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For a dynamical system arising from Z𝑘-action on a higher rank graph with finite vertex set, we show that the semidirect product
of the asymptotic equivalence relation groupoid is essentially principal if and only if the 𝑘-graph satisfies the aperiodic condition.
Then we show that the corresponding asymptotic Ruelle algebra is simple if the graph is primitive with the aperiodic condition.

1. Introduction

In [1], Kumjian and Pask constructed Z𝑘-action dynamical
systems on higher rank graphs, which are higher dimensional
analog of subshifts of finite type in symbolic dynamics.
Naturally their dynamical systems exhibit many of the same
dynamical properties in not only subshifts of finite type
but also Smale spaces studied by Putnam [2], Putnam and
Spielberg [3], and Ruelle [4, 5]. Putnam associated several
groupoid 𝐶

∗-algebras to Smale spaces using asymptotic,
stable, and unstable equivalence relations generated by hyper-
bolic structures of Smale spaces [2]. Ruelle algebras from
stable and unstable equivalence relations may be considered
as higher dimensional analogs of Cuntz-Krieger algebras [2,
3, 6]. As in the case of irreducible Smale spaces, Kumjian
and Pask built 𝐶∗-algebras from the stable and unstable
equivalence relations on their dynamical systems and the
related Ruelle algebras [1]. Then they showed that stable
Ruelle algebra 𝑅𝑠 of a higher rank graph is strongly Morita
equivalent to the graph 𝐶∗-algebra and that 𝑅𝑠 is simple,
nuclear, and purely infinite if the graph satisfies the aperiodic
condition. Although Kumjian and Pask showed that the
groupoid algebra from asymptotic equivalence relation is a
simple 𝐴𝐹 algebra if the graph is primitive, they left Ruelle
algebra 𝑅𝑎 from asymptotic equivalence relation behind, and
it remains unclear whether or not 𝑅𝑎 is simple. Here, we
show that 𝑅𝑎 is simple if the corresponding higher rank
graph is primitivewith aperiodic condition (Theorem 16). For

this purpose, we first review the definitions and necessary
properties of 𝑘-graphs and Z𝑘-action in Section 2. Then we
follow Hou and Chen [7] to study structures of groupoids
from asymptotic equivalence relation, and we obtain suffi-
cient conditions for 𝑅𝑎 to be simple in Section 3.

2. Dynamical Systems on Higher Rank Graphs

In this section, we briefly review the definitions and notations
for 𝑘-graphs and Z𝑘-action on those established by Kumjian
and Pask in [1].

Definition 1 (see [1, 8]). A 𝑘-graph is a pair (Λ, 𝑑), where

Λ = (Obj (Λ) ,Hom (Λ) , 𝑟, 𝑠) , (1)

is a countable small category and 𝑑 : Λ → N𝑘 is a morphism,
called the degree map, satisfying the factorization property.
For every 𝜆 ∈ Λ and𝑚, 𝑛 ∈ N𝑘 with 𝑑(𝜆) = 𝑚 + 𝑛, there exist
unique elements 𝜇, ] ∈ Λ such that

𝑑 (𝜇) = 𝑚, 𝑑 (]) = 𝑛, 𝜆 = 𝜇]. (2)

Every 𝜆 ∈ Λ is called a path. For every nonzero 𝑛 ∈ N𝑘, by
the factorization property we may define Λ𝑛 = 𝑑

−1
(𝑛) and

identify Λ0 with Obj(Λ). Let 𝑟, 𝑠 : Λ → Λ
0 be the range

and source maps. We abbreviate (Λ, 𝑑) to Λ when there is no
confusion.
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Definition 2 (see [1, 8]). A 𝑘-graph Λ is called primitive if
there is a nonzero 𝑝 ∈ N𝑘 so that for every 𝑢, V ∈ Λ0 there
is a 𝜆 ∈ Λ𝑝 such that 𝑢 = 𝑟(𝜆) and V = 𝑠(𝜆).

Standing Assumption (see [1]). For every 𝑛 ∈ N𝑘, the
restrictions of 𝑟 and 𝑠 on Λ𝑛 are surjective and finite to one.

2.1. Z𝑘-Actions on 𝑘-Graphs (See [1, 2]). Suppose that (Δ, 𝑑)
is a 𝑘-graph defined by

Δ = {(𝑚, 𝑛) | 𝑚, 𝑛 ∈ Z
𝑘
, 𝑚 ≤ 𝑛} , (3)

with the structure maps

(𝑙, 𝑚) ⋅ (𝑚, 𝑛) = (𝑙, 𝑛) , 𝑟 (𝑚, 𝑛) = 𝑚,

𝑠 (𝑚, 𝑛) = 𝑛, 𝑑 (𝑚, 𝑛) = 𝑚 − 𝑛.

(4)

Let Λ be a 𝑘-graph, and let the corresponding two-sided
infinite path space be the set

Λ
Δ
= {𝑥 : Δ → Λ | 𝑥 is a 𝑘-graph homomorphism} .

(5)

Then, ΛΔ is a zero-dimensional space consisting of “two-
sided” paths on Λ.

A topology is endowed on ΛΔ where its basis is given by

𝑍 (𝜆, 𝑛) = {𝑥 ∈ Λ
Δ
𝑥 | (𝑛, 𝑛 + 𝑑 (𝜆)) = 𝜆} , (6)

with 𝑛 ∈ Z𝑘 and 𝜆 ∈ Λ. It is not difficult to check that ΛΔ is
compact (locally compact, resp.) ifΛ0 is finite (infinite, resp.)
so that ΛΔ is a metrizable space. A metric 𝜌 on ΛΔ is defined
as follows: for 𝑒 = (1, . . . , 1) ∈ Z𝑘 and 𝑗 ∈ N, let 𝜃𝑗 ∈ Δ be the
element (−𝑗𝑒, 𝑗𝑒). Given 𝑥, 𝑦 ∈ ΛΔ, set

ℎ (𝑥, 𝑦) = {

1 𝑥 (0) ̸= 𝑦 (0)

1 + sup {𝑗 | 𝑥 (𝜃𝑗) = 𝑦 (𝜃𝑗)} otherwise.
(7)

Then, for a fixed number 𝑟 ∈ (0, 1), a metric 𝜌 is defined by
the formula

𝜌 (𝑥, 𝑦) = 𝑟
ℎ(𝑥,𝑦) for 𝑥, 𝑦 ∈ ΛΔ. (8)

The metric topology is the same as the one generated by
cylinder sets. And we remark that the cylinder set 𝑍(𝜆, 𝑛) is
always nonempty because of our standing assumption.

Let 𝜎 be the action of Z𝑘 on ΛΔ by the homeomorphism
𝜎
𝑝
: Λ
Δ
→ Λ
Δ, 𝑝 ∈ Z𝑘, defined by

(𝜎
𝑝
𝑥) (𝑚, 𝑛) = 𝑥 (𝑚 + 𝑝, 𝑛 + 𝑝) . (9)

Theorem 3 (see [1]). The Z𝑘-action 𝑛 → 𝜎
𝑛 on Λ

Δ is
expansive in the sense that there is an 𝜖 > 0 such that, for
𝑥, 𝑦 ∈ Λ

Δ, 𝜌(𝜎𝑛(𝑥), 𝜎𝑛(𝑦)) < 𝜖 for every 𝑛 ∈ Z𝑘 implies 𝑥 = 𝑦.
Moreover, if Λ is primitive, then 𝜎 is topologically mixing.

2.2. Groupoids on (ΛΔ, 𝜎, 𝜌). We review Kumjian and Pask’s
construction of the asymptotic groupoid 𝐺𝑎 and its cor-
responding 𝐶∗-algebra 𝐶∗(𝐺𝑎) and Ruelle algebra 𝑅𝑎 on
(Λ
Δ
, 𝜎, 𝜌), where 𝜌 is the metric defined on ΛΔ as in (8).
For a second countable locally compact groupoid 𝐺, we

denote the source map and the range map of 𝐺 by 𝑠 and
𝑟, respectively, and 𝐺0 is the unit space of 𝐺. We refer to
[9] for more detailed results on groupoids and groupoid 𝐶∗-
algebras.

As in the case of subshifts of finite types, the asymptotic,
stable, and unstable equivalence relations on ΛΔ are defined
as follows [1]: given 𝑥, 𝑦 ∈ ΛΔ, we define

𝑥∼𝑎𝑦 if lim
|𝑗|→∞

𝜌 (𝜎
𝑗𝑒
(𝑥) , 𝜎

𝑗𝑒
(𝑦)) = 0,

𝑥∼𝑠𝑦 if lim
𝑗→∞

𝜌 (𝜎
𝑗𝑒
(𝑥) , 𝜎

𝑗𝑒
(𝑦)) = 0,

𝑥∼𝑢𝑦 if lim
𝑗→−∞

𝜌 (𝜎
𝑗𝑒
(𝑥) , 𝜎

𝑗𝑒
(𝑦)) = 0.

(10)

Then, we denote the asymptotic, stable, and unstable equiva-
lence classes of 𝑥 by 𝑉𝑎(𝑥), 𝑉𝑠(𝑥), and 𝑉𝑢(𝑥), respectively.

Remark 4 (see [1, Remark 3.6]). For 𝑥, 𝑦 ∈ ΛΔ, 𝑥∼𝑎𝑦 if and
only if there is an𝑚 ∈ N𝑘 such that for every 𝑛 ≥ 𝑚 we have

𝑥 (𝑚, 𝑛) = 𝑦 (𝑚, 𝑛) , 𝑥 (−𝑛, −𝑚) = 𝑦 (−𝑛, −𝑚) . (11)

The asymptotic equivalence relation gives rise to a
groupoid

𝐺𝑎 = {(𝑥, 𝑦) ∈ Λ
Δ
× Λ
Δ
: 𝑥∼𝑎𝑦} , (12)

whose unit space is identified with ΛΔ, and structure maps
are the natural ones. To give a topology on 𝐺𝑎, we construct
conjugate homeomorphisms as in Ruelle [5]: for (𝑥, 𝑦) ∈ 𝐺𝑎,
let 𝑚 ∈ N𝑘 be as in Remark 4 and define finite paths 𝜆 =

𝑥(−𝑚,𝑚) and ] = 𝑦(−𝑚,𝑚). We recall that the cylinder sets

𝑍 (𝜆, −𝑚) = {𝑧 ∈ Λ
Δ
: 𝑧 (−𝑚,𝑚) = 𝑥 (−𝑚,𝑚)} ,

𝑍 (], −𝑚) = {𝑤 ∈ ΛΔ : 𝑤 (−𝑚,𝑚) = 𝑦 (−𝑚,𝑚)} ,
(13)

are compact open subsets of ΛΔ. Since 𝑥 and 𝑦 satisfy the
equalities in Remark 4, when we define 𝜑 : 𝑍(𝜆, −𝑚) →

𝑍(], −𝑚) by

𝜑 (𝑥) = 𝑦, 𝜑 (𝑧) (𝑚, 𝑛) = 𝑧 (𝑚, 𝑛) ,

𝜑 (𝑧) (−𝑛, −𝑚) = 𝑧 (−𝑛, −𝑚) ,

(14)

for all 𝑧 ∈ 𝑍(𝜆, −𝑚) and 𝑛 ≥ 𝑚, 𝜑 is a bijective map by the
factorization property and 𝑧∼𝑎𝜑(𝑧) by the definition of 𝜑 and
Remark 4. It is easy to check that 𝜑 is continuous so that it is
a homeomorphism.

A basis for the topology of 𝐺𝑎 is given by the compact
open sets

{(𝜑 (𝑧) , 𝑧) : 𝑧 ∈ 𝑍 (𝜆, −𝑚) ,𝑚 ∈ N
𝑘
} . (15)
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Then,𝐺𝑎 is a second countable, locally compact, Hausdorff, 𝑟-
discrete, and principal groupoid under this topology, and the
counting measure is a Haar system [2, 7, 8]. The path space
Λ
Δ is identified with the unit space𝐺0

𝑎
by the embeddingmap

𝑥 → (𝑥, 𝑥).
To make the asymptotic Ruelle algebra, we need another

groupoid: we imitate [2] to form the semidirect product 𝐺𝑎 ⋊
Z𝑘 given by

𝐺𝑎 ⋊ Z
𝑘
= {(𝑢, 𝑛, V) : 𝑢, V ∈ ΛΔ, 𝑛 ∈ Z

𝑘
, (𝜎
𝑛
(𝑢) , V) ∈ 𝐺𝑎} ,

(16)

with the structure maps

𝑠 (𝑢, 𝑛, V) = 𝑢, 𝑟 (𝑢, 𝑛, V) = V,

(𝑢, 𝑛, V) (𝑤,𝑚, 𝑧) = (𝑢, 𝑛 + 𝑚, 𝑧) if V = 𝑤,

(𝑢, 𝑛, V)−1 = (V, −𝑛, 𝑢) .

(17)

It is not difficult to check that the map defined by
((𝑥, 𝑦), 𝑛) → (𝑥, 𝑛, 𝜎

𝑛
(𝑦)) gives a groupoid isomorphism

between 𝐺𝑎 × Z𝑘 and 𝐺𝑎 ⋊ Z𝑘. We transfer the product
topology on 𝐺𝑎 × Z𝑘 via this isomorphism so that 𝐺𝑎 ⋊ Z𝑘

is a locally compact, Hausdorff, and 𝑟-discrete groupoid, and
the counting measure is a Haar system. The unit space is
identified with ΛΔ via the map 𝑥 → (𝑥, 0, 𝑥).

Definition 5 (see [1, 2]). Suppose that Λ is a 𝑘-graph and
that 𝐺𝑎 and 𝐺𝑎 ⋊ Z𝑘 are groupoids on Λ defined previously.
The asymptotic 𝐶∗-algebra of Λ is the reduced groupoid 𝐶∗-
algebra of 𝐺𝑎, denoted by 𝐴(Λ). And the asymptotic Ruelle
algebra of Λ is the reduced groupoid 𝐶∗-algebra of 𝐺𝑎 ⋊ Z𝑘,
denoted by 𝑅𝑎(Λ).

3. Main Results

In this section, we first show that for a primitive 𝑘-graph, the
groupoids 𝐺𝑎 and 𝐺𝑎 ⋊ Z𝑘 are minimal. Then, we show that
if a 𝑘-graph Λ is such that Λ0 is finite, then the aperiodic
condition is equivalent to essential principality of 𝐺𝑎 ⋊ Z𝑘.
So the asymptotic𝐶∗-algebra𝐴(Λ) is simple ifΛ is primitive,
and the asymptotic Ruelle algebra 𝑅𝑎(Λ) is simple if in
addition Λ satisfies the aperiodic condition.

Lemma 6. Suppose that Λ is a primitive 𝑘-graph. For every
𝑥 ∈ Λ

Δ, 𝑉𝑎(𝑥) = {𝑦 ∈ ΛΔ : 𝑥∼𝑎𝑦} is dense in ΛΔ.

Proof. We need to show that, for any base element 𝑍(𝜆, 𝑛),
there is a 𝑦 ∈ 𝑉𝑎(𝑥)∩𝑍(𝜆, 𝑛). SinceΛ is primitive, there is an
𝑁 ∈ N𝑘 such that, for every 𝑝 ≥ 𝑁 and every 𝑢, V ∈ Λ0, there
is a ] ∈ Λ𝑝 with 𝑠(]) = V and 𝑟(]) = 𝑢.

First, we select 𝑚 ∈ N𝑘 satisfying𝑁 ≤ 𝑚 − 𝑛 − 𝑑(𝜆) and
𝑁 ≤ 𝑚 + 𝑛. Then, the primitive condition implies that there
are 𝛼 ∈ Λ𝑚+𝑛 and 𝛽 ∈ Λ𝑚−𝑛−𝑑(𝜆) such that

𝑟 (𝛼) = 𝑥 (−𝑚, −𝑚) , 𝑠 (𝛼) = 𝑟 (𝜆) ,

𝑠 (𝜆) = 𝑟 (𝛽) , 𝑠 (𝛽) = 𝑥 (𝑚,𝑚) .

(18)

So, by the factorization property (cf. [8, Remarks 2.2]), there
is a unique 𝑦 ∈ ΛΔ such that, for every 𝑙 ≥ 𝑚,

𝑦 (−𝑙, −𝑚) = 𝑥 (−𝑙, −𝑚) , 𝑦 (−𝑚,𝑚) = 𝛼𝜆𝛽,

𝑦 (𝑚, 𝑙) = 𝑥 (𝑚, 𝑙) .

(19)

It is trivial that 𝑦 ∈ 𝑍(𝜆, 𝑛) from the construction, and 𝑦 ∈
𝑉
𝑎
(𝑥) by Remark 4. Therefore, the asymptotic equivalence

class of any element in ΛΔ is dense in ΛΔ.

Recall that a topological groupoid 𝐺 with an open range
map is called minimal if the only open invariant subsets of
𝐺
0 are the empty set 0 and 𝐺0 itself. A subset 𝐸 of 𝐺0 is called

invariant if 𝑟 ∘ 𝑠−1(𝐸) = 𝐸. We refer to [9] for details.

Proposition 7. Suppose that Λ is a primitive 𝑘-graph. Then,
𝐺𝑎 and 𝐺𝑎 ⋊ Z𝑘 are minimal groupoids.

Proof. We recall that the unit spaces of 𝐺𝑎 and 𝐺𝑎 ⋊ Z𝑘 are
identified withΛΔ via the maps 𝑥 → (𝑥, 𝑥) and 𝑥 → (𝑥, 0, 𝑥),
respectively. When 𝐸 is an invariant subset of 𝐺0

𝑎
, we observe

𝑟 ∘ 𝑠
−1
(𝐸) = {𝑦 ∈ Λ

Δ
: 𝑦∼𝑎𝑥 for some 𝑥 ∈ 𝐸}

= ⋃

𝑥∈𝐸

𝑉
𝑎
(𝑥) = 𝐸.

(20)

We assume that there is a nontrivial open invariant subset
𝐸 of 𝐺0

𝑎
. Then, for 𝑧 ∈ Λ

Δ
\ 𝐸, we have 𝑉𝑎(𝑧) ∩ 𝐸 = 0

because the collection of asymptotic equivalence classes is a
partition of ΛΔ. But this is a contradiction to Lemma 6 as 𝐸
is a nontrivial open set. So the only open invariant subsets of
𝐺
0

𝑎
are the empty set and G0

𝑎
, and 𝐺𝑎 is a minimal groupoid.

For 𝐺𝑎 ⋊ Z𝑘 and an open invariant subset 𝐻 of its unit
space, we note that

𝑟 ∘ 𝑠
−1
(𝐻) = ⋃

𝑥∈𝐻,𝑛∈Z𝑘

𝑉
𝑎
(𝜎
𝑛
(𝑥)) = ⋃

𝑥∈𝐻

𝑉
𝑎
(𝑥) = 𝐻. (21)

Then, the result follows as in the case of 𝐺𝑎.

For an irreducible Smale space (𝑋, 𝜑), Putnam and
Spielberg [3] showed that groupoids defined by stable and
unstable equivalence relations are essentially principal, and
Hou and Chen [7] showed that𝐺𝑎⋊Z is essentially principal.
Recall that a Smale space is said to be irreducible if it is
nonwandering and has a dense orbit. The basic ideas behind
their proofs are the facts that 𝑉𝑎(𝑥) is at most countable for
every 𝑥 and the set of periodic points of period ℓ is finite for
every nonzero ℓ ∈ Z (see [3, Section 5], and [4, 7.16] for
details). We will follow [7, Section 2], and [3, Section 5], to
show that 𝐺𝑎 ⋊ Z𝑘 is an essential principal.

Because of the factorization property and that Λ𝑚 is a
countable set for every 𝑚 ∈ N𝑘, it is not difficult to check
that 𝑉𝑎(𝑥) is at most countable in 𝑘-graphs.

Lemma 8. Let Λ be a 𝑘-graph and 𝑥 ∈ ΛΔ. Then, 𝑉𝑎(𝑥) is a
countable set.
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Proof. Let 𝑦 ∈ Λ
Δ be asymptotically equivalent to 𝑥. Then,

there is an 𝑚 ∈ N𝑘 such that 𝑥(𝑚, 𝑛) = 𝑦(𝑚, 𝑛) and
𝑥(−𝑛, −𝑚) = 𝑦(−𝑛, −𝑚) for every 𝑛 ≥ 𝑚 by Remark 4, and
the factorization property implies that the set of finite paths

{𝑥 (−𝑛, −𝑚) 𝑦 (−𝑚,𝑚) 𝑥 (𝑚, 𝑛) : 𝑛 ≥ 𝑚} , (22)

determines a unique element in Λ
Δ. It is easy to

check that the uniquely determined element is 𝑦 as
𝑥(−𝑛, −𝑚)𝑦(−𝑚,𝑚)𝑥(𝑚, 𝑛) = 𝑦(−𝑛, 𝑛) by the factorization
property. So themap defined by𝑦 → 𝑦(−𝑚,𝑚) is an injection
from 𝑉

𝑎
(𝑥) to ∪𝑚∈N𝑘Λ

2𝑚. Since Λ𝑚 is a countable set,
∪𝑚∈N𝑘Λ

2𝑚 is a countable set. Hence, 𝑉𝑎(𝑥) is countable.

In irreducible Smale spaces, the set of periodic points of
period ℓ ∈ Z, say Perℓ, is finite for every nonzero integer ℓ
as covered in [7, Lemma 2.1] and [3, Lemma 5.2]. But Per𝑙
in (ΛΔ, 𝜎) may not be a finite set for some nonzero 𝑙 ∈ Z𝑘.
For example, the 2-graph discussed in [8, Definition 1.9 and
Example 6.1] has only one vertex and is irreducible, but every
path has period (1, −1) ∈ Z2. So we need to add some extra
conditions on our 𝑘-graphs to obtain that Per𝑙 is finite for
every nonzero 𝑙 ∈ Z𝑘.

Definition 9 (see [8]). Let Λ be a 𝑘-graph with its two-
sided path space ΛΔ. A path 𝑥 ∈ Λ

Δ is called aperiodic if
𝜎
𝑙
𝑥(𝑚, 𝑛) ̸= 𝑥(𝑚, 𝑛) for every 𝑙 ∈ Z𝑘\{0} and every (𝑚, 𝑛) ∈ Δ.

We say that Λ satisfies the aperiodic condition if, for every
V ∈ Λ0, there is an aperiodic path𝑥 ∈ ΛΔ such that𝑥(0, 0) = V.

Observe that Λ satisfies the aperiodic condition if and
only if the set of aperiodic paths is dense inΛΔ [8, Proposition
4.5]. So, for every 𝑙 ∈ Z𝑘, theZ-action onΛΔ given by 𝑗 → 𝜎

𝑗𝑙

is not the identity map.
The following sublemma is definitely well known to

experts, but we could not find any reference.

Sublemma 10. Suppose thatΛ is a 𝑘-graphwith a finiteΛ0. IfΛ
satisfies the aperiodic condition, then every isolated point in
Λ
Δ is aperiodic, and the derived set of ΛΔ is invariant under
𝜎
𝑙 for every 𝑙 ∈ Z𝑘.

Proof. Let 𝑥 ∈ Λ
Δ be an isolated point. Then, there is an

aperiodic point 𝑦 such that 𝑥(0, 0) = 𝑦(0, 0), that is, 𝑦 ∈

𝑍(𝑥(0, 0), 0). So we have 𝑥 = 𝑦 because 𝑥 is an isolated point.
Let 𝑧 ∈ ΛΔ be a limit point of ΛΔ and {𝑧𝑗} a sequence in

Λ
Δ such that 𝑧 = lim 𝑧𝑗. Then, continuity of 𝜎𝑙 implies that
𝜎
𝑙
(𝑧) = lim𝜎𝑙(𝑧𝑗) so that 𝜎

𝑙
(𝑧) is also a limit point ofΛΔ.

Since our interest is periodic points which are included
in the derived set of ΛΔ and the fact that the derived set is
also compact, when there are isolated points in ΛΔ, we can
consider Z𝑘-action of 𝜎 on the derived set instead of on ΛΔ.
Thus, without loss of generality, we can assume that ΛΔ has
no isolated point.

We recall that 𝜎 : Λ
Δ
→ Λ

Δ is expansive with the
expansive constant 𝜖 > 0 (Theorem 3).

Lemma 11. Suppose that Λ is a 𝑘-graph with a finite Λ0. If Λ
satisfies the aperiodic condition, then the set of periodic points
of period 𝑙 is finite for every 𝑙 ∈ Z𝑘 \ {0}.

Proof. For every nonzero 𝑙 ∈ Z𝑘, we consider an induced Z-
action 𝜙 on ΛΔ given by 𝑗 → 𝜙

𝑗
= 𝜎
𝑗𝑙. Then, 𝜙 is also an

expansive homeomorphism on ΛΔ with the same expansive
constant as that of 𝜎, and Per𝑙 = {𝑥 ∈ Λ

Δ
: 𝜎
𝑙
(𝑥) = 𝑥} is equal

to Fix(𝜙) = {𝑥 ∈ ΛΔ : 𝜙(𝑥) = 𝑥}.
Let 𝑥 and 𝑦 be two different points in Fix(𝜙). Then, we

have 𝜌(𝑥, 𝑦) ≥ 𝜖 because 𝜌(𝑥, 𝑦) = 𝜌(𝜙𝑗(𝑥), 𝜙𝑗(𝑦)) < 𝜖 for
every 𝑗 ∈ Z implies that 𝑥 = 𝑦 by expansiveness. So the
distance between any two fixed points of 𝜙 is at least 𝜖, and
Fix(𝜙) is a finite set as ΛΔ is a compact set without isolated
points.

Lemma 12. Let Λ be a 𝑘-graph with a finite Λ0. If 𝑥 ∈ ΛΔ is
such that 𝜎𝑙(𝑥) ∈ 𝑉𝑎(𝑥) for some 𝑙 ∈ Z𝑘 \ {0}, then

(1) the sequence {𝜎𝑗𝑙(𝑥) : 𝑗 ∈ N} converges to an element,
say 𝑥1, in Per𝑙 as 𝑗 → ∞ and 𝑥 ∈ 𝑉𝑠(𝑥1),

(2) the sequence {𝜎−𝑗𝑙(𝑥) : 𝑗 ∈ N} converges to an element,
say 𝑥2, in Per𝑙 as 𝑗 → ∞ and 𝑥 ∈ 𝑉𝑢(𝑥2).

Proof. Convergence of {𝜎𝑗𝑙(𝑥) : 𝑗 ∈ N} to 𝑥1 ∈ Per𝑙 is
equivalent to (ΛΔ, 𝜎) being an irreducible Smale space, so we
refer to [3, 7] for details.

To show that 𝑥 ∈ 𝑉𝑠(𝑥1), we need to find an𝑚 ∈ Z𝑘 such
that 𝑥(𝑚, 𝑛) = 𝑥1(𝑚, 𝑛) for every 𝑛 ≥ 𝑚. Let 𝑚 ∈ N𝑘 be the
number given by 𝜎𝑙(𝑥)∼𝑎𝑥 so that 𝑥(𝑚, 𝑛) = 𝜎

𝑙
(𝑥)(𝑚, 𝑛) and

𝑥(−𝑛, −𝑚) = 𝜎
𝑙
(−𝑛, −𝑚) for every 𝑛 ≥ 𝑚.

Because 𝜎𝑗𝑙(𝑥) converges to 𝑥1 as 𝑗 → ∞, for every open
neighborhood 𝑈 of 𝑥1, there is an 𝑁 ∈ N such that 𝑗 ≥ 𝑁
implies 𝜎𝑗𝑙(𝑥) ∈ 𝑈. For

𝑈 = 𝑍 (𝑥1 (𝑚, 𝑛) , 𝑚) = {𝑦 ∈ Λ
Δ
: 𝑦 (𝑚, 𝑛) = 𝑥1 (𝑚, 𝑛)} ,

(23)

let𝑁 ∈ N be such that 𝜎𝑁𝑙(𝑥) ∈ 𝑍(𝑥1(𝑚, 𝑛), 𝑚), that is,

𝜎
𝑁𝑙
(𝑥) (𝑚, 𝑛) = 𝑥 (𝑚 + 𝑁𝑙, 𝑛 + 𝑁𝑙) = 𝑥1 (𝑚, 𝑛) .

(24)

Since 𝑥1 is a periodic point of period 𝑙, we have
𝜎
−𝑁𝑙
(𝑥1)(𝑚, 𝑛) = 𝑥1(𝑚, 𝑛) = 𝑥(𝑚, 𝑛) for every 𝑛 ≥ 𝑚.

Therefore, 𝑥 is stably equivalent to 𝑥1.
The case of 𝑥 ∈ 𝑉𝑢(𝑥2) is analogous.

Lemma 13. Suppose that Λ is a 𝑘-graph and that Λ0 is a finite
set. If Λ satisfies the aperiodic condition, then the set

{𝑥 ∈ Λ
Δ
: 𝜎
𝑙
(𝑥) ∈ 𝑉

𝑎
(𝑥) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙 ∈ Z

𝑘
\ {0}} , (25)

is a countable set.

Proof. Let 𝑥 ∈ ΛΔ be such that 𝜎𝑙(𝑥) ∈ 𝑉𝑎(𝑥) for some 𝑙 ∈
Z𝑘\{0}. First we notice that, by Lemma 12, we have 𝑥∼𝑠𝑥1 and
𝑥∼𝑢𝑥2 so that 𝑉𝑠(𝑥) = 𝑉𝑠(𝑥1) and 𝑉

𝑢
(𝑥) = 𝑉

𝑢
(𝑥2). Hence,

𝑉
𝑠
(𝑥1) ∩ 𝑉

𝑢
(𝑥2) = 𝑉

𝑎
(𝑥) is a countable set by Lemma 8.
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Lemma 12 implies that 𝑥 ∈ 𝑉𝑠(𝑥1)∩𝑉
𝑢
(𝑥2) so that the set

{𝑥 ∈ Λ
Δ
: 𝜎
𝑙
(𝑥) ∈ 𝑉

𝑎
(𝑥) for some 𝑙 ∈ Z

𝑘
\ {0}} , (26)

is a subset of

⋃

𝑙∈Z𝑘

⋃

𝑥1 ,𝑥2∈Per𝑙

𝑉
𝑠
(𝑥1) ∩ 𝑉

𝑢
(𝑥2) . (27)

The union is a countable union by Lemma 11, and 𝑉𝑠(𝑥1) ∩
𝑉
𝑢
(𝑥2) is a countable set by the previous paragraph and

Lemma 8. This completes the proof.

Recall that a topological groupoid 𝐺 with an open range
map is called essentially principal if𝐺 is locally compact and,
for every closed invariant subset 𝐹 of its unit space 𝐺0, {𝑢 ∈
𝐹 : 𝑟
−1
(𝑢) ∩ 𝑠

−1
(𝑢) = {𝑢}} is dense in 𝐹 (see [9] for details).

Theorem14. Suppose thatΛ is a 𝑘-graph and thatΛ0 is a finite
set. Then, Λ satisfies the aperiodic condition if and only if 𝐺𝑎 ⋊
Z𝑘 is an essentially principal groupoid.

Proof. Let 𝐵 = {𝑢 ∈ (𝐺𝑎 ⋊ Z𝑘)
0
: 𝑠
−1
(𝑢) ∩ 𝑟

−1
(𝑢) = {𝑢}},

collection of points of (𝐺𝑎 ⋊ Z𝑘)
0 whose isotropy group is

trivial. We observe that, for 𝑢 = (𝑥, 0, 𝑥) ∈ (𝐺𝑎 ⋊ Z𝑘)
0
, 𝑢 ∉ 𝐵

if and only if there is an 𝑙 ∈ Z𝑘 \ {0} such that 𝜎𝑙(𝑥)∼𝑎𝑥. And
every element in 𝐵 is aperiodic because a periodic point 𝑦 ∈
Λ
Δ with period 𝑙 satisfies 𝜎𝑙(𝑥) = 𝑥, that is, 𝜎𝑙(𝑥) ∈ 𝑉𝑎(𝑥) and
𝑥 ∉ 𝐵.

If Λ satisfies the aperiodic condition, then 𝐵𝑐 is a count-
able set by Lemma 13 so that 𝐵 is a dense subset of (𝐺𝑎⋊Z

𝑘
)
0.

Therefore 𝐺𝑎 ⋊ Z𝑘 is an essentially principal groupoid.
If 𝐺𝑎 ⋊ Z𝑘 is essentially principal, then 𝐵 is dense in ΛΔ,

and the set of aperiodic paths is dense in ΛΔ by the previous
paragraph. Hence, for every V ∈ Λ0, the base element 𝑍(V, 0)
must contain aperiodic paths. Thus, Λ satisfies the aperiodic
condition.

Before we go to the main theorem, let us check that our
groupoids 𝐺𝑎 and 𝐺𝑎 ⋊ Z𝑘 are amenable so that we do not
need to use reduced groupoid algebras: let 𝐺𝑠 and 𝐺𝑢 be the
locally compact principal groupoids defined by the stable and
unstable equivalence relations, respectively, on ΛΔ. Kumjian
and Pask showed that𝐺𝑠 and𝐺𝑢 are amenable in [1,Theorem
5.3]. Then, proof of the following lemma is exactly the same
as [7, Lemma 2.5] and [1, Remark 5.8].

Lemma 15. Suppose thatΛ is a 𝑘-graph.Then,𝐺𝑎 and𝐺𝑎⋊Z𝑘
are amenable in the sense of Renault.

Now we apply [9, Proposition 4.6], Proposition 7, and
Theorem 14 to obtain simplicity of 𝐶∗-algebras of 𝐺𝑎 and
𝐺𝑎 ⋊ Z𝑘. Remark that a primitive 𝑘-graph with our standing
assumption automatically has a finite Λ0.

Theorem 16. Suppose that Λ is a primitive 𝑘-graph. Then,
the asymptotic 𝐶∗-algebras 𝐴(Λ) generated by 𝐺𝑎 is a simple
nuclear 𝐶∗-algebra. If in addition Λ satisfies the aperiodic

condition, then the asymptotic Ruelle algebra 𝑅𝑎(Λ) generated
by 𝐺𝑎 ⋊ Z𝑘 is also a simple nuclear 𝐶∗-algebra.
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