝐽

2
: 𝐴 → 𝐵 be Jordan ∗-homomorphism

between C∗-algebras. The following statements are equivalent.

(a) The pair (𝐽
1
, 𝐽

2
) is orthogonality preserving on 𝐴

𝑠𝑎
.

(b) The identity

𝐽
1
(𝑎) 𝐽

2
(𝑎) = 𝐽

1
(𝑎

2

) 𝐽
∗∗

2
(1) = 𝐽

∗∗

1
(1) 𝐽

2
(𝑎

2

) , (23)

holds for every 𝑎 ∈ 𝐴
𝑠𝑎
,

(c) The identity,

𝐽
∗∗

1
(1) 𝐽

2
(𝑎) = 𝐽

1
(𝑎) 𝐽

∗∗

2
(1) , (24)

holds for every 𝑎 ∈ 𝐴
𝑠𝑎
.

Furthermore, when 𝐽
∗∗

1
is unital, 𝐽

2
(𝑎) = 𝐽

1
(𝑎)𝐽

∗∗

2
(1) =

𝐽
∗∗

2
(1)𝐽

1
(𝑎), for every 𝑎 in 𝐴.

Proof. The implications (a) ⇒ (b) ⇒ (c) have been
established in Proposition 9. To see (c) ⇒ (a), we observe that
𝐽
𝑖
(𝑥) = 𝐽

∗∗

𝑖
(1)𝐽

𝑖
(𝑥)𝐽

∗∗

𝑖
(1) = 𝐽

𝑖
(𝑥)𝐽

∗∗

𝑖
(1) = 𝐽

∗∗

𝑖
(1)𝐽

𝑖
(𝑥), for

every 𝑥 ∈ 𝐴. Therefore, given 𝑎, 𝑏 ∈ 𝐴
𝑠𝑎
with 𝑎 ⊥ 𝑏, we have

𝐽
1
(𝑎)𝐽

2
(𝑏) = 𝐽

1
(𝑎)𝐽

∗∗

1
(1)𝐽

2
(𝑏) = 𝐽

1
(𝑎)𝐽

1
(𝑏)𝐽

∗∗

2
(1) = 0.

In [17, Proposition 2.5], Wolff establishes a uniqueness
result for ∗-homomorphisms between C∗-algebras showing
that for each pair (𝑈, 𝑉) of unital ∗-homomorphisms from a
unital C∗-algebra 𝐴 into a unital C∗-algebra 𝐵, the condition
(𝑈, 𝑉) orthogonality preserving on 𝐴

𝑠𝑎
implies 𝑈 = 𝑉. This

uniqueness result is a direct consequence of our previous
lemma.

Orthogonality preserving pairs of operators can be also
used to rediscover the notion of orthomorphism in the sense
introduced by Zaanen in [13]. We recall that an operator
𝑇 on a C∗-algebra 𝐴 is said to be an orthomorphism or a
band preserving operator when the implication 𝑎 ⊥ 𝑏 ⇒

𝑇(𝑎) ⊥ 𝑏 holds for every 𝑎, 𝑏 ∈ 𝐴. We notice that when 𝐴
is regarded as an 𝐴-bimodule, an operator 𝑇 : 𝐴 → 𝐴 is
an orthomorphism if and only if it is a local operator in the
sense used by Johnson in [14, Section 3]. Clearly, an operator
𝑇 : 𝐴 → 𝐴 is an orthomorphism if and only if (𝑇, 𝐼𝑑

𝐴
)

is orthogonality preserving. The following noncommutative
extension of [13, Theorem 5] follows from Proposition 9.

Corollary 11. Let 𝑇 be an operator on a C∗-algebra𝐴. Then 𝑇
is an orthomorphism if and only if 𝑇(𝑎) = 𝑇∗∗

(1)𝑎 = 𝑎𝑇
∗∗

(1),
for every 𝑎 in 𝐴; that is, 𝑇 is a multiple of the identity on 𝐴 by
an element in its center.

We recall that two elements 𝑎, and 𝑏 in a JB∗-algebra𝐴 are
said to operator commute in 𝐴 if the multiplication operators
𝑀

𝑎
and𝑀

𝑏
commute, where𝑀

𝑎
is defined by𝑀

𝑎
(𝑥) := 𝑎∘𝑥.

That is, 𝑎 and 𝑏 operator commute if and only if (𝑎 ∘ 𝑥) ∘ 𝑏 =
𝑎 ∘ (𝑥 ∘ 𝑏) for all 𝑥 in 𝐴. A useful result in Jordan theory
assures that self-adjoint elements 𝑎 and 𝑏 in 𝐴 generate a
JB∗-subalgebra that can be realized as a JC∗-subalgebra of
some 𝐵(𝐻) (compare [20]) and, under this identification, 𝑎
and 𝑏 commute as elements in 𝐿(𝐻) whenever they operator
commute in 𝐴, equivalently, 𝑎2 ∘ 𝑏 = 2(𝑎 ∘ 𝑏) ∘ 𝑎 − 𝑎

2

∘ 𝑏 (cf.
Proposition 1 in [21]).

The next lemma contains a property which is probably
known in C∗-algebra, we include an sketch of the proof
because we were unable to find an explicit reference.

Lemma 12. Let 𝑒 be a partial isometry in a C∗-algebra 𝐴

and let 𝑎, and 𝑏 be two elements in 𝐴
2
(𝑒) = 𝑒𝑒

∗

𝐴𝑒
∗

𝑒. Then
𝑎, 𝑏 operator commute in the JB∗-algebra (𝐴

2
(𝑒), ∙

𝑒
, ♯

𝑒
) if

and only if 𝑎𝑒∗ and 𝑏𝑒∗ operator commute in the JB∗-algebra
(𝐴

2
(𝑒𝑒

∗

), ∙
𝑒𝑒
∗ , ♯

𝑒𝑒
∗), where 𝑥∙

𝑒𝑒
∗𝑦 = 𝑥 ∘ 𝑦 = (1/2)(𝑥𝑦 +

𝑦𝑥), for every 𝑥, 𝑦 ∈ 𝐴
2
(𝑒𝑒

∗

). Furthermore, when 𝑎 and
𝑏 are hermitian elements in (𝐴

2
(𝑒), ∙

𝑒
, ♯

𝑒
), 𝑎, and 𝑏 operator

commute if and only if 𝑎𝑒∗ and 𝑏𝑒∗ commute in the usual sense
(i.e., 𝑎𝑒∗𝑏𝑒∗ = 𝑏𝑒∗𝑎𝑒∗).

Proof. We observe that the mapping 𝑅
𝑒
∗ : (𝐴

2
(𝑒), ∙

𝑒
) →

(𝐴
2
(𝑒𝑒

∗

), ∙
𝑒𝑒
∗), 𝑥 󳨃→ 𝑥𝑒

∗, is a Jordan ∗-isomorphism between
the above JB∗-algebras. So, the first equivalence is clear. The
second one has been commented before.

Our next corollary relies on the following description
of orthogonality preserving operators between C∗-algebras
obtained in [12] (see also [6]).

Theorem 13 (see [12, Theorem 17], [6, Theorem 4.1 and
Corollary 4.2]). If 𝑇 is an operator from a C∗-algebra 𝐴 into
another C∗-algebra 𝐵 the following are equivalent.

(a) 𝑇 is orthogonality preserving (on 𝐴
𝑠𝑎
).

(b) There exists a unital Jordan ∗-homomorphism 𝐽 :

𝑀(𝐴) → 𝐵
∗∗

2
(𝑟(ℎ)) such that 𝐽(𝑥) and ℎ = 𝑇

∗∗

(1)

operator commute and

𝑇 (𝑥) = ℎ∙
𝑟(ℎ)

𝐽 (𝑥) , for every 𝑥 ∈ 𝐴, (25)

where 𝑀(𝐴) is the multiplier algebra of 𝐴, 𝑟(ℎ) is
the range partial isometry of ℎ in 𝐵

∗∗, 𝐵∗∗
2
(𝑟(ℎ)) =

𝑟(ℎ)𝑟(ℎ)
∗

𝐵
∗∗

𝑟(ℎ)
∗

𝑟(ℎ), and ∙
𝑟(ℎ)

is the natural product
making 𝐵∗∗

2
(𝑟(ℎ)) a JB∗-algebra.

Furthermore, when 𝑇 is symmetric, ℎ is hermitian and hence
𝑟(ℎ) decomposes as orthogonal sum of two projections in 𝐵∗∗.

Our next result gives a new perspective for the study of
orthogonality preserving (pairs of) operators between C∗-
algebras.

Proposition 14. Let 𝐴 and 𝐵 be C∗-algebras. Let 𝑆, 𝑇 : 𝐴 →

𝐵 be operators and let ℎ = 𝑆
∗∗

(1) and 𝑘 = 𝑇
∗∗

(1). Then the
following statements hold.

(a) The operator 𝑆 is orthogonality preserving if and only
if there exist two Jordan ∗-homomorphisms Φ, ̃Φ :

𝑀(𝐴) → 𝐵
∗∗ satisfying Φ(1) = 𝑟(ℎ)𝑟(ℎ)

∗, ̃Φ(1) =
𝑟(ℎ)

∗

𝑟(ℎ), and 𝑆(𝑎) = Φ(𝑎)ℎ = ℎ̃Φ(𝑎), for every 𝑎 ∈ 𝐴.
(b) 𝑆, 𝑇 and (𝑆, 𝑇) are orthogonality preserving on 𝐴

𝑠𝑎
if

and only if the following statements hold.

(b1) There exist Jordan ∗-homomorphisms Φ
1
,
̃
Φ

1
,

Φ
2
,
̃
Φ

2
: 𝑀(𝐴) → 𝐵

∗∗ satisfying Φ
1
(1) =

𝑟(ℎ)𝑟(ℎ)
∗, ̃Φ

1
(1) = 𝑟(ℎ)

∗

𝑟(ℎ), Φ
2
(1) = 𝑟(𝑘)
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𝑟(𝑘)
∗,̃Φ

2
(1) = 𝑟(𝑘)

∗

𝑟(𝑘),𝑆(𝑎) = Φ
1
(𝑎)ℎ =

ℎ
̃
Φ

1
(𝑎), and 𝑇(𝑎) = Φ

2
(𝑎)𝑘 = 𝑘

̃
Φ

2
(𝑎), for every

𝑎 ∈ 𝐴.
(b2) The pairs (Φ

1
, Φ

2
) and (̃Φ

1
,
̃
Φ

2
) are orthogonal-

ity preserving on 𝐴
𝑠𝑎
.

Proof. The “if ” implications are clear in both statements. We
will only prove the “only if ” implication.

(a) By Theorem 13, there exists a unital Jordan ∗-
homomorphism 𝐽

1
: 𝑀(𝐴) → 𝐵

∗∗

2
(𝑟(ℎ)) such that

𝐽
1
(𝑥) and ℎ operator commute in the JB∗-algebra

(𝐵
∗∗

2
(𝑟(ℎ)), ∙

𝑟(ℎ)
) and

𝑆 (𝑥) = ℎ∙
𝑟(𝑎)

𝐽
1
(𝑎) for every 𝑎 ∈ 𝐴. (26)

Fix 𝑎 ∈ 𝐴
𝑠𝑎
. Since ℎ and 𝐽

1
(𝑎) are hermitian

elements in (𝐵
∗∗

2
(𝑟(ℎ)), ∙

𝑟(ℎ)
) which operator com-

mute, Lemma 12 assures that ℎ𝑟(ℎ)∗ and 𝐽
1
(𝑎)𝑟(ℎ)

∗

commute in the usual sense of 𝐵∗∗; that is,

ℎ𝑟(ℎ)
∗

𝐽
1
(𝑎) 𝑟(ℎ)

∗

= 𝐽
1
(𝑎) 𝑟(ℎ)

∗

ℎ𝑟(ℎ)
∗

, (27)

or equivalently,

ℎ𝑟(ℎ)
∗

𝐽
1
(𝑎) = 𝐽

1
(𝑎) 𝑟(ℎ)

∗

ℎ. (28)

Consequently, we have

𝑆 (𝑎) = ℎ∙
𝑟(ℎ)

𝐽
1
(𝑎) = ℎ𝑟(ℎ)

∗

𝐽
1
(𝑎) = 𝐽

1
(𝑎) 𝑟(ℎ)

∗

ℎ,

(29)

for every 𝑎 ∈ 𝐴. The desired statement follows
by considering Φ

1
(𝑎) = 𝐽

1
(𝑎)𝑟(ℎ)

∗ and ̃
Φ

1
(𝑎) =

𝑟(ℎ)
∗

𝐽
1
(𝑎).

(b) The statement in (b1) follows from (a). We will prove
(b2). By hypothesis, given 𝑎, 𝑏 in 𝐴

𝑠𝑎
with 𝑎 ⊥ 𝑏, we

have

0 = 𝑆 (𝑎) 𝑇(𝑏)
∗

= (ℎ
̃
Φ

1
(𝑎)) (𝑘

̃
Φ

2
(𝑏))

∗

= ℎ
̃
Φ

1
(𝑎)

̃
Φ

2
(𝑏)

∗

𝑘
∗

.

(30)

Having in mind that ̃
Φ

1
(𝐴) ⊆ 𝑟(ℎ)

∗

𝑟(ℎ)𝐵
∗∗

and ̃
Φ

2
(𝐴) ⊆ 𝐵

∗∗

𝑟(𝑘)
∗

𝑟(𝑘), we deduce that
̃
Φ

1
(𝑎)

̃
Φ

2
(𝑏)

∗

= 0 (compare the comments before
Lemma 8), aswe desired. In a similar fashionweprove
̃
Φ

2
(𝑏)

∗
̃
Φ

1
(𝑎) = 0, Φ

2
(𝑏)

∗

Φ
1
(𝑎) = 0 = Φ

1
(𝑎)Φ

2
(𝑏)

∗.

4. Holomorphic Mappings Valued in
a Commutative C∗-Algebra

The particular setting in which a holomorphic function is
valued in a commutative C∗-algebra 𝐵 provides enough
advantages to establish a full description of the orthogonally
additive, orthogonality preserving, and holomorphic map-
pings which are valued in 𝐵.

Proposition 15. Let 𝑆, 𝑇 : 𝐴 → 𝐵 be operators between C∗-
algebras with 𝐵 commutative. Suppose that 𝑆, 𝑇 and (𝑆, 𝑇) are
orthogonality preserving, and let us denote ℎ = 𝑆

∗∗

(1) and
𝑘 = 𝑇

∗∗

(1). Then there exists a Jordan ∗-homomorphism
Φ : 𝑀(𝐴) → 𝐵

∗∗ satisfyingΦ(1) = 𝑟(|ℎ|+|𝑘|), 𝑆(𝑎) = Φ(𝑎)ℎ,
and 𝑇(𝑎) = Φ(𝑎)𝑘, for every 𝑎 ∈ 𝐴.

Proof. Let Φ
1
,
̃
Φ

1
, Φ

2
,
̃
Φ

2
: 𝑀(𝐴) → 𝐵

∗∗ be the Jordan ∗-
homomorphisms satisfying (b1) and (b2) in Proposition 14.
By hypothesis, 𝐵 is commutative, and hence Φ

𝑖
=

̃
Φ

𝑖
for

every 𝑖 = 1, 2 (compare the proof of Proposition 14). Since the
pair (Φ

1
, Φ

2
) is orthogonality preserving on 𝐴

𝑠𝑎
, Lemma 10

assures that

Φ
∗∗

1
(1)Φ

2
(𝑎) = Φ

1
(𝑎)Φ

∗∗

2
(1) , (31)

for every 𝑎 ∈ 𝐴
𝑠𝑎
. In order to simplify notation, let us denote

𝑝 = Φ
∗∗

1
(1) and 𝑞 = Φ∗∗

2
(1).

We define an operator Φ : 𝑀(𝐴) → 𝐵
∗∗, given by

Φ (𝑎) = 𝑝𝑞Φ
1
(𝑎) + 𝑝 (1 − 𝑞)Φ

1
(𝑎) + 𝑞 (1 − 𝑝)Φ

2
(𝑎) .

(32)

Since 𝑝Φ
2
(𝑎) = Φ

1
(𝑎)𝑞, it can be easily checked that Φ is

a Jordan ∗-homomorphism such that 𝑆(𝑎) = Φ(𝑎)ℎ and
𝑇(𝑎) = Φ(𝑎)𝑘, for every 𝑎 ∈ 𝐴.

Theorem 16. Let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 be a holomorphic

mapping, where 𝐴 and 𝐵 are C∗-algebras with 𝐵 commutative
and let 𝑓 = ∑

∞

𝑘=0
𝑃
𝑘
be its Taylor series at zero, which

is uniformly converging in 𝑈 = 𝐵
𝐴
(0, 𝛿). Suppose 𝑓 is

orthogonality preserving and orthogonally additive on 𝐴
𝑠𝑎
∩

𝑈 (equivalently, orthogonally additive on 𝐴
𝑠𝑎
∩ 𝑈 and zero

products preserving). Then there exist a sequence (ℎ
𝑛
) in 𝐵∗∗

and a Jordan ∗-homomorphism Φ : 𝑀(𝐴) → 𝐵
∗∗ such that

𝑓 (𝑥) =

∞

∑

𝑛=1

ℎ
𝑛
Φ(𝑎

𝑛

) =

∞

∑

𝑛=1

ℎ
𝑛
Φ(𝑎

𝑛

) , (33)

uniformly in 𝑎 ∈ 𝑈.

Proof. By Corollary 7, there exists a sequence (𝑇
𝑛
) of oper-

ators from 𝐴 into 𝐵 satisfying that the pair (𝑇
𝑛
, 𝑇

𝑚
) is

orthogonality preserving on 𝐴
𝑠𝑎
(equivalently, zero products

preserving on 𝐴
𝑠𝑎
) for every 𝑛,𝑚 ∈ N and

𝑓 (𝑥) =

∞

∑

𝑛=1

𝑇
𝑛
(𝑥

𝑛

) , (34)

uniformly in 𝑥 ∈ 𝑈. Denote ℎ
𝑛
= 𝑇

∗∗

𝑛
(1).

We will prove now the existence of the Jordan ∗-
homomorphism Φ. We prove, by induction, that for each
natural 𝑛, there exists a Jordan ∗-homomorphism Ψ

𝑛
:

𝑀(𝐴) → 𝐵
∗∗ such that 𝑟(Ψ

𝑛
(1)) = 𝑟(|ℎ

1
| + ⋅ ⋅ ⋅ + |ℎ

𝑛
|) and

𝑇
𝑘
(𝑎) = ℎ

𝑘
Ψ
𝑛
(𝑎) for every 𝑘 ≤ 𝑛, 𝑎 ∈ 𝐴. The statement for

𝑛 = 1 follows from Corollary 7 and Proposition 14. Let us
assume that our statement is true for 𝑛. Since for every 𝑘,𝑚 in
N, 𝑇

𝑘
, 𝑇

𝑚
, and the pair (𝑇

𝑘
, 𝑇

𝑚
) are orthogonality preserving,

we can easily check that𝑇
𝑛+1

, 𝑇
1
+⋅ ⋅ ⋅+𝑇

𝑛
and (𝑇

𝑛+1
, 𝑇

1
+⋅ ⋅ ⋅+

𝑇
𝑛
) = (𝑇

𝑛+1
, (ℎ

1
+ ⋅ ⋅ ⋅ + ℎ

𝑛
)Ψ

𝑛
) are orthogonality preserving.
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By Proposition 15, there exists a Jordan ∗-homomorphism
Ψ
𝑛+1

: 𝑀(𝐴) → 𝐵
∗∗ satisfying 𝑟(Ψ

𝑛+1
(1)) = 𝑟(|ℎ

1
| + ⋅ ⋅ ⋅ +

|ℎ
𝑛
|+|ℎ

𝑛+1
|),𝑇

𝑛+1
(𝑎) = ℎ

𝑛+1
Ψ
𝑛+1

(𝑎
𝑛+1

) and (𝑇
1
+⋅ ⋅ ⋅+𝑇

𝑛
)(𝑎) =

(ℎ
1
+⋅ ⋅ ⋅+ℎ

𝑛
)Ψ

𝑛+1
(𝑎) for every 𝑎 ∈ 𝐴. Since, for each 1 ≤ 𝑘 ≤ 𝑛,

ℎ
𝑘
Ψ
𝑛+1

(𝑎) = ℎ
𝑘
𝑟 (

󵄨
󵄨
󵄨
󵄨
ℎ
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
ℎ
𝑛

󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
ℎ
𝑛+1

󵄨
󵄨
󵄨
󵄨
) Ψ

𝑛+1
(𝑎)

= ℎ
𝑘
𝑟 (
󵄨
󵄨
󵄨
󵄨
ℎ
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
ℎ
𝑛

󵄨
󵄨
󵄨
󵄨
) Ψ

𝑛+1
(𝑎)

= ℎ
𝑘
𝑟 (

󵄨
󵄨
󵄨
󵄨
ℎ
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
ℎ
𝑛

󵄨
󵄨
󵄨
󵄨
) Ψ

𝑛
(𝑎)=ℎ

𝑘
Ψ
𝑛
(𝑎) = 𝑇

𝑘
(𝑎) ,

(35)

for every 𝑎 ∈ 𝐴, as desired.
Let us consider a free ultrafilter U on N. By the Banach-

Alaoglu theorem, any bounded set in 𝐵∗∗ is relatively weak∗-
compact, and thus the assignment 𝑎 󳨃→ Φ(𝑎) := 𝑤

∗

−

limUΨ𝑛
(𝑎) defines a Jordan ∗-homomorphism from 𝑀(𝐴)

into 𝐵∗∗. If we fix a natural 𝑘, we know that 𝑇
𝑘
(𝑎) = ℎ

𝑘
Ψ
𝑛
(𝑎),

for every 𝑛 ≥ 𝑘 and 𝑎 ∈ 𝐴. Then it can be easily checked
that 𝑇

𝑘
(𝑎) = ℎ

𝑘
Φ(𝑎), for every 𝑎 ∈ 𝐴, which concludes the

proof.

The Banach-Stone type theorem for orthogonally addi-
tive, orthogonality preserving, and holomorphic mappings
between commutative C∗-algebras, established inTheorem 2
(see [11, Theorem 3.4]), is a direct consequence of our
previous result.

5. Banach-Stone Type Theorems for
Holomorphic Mappings between General
C∗-Algebras

In this section we deal with holomorphic functions between
general C∗-algebras. In this more general setting we will
require additional hypothesis to establish a result in the line
of the aboveTheorem 16.

Given a unital C∗-algebra 𝐴, the symbol inv(𝐴) will
denote the set of invertible elements in 𝐴. The next lemma
is a technical tool which is needed later. The proof is left to
the reader and follows easily from the fact that inv(𝐴) is an
open subset of 𝐴.

Lemma 17. Let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 be a holomorphic

mapping, where 𝐴 and 𝐵 are C∗-algebras with 𝐵 unital and
let 𝑓 = ∑

∞

𝑘=0
𝑃
𝑘
be its Taylor series at zero, which is uniformly

converging in 𝑈 = 𝐵
𝐴
(0, 𝛿). Let us assume that there exists

𝑎
0
∈ 𝑈 with 𝑓(𝑎

0
) ∈ inv(𝐵). Then there exists 𝑚

0
∈ N such

that ∑𝑚
0

𝑘=0
𝑃
𝑘
(𝑎

0
) ∈ inv(𝐵).

We can now state a description of those orthogonally
additive, orthogonality preserving, and holomorphic map-
pings between C∗-algebras whose image contains an invert-
ible element.

Theorem 18. Let 𝑓 : 𝐵
𝐴
(0, 󰜚) → 𝐵 be a holomorphic

mapping, where 𝐴 and 𝐵 are C∗-algebras with 𝐵 unital and let
𝑓 = ∑

∞

𝑘=0
𝑃
𝑘
be its Taylor series at zero, which is uniformly con-

verging in𝑈 = 𝐵
𝐴
(0, 𝛿). Suppose 𝑓 is orthogonality preserving

and orthogonally additive on 𝐴
𝑠𝑎
∩ 𝑈 and 𝑓(𝑈) ∩ inv(𝐵) ̸= 0.

Then there exist a sequence (ℎ
𝑛
) in 𝐵

∗∗ and Jordan ∗-
homomorphisms Θ, ̃Θ : 𝑀(𝐴) → 𝐵

∗∗ such that

𝑓 (𝑎) =

∞

∑

𝑛=1

ℎ
𝑛

̃
Θ (𝑎

𝑛

) =

∞

∑

𝑛=1

Θ(𝑎
𝑛

) ℎ
𝑛
, (36)

uniformly in 𝑎 ∈ 𝑈.

Proof. ByCorollary 7 there exists a sequence (𝑇
𝑛
) of operators

from𝐴 into𝐵 satisfying that the pair (𝑇
𝑛
, 𝑇

𝑚
) is orthogonality

preserving on 𝐴
𝑠𝑎
for every 𝑛,𝑚 ∈ N and

𝑓 (𝑥) =

∞

∑

𝑛=1

𝑇
𝑛
(𝑥

𝑛

) , (37)

uniformly in 𝑥 ∈ 𝑈.
Now, Proposition 14 (a), applied to 𝑇

𝑛
(𝑛 ∈ N), implies

the existence of sequences (Φ
𝑛
) and (

̃
Φ

𝑛
) of Jordan ∗-

homomorphisms from 𝑀(𝐴) into 𝐵
∗∗ satisfying Φ

𝑛
(1) =

𝑟(ℎ
𝑛
)𝑟(ℎ

𝑛
)
∗, ̃Φ

𝑛
(1) = 𝑟(ℎ

𝑛
)
∗

𝑟(ℎ
𝑛
), where ℎ

𝑛
= 𝑇

∗∗

𝑛
(1), and

𝑇
𝑛
(𝑎) = Φ

𝑛
(𝑎) ℎ

𝑛
= ℎ

𝑛

̃
Φ

𝑛
(𝑎) , (38)

for every 𝑎 ∈ 𝐴, 𝑛 ∈ N. Moreover, from Proposition 14 (b),
the pairs (Φ

𝑛
, Φ

𝑚
) and (̃Φ

𝑛
,
̃
Φ

𝑚
) are orthogonality preserving

on 𝐴
𝑠𝑎
, for every 𝑛,𝑚 ∈ N.

Since 𝑓(𝑈) ∩ inv(𝐵) ̸= 0, it follows from Lemma 17 that
there exists a natural𝑚

0
and 𝑎

0
∈ 𝐴 such that

𝑚
0

∑

𝑘=1

𝑃
𝑘
(𝑎

0
) =

𝑚
0

∑

𝑘=1

Φ
𝑘
(𝑎

𝑘

0
) ℎ

𝑘
=

𝑚
0

∑

𝑘=1

ℎ
𝑘

̃
Φ

𝑘
(𝑎

𝑘

0
) ∈ inv (𝐵) . (39)

We claim that 𝑟(𝑟(ℎ
1
)
∗

𝑟(ℎ
1
) + ⋅ ⋅ ⋅ + 𝑟(ℎ

𝑚
0

)
∗

𝑟(ℎ
𝑚
0

)) = 1

in 𝐵
∗∗. Otherwise, we find a nonzero projection 𝑞 ∈ 𝐵

∗∗

satisfying

𝑟 (𝑟(ℎ
1
)

∗

𝑟 (ℎ
1
) + ⋅ ⋅ ⋅ + 𝑟(ℎ

𝑚
0

)

∗

𝑟 (ℎ
𝑚
0

)) 𝑞 = 0. (40)

Since 𝑟(ℎ
𝑖
)
∗

𝑟(ℎ
𝑖
) ≤ 𝑟(𝑟(ℎ

1
)
∗

𝑟(ℎ
1
) + ⋅ ⋅ ⋅ + 𝑟(ℎ

𝑚
0

)
∗

𝑟(ℎ
𝑚
0

)), this
would imply that

(

𝑚
0

∑

𝑘=1

𝑃
𝑘
(𝑎

0
)) 𝑞 = (

𝑚
0

∑

𝑘=1

Φ
𝑘
(𝑎

𝑘

0
) ℎ

𝑘
)𝑞 = 0, (41)

contradicting that ∑𝑚
0

𝑘=1
𝑃
𝑘
(𝑎

0
) = ∑

𝑚
0

𝑘=1
Φ

𝑘
(𝑎

𝑘

0
)ℎ

𝑘
is invertible

in 𝐵.
Consider now the mapping Ψ = ∑

𝑚
0

𝑘=1

̃
Φ

𝑘
. It is clear that,

for each natural 𝑛, Ψ, ̃Φ
𝑛
, and the pair (Ψ, ̃Φ

𝑛
) are orthog-

onality preserving. Applying Proposition 14 (b), we deduce
the existence of Jordan ∗-homomorphisms Θ, ̃Θ,Θ

𝑛
,
̃
Θ

𝑛
:

𝑀(𝐴) → 𝐵
∗∗ such that (Θ,Θ

𝑛
) and (

̃
Θ,

̃
Θ

𝑛
) are orthog-

onality preserving, Θ(1) = 𝑟(𝑘)𝑟(𝑘)
∗, ̃Θ(1) = 𝑟(𝑘)

∗

𝑟(𝑘),
Θ

𝑛
(1) = 𝑟(ℎ

𝑛
)𝑟(ℎ

𝑛
)
∗, ̃Θ

𝑛
(1) = 𝑟(ℎ

𝑛
)
∗

𝑟(ℎ
𝑛
),

Ψ (𝑎) = Θ (𝑎) 𝑘 = 𝑘
̃
Θ (𝑎) ,

̃
Φ

𝑛
(𝑎) = Θ

𝑛
(𝑎) 𝑟(ℎ

𝑛
)

∗

𝑟 (ℎ
𝑛
) = 𝑟(ℎ

𝑛
)

∗

𝑟 (ℎ
𝑛
)
̃
Θ

𝑛
(𝑎) ,

(42)
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for every 𝑎 ∈ 𝐴, where 𝑘 = Ψ(1) = 𝑟(ℎ
1
)
∗

𝑟(ℎ
1
) +

⋅ ⋅ ⋅ + 𝑟(ℎ
𝑚
0

)
∗

𝑟(ℎ
𝑚
0

). The condition 𝑟(𝑘) = 1, proved in the
previous paragraph, shows thatΘ(1) = 1. Thus, since (̃Θ, ̃Θ

𝑛
)

is orthogonality preserving, the last statement in Lemma 10
proves that

̃
Θ

𝑛
(𝑎) =

̃
Θ

𝑛
(1)

̃
Θ (𝑎) =

̃
Θ (𝑎)

̃
Θ

𝑛
(1) , (43)

for every 𝑎 ∈ 𝐴, 𝑛 ∈ N. The above identities guarantee that

̃
Φ

𝑛
(𝑎) = Θ (𝑎) 𝑟(ℎ

𝑛
)

∗

𝑟 (ℎ
𝑛
) = 𝑟(ℎ

𝑛
)

∗

𝑟 (ℎ
𝑛
)
̃
Θ (𝑎) , (44)

for every 𝑎 ∈ 𝐴, 𝑛 ∈ N.
A similar argument to the one given above, but replac-

ing ̃
Φ

𝑘
with Φ

𝑘
, shows the existence of a Jordan ∗-

homomorphism Θ : 𝑀(𝐴) → 𝐵
∗∗ such that

Φ
𝑛
(𝑎) = Θ (𝑎) 𝑟 (ℎ

𝑛
) 𝑟(ℎ

𝑛
)

∗

= 𝑟 (ℎ
𝑛
) 𝑟(ℎ

𝑛
)

∗

Θ (𝑎) , (45)

for every 𝑎 ∈ 𝐴, 𝑛 ∈ N, which concludes the proof.
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