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A class of polynomial differential systemswith high-order nilpotent critical points are investigated in this paper.Those systems could
be changed into systems with an element critical point. The center conditions and bifurcation of limit cycles could be obtained by
classical methods. Finally, an example was given; with the help of computer algebra systemMATHEMATICA, the first 5 Lyapunov
constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there
exist 5 small amplitude limit cycles created from the high-order nilpotent critical point is also proved.

1. Introduction

In the qualitative theory of ordinary differential equations,
bifurcation of limit cycles for planar polynomial differential
systems which belong to second part of the Hilbert 16th
problem is hot but intractable issue. Of course, this problem
is far from being solved now; there are many famous works
about this problem. Let 𝐻(𝑛) be the maximum possible
number of limit cycles bifurcating from infinity for analytic
vector fields of degree 𝑛. It was found that 𝑁(3) ≥ 7 [1, 2],𝑁(5) ≥ 11 [3],𝑁(7) ≥ 13 [4].

When the critical point is a nilpotent critical point,
let 𝑁(𝑛) be the maximum possible number of limit cycles
bifurcating from nilpotent critical points for analytic vector
fields of degree 𝑛. It was found that 𝑁(3) ≥ 2, 𝑁(5) ≥ 5,𝑁(7) ≥ 9 in [5],𝑁(3) ≥ 3,𝑁(5) ≥ 5 in [6], and for a family of
Kukles systems with 6 parameters𝑁(3) ≥ 3 in [7]. Recently,
li and liu other found that 𝑁(3) ≥ 8, 𝑁(5) ≥ 12, 𝑁(7) ≥ 13
[8, 9] employing the inverse integral factor method.

But when the order of nilpotent critical point is higher
than three, it is very difficult to study the limit cycle because
the inverse integral factor method could not be used to
compute the singular values. There are few results about the
bifurcations of limit cycles at a nilpotent critical point with
high order.

In this paper, we will study the bifurcation of limit cycles
and conditions of centers for a class of special system

𝑑𝑥
𝑑𝑡 = 𝑦 +

∞∑
𝑘=2

𝑓𝑘 (𝑥𝑛, 𝑦) ,
𝑑𝑦
𝑑𝑡 = −𝑥2𝑛−1 + 𝑥𝑛−1

∞∑
𝑘=2

𝑔𝑘 (𝑥𝑛, 𝑦) .
(1)

Obviously, when 𝑛 = 1, the system is

𝑑𝑥
𝑑𝑡 = 𝑦 +

∞∑
𝑘=2

𝑓𝑘 (𝑥, 𝑦) ,
𝑑𝑦
𝑑𝑡 = −𝑥 +

∞∑
𝑘=2

𝑔𝑘 (𝑥, 𝑦) .
(2)

Theorigin is an element critical point, but it is a high order
nilpotent critical point when 𝑛 > 1.

This paper will be organized as follows. In Section 2, we
state some preliminary knowledge given in [10] which is
useful throughout the paper. In Section 3, we make some
transformations to change system (2) into a system with
an element singular. As an example, a special system is
investigated. Using the linear recursive formulae in [10] to do
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direct computation, we obtain the first 5 Lyapunov constants
and the sufficient and necessary conditions of center and the
result that there exist 5 limit cycles in the neighborhood of the
high-order nilpotent critical point are proved.

2. Preliminary Knowledge

The ideas of this section come from [10], where the center
focus problem of critical points in the planar dynamical
systems are studied. We first recall the related notions and
results. For more details, please refer to [10].

In [10], the authors defined complex center and complex
isochronous center for the following complex system:

𝑑𝑧
𝑑𝑇 = 𝑧 +

∞∑
𝑘=2

∑
𝛼+𝛽=𝑘

𝑎𝛼𝛽𝑧𝛼𝑤𝛽 = 𝑍 (𝑧, 𝑤) ,

𝑑𝑤
𝑑𝑇 = −𝑤 −

∞∑
𝑘=2

∑
𝛼+𝛽=𝑘

𝑏𝛼𝛽𝑤𝛼𝑧𝛽 = −𝑊(𝑧, 𝑤) ,
(3)

and gave two recursive algorithms to determine necessary
conditions for a center and an isochronous center. We now
restate the definitions and algorithms.

Lemma 1. For system (3), we can derive uniquely the following
formal series:

𝜉 = 𝑧 + ∞∑
𝑘+𝑗=2

𝑐𝑘𝑗𝑧𝑘𝑤𝑗,

𝜂 = 𝑤 + ∞∑
𝑘+𝑗=2

𝑑𝑘𝑗𝑤𝑘𝑧𝑗,
(4)

where 𝑐𝑘+1,𝑘 = 𝑑𝑘+1,𝑘 = 0, 𝑘 = 1, 2, . . ., such that
𝑑𝜉
𝑑𝑇 = 𝜉 +

∞∑
𝑗=1

𝑝𝑗𝜉𝑗+1𝜂𝑗,
𝑑𝜂
𝑑𝑇 = −𝜂 −

∞∑
𝑗=1

𝑞𝑗𝜂𝑗+1𝜉𝑗.
(5)

Definition 2. Let𝜇0 = 0,𝜇𝑘 = 𝑝𝑘−𝑞𝑘, 𝜏𝑘 = 𝑝𝑘+𝑞𝑘, 𝑘 = 1, 2, . . ..𝜇𝑘 is called the 𝑘th singular point quantity of the origin of
system (3) and 𝜏𝑘 is called the 𝑘th period constant of the origin
of system (3).

Theorem3. For system (3), the origin is a complex center if and
only if 𝜇𝑘 = 0, 𝑘 = 1, 2, . . .. The origin is a complex isochronous
center if and only if 𝜇𝑘 = 𝜏𝑘 = 0, 𝑘 = 1, 2, . . ..
Theorem 4. For system (3), we can derive successively the
terms of the following formal series:

𝑀(𝑧,𝑤) = ∞∑
𝛼+𝛽=0

𝑐𝛼𝛽𝑧𝛼𝑤𝛽, (6)

such that
𝜕 (MZ)
𝜕𝑧 − 𝜕 (MW)

𝜕𝑤 = ∞∑
𝑚=1

(𝑚 + 1) 𝜇𝑚(𝑧𝑤)𝑚, (7)

where 𝑐00 = 1, for all 𝑐𝑘𝑘 ∈ 𝑅, 𝑘 = 1, 2, . . ., and for any integer𝑚, 𝜇𝑚 is determined by the following recursive formulae:

𝑐𝛼𝛽 = 1
𝛽 − 𝛼

𝛼+𝛽+2∑
𝑘+𝑗=3

[(𝛼 + 1) 𝑎𝑘,𝑗−1
− (𝛽 + 1) 𝑏𝑗,𝑘−1] 𝑐𝛼−𝑘+1,𝛽−𝑗+1,

𝜇𝑚 =
2𝑚+2∑
𝑘+𝑗=3

(𝑎𝑘,𝑗−1 − 𝑏𝑗,𝑘−1) 𝑐𝑚−𝑘+1,𝑚−𝑗+1.
(8)

Theorem 5 (the constructive theorem of singular point
quantities in [10]). A 𝑘-order singular point quantity of system
(3) at the origin can be represented as a linear combination of 𝑘-
order monomial Lie invariants and their antisymmetry forms,
that is,

𝜇𝑘 =
𝑁∑
𝑗=1

𝛾𝑘𝑗 (𝑔𝑘𝑗 − 𝑔∗𝑘𝑗) , 𝑘 = 1, 2, . . . , (9)

where𝑁 is a positive integer and 𝛾𝑘𝑗 is a rational number, 𝑔𝑘𝑗
and 𝑔∗𝑘𝑗 are 𝑘-order monomial Lie invariants of system (3).

Theorem 6 (the extended symmetric principle in [10]). Let𝑔 denote an elementary Lie invariant of system (3). If for all 𝑔
the symmetric condition 𝑔 = 𝑔∗ is satisfied, then the origin
of system (3) is a complex center. Namely, all singular point
quantities of the origin are zero.

3. Simplification of System

In fact, system (1) is symmetric with axis when 𝑛 is even, so
the origin is a center. Now we will consider system (1) when𝑛 = 2𝑘 + 1 is odd.

By transformations

𝑢 = 𝑥2𝑘+1, V = 𝑦, 𝑑𝜏 = 𝑢2𝑘/(2𝑘+1)𝑑𝑡 (10)

system (1) is changed into

𝑑𝑢
𝑑𝜏 = (2𝑘 + 1) V + (2𝑘 + 1)

∞∑
𝑘=2

𝑓𝑘 (𝑢, V) ,
𝑑V
𝑑𝜏 = −𝑢 +

∞∑
𝑘=2

𝑔𝑘 (𝑢, V) .
(11)

then by transformations

𝑥 = 𝑢, 𝑦 = √2𝑘 + 1V, 𝑑𝜏 = √2𝑘 + 1𝑑𝑡, (12)

system (11) could be changed into

𝑑𝑥
𝑑𝜏 = −𝑦 − √2𝑘 + 1

∞∑
𝑘=2

𝑓𝑘 (𝑥, 1
√2𝑘 + 1𝑦) ,

𝑑V
𝑑𝜏 = 𝑥 −

∞∑
𝑘=2

𝑔𝑘 (𝑥, 1
√2𝑘 + 1𝑦) .

(13)
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Thus, the origin of system (13) is an element critical point.
It could be investigated using the classical integral factor
method.

Now, we consider the following system:

𝑑𝑥
𝑑𝑡 = 𝑦 + 𝐴30𝑥3𝑛 + 𝐴21𝑥2𝑛𝑦 + 𝐴12𝑥𝑛𝑦2 + 𝐴03𝑦3,
𝑑𝑦
𝑑𝑡 = −𝑥2𝑛−1 + 𝑥𝑛−1 (𝐵30𝑥3𝑛 + 𝐵21𝑥2𝑛𝑦 + 𝐵12𝑥𝑛𝑦2 + 𝐵03𝑦3) .

(14)

When 𝑛 = 2𝑘 + 1, by those transformations, system (14)
is changed into

𝑑𝑥
𝑑𝑡 = −𝑦 − √2𝑘 + 1(𝐴30𝑥3 +

𝐴21√2𝑘 + 1𝑥
2𝑦

+ 𝐴122𝑘 + 1𝑥𝑦2 +
𝐴03

(2𝑘 + 1)3/2) ,
𝑑𝑦
𝑑𝑡 = 𝑥 − (𝐵30𝑥3 +

𝐵21√2𝑘 + 1𝑥
2𝑦 + 𝐵122𝑘 + 1𝑥𝑦2

+ 𝐵03
(2𝑘 + 1)3/2𝑦

3) ,

(15)

where

𝐴30 = −2𝐴2 − 2𝐴3 − 3𝐴4 + 2𝐴2𝑘 + 𝐴4𝑘16(1 + 2𝑘)3 ,

𝐴21 = −9𝐵1 + 𝐵2 + 𝐵3 + 3𝐵1𝑘8(1 + 2𝑘)5/2 ,

𝐴12 = −2𝐴2 − 2𝐴3 + 9𝐴4 + 2𝐴2𝑘 − 3𝐴4𝑘16(1 + 2𝑘)2 ,

𝐴03 = 3𝐵1 + 𝐵2 + 𝐵3 − 𝐵1𝑘8(1 + 2𝑘)3/2 ,

𝐵30 = 3𝐵1 − 𝐵2 + 𝐵3 − 𝐵1𝑘8(1 + 2𝑘)5/2 ,

𝐵21 = −2𝐴2 + 2𝐴3 − 45𝐴4 + 2𝐴2𝑘 + 15𝐴4𝑘16(1 + 2𝑘)2 ,

𝐵12 = −9𝐵1 − 𝐵2 + 𝐵3 + 3𝐵1𝑘8(1 + 2𝑘)3/2 ,

𝐵03 = −2𝐴2 + 2𝐴3 + 15𝐴4 + 2𝐴2𝑘 − 5𝐴4𝑘16 (1 + 2𝑘) .

(16)

By transformation

𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑥 − 𝑖𝑦, 𝑇 = 𝑖𝑡, (17)

system (15) is changed into

𝑑𝑧
𝑑𝑇 = 𝑧 + 𝑎30𝑧3 + 𝑎21𝑧2𝑤 + 𝑎12𝑧𝑤2 + 𝑎03𝑤3,
𝑑𝑤
𝑑𝑇 = −𝑤 − 𝑏30𝑤3 − 𝑏21𝑤2𝑧 − 𝑏12𝑤𝑧2 − 𝑏03𝑧3,

(18)

where

𝑎30 = (3𝑖𝐴4 + 2𝐵1) (𝑘 − 3)16(1 + 2𝑘)5/2 ,

𝑎21 = −𝑖𝐴2 + 𝐵2 + 𝑖𝐴2𝑘8(1 + 2𝑘)5/2 ,

𝑎12 = − 𝑖 (𝐴3 − 𝑖𝐵3)8(1 + 2𝑘)5/2 ,

𝑎03 = − 𝑖𝐴4 (𝑘 − 3)8(1 + 2𝑘)5/2 , 𝑏𝑖𝑗 = 𝑎𝑖𝑗.

(19)

After careful computation by using formula in (4), we
have the following.

Theorem 7. For system (18), the first 5 Lyapunov constants at
the origin are given by

𝜆1 = 𝑖𝐴2 (𝑘 − 1)4(1 + 2𝑘)5/2 ,

𝜆2 = 𝑖 (2𝐴3𝐵1 + 3𝐴4𝐵3) (𝑘 − 3)64(1 + 2𝑘)5 .
(20)

When 𝐴4𝐵1 /= 0
𝜆3 =
𝑖𝐴4 (3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) (𝑘 − 3) (−9 + 3𝑘 − 2𝑝) (−3 + 𝑘 + 6𝑝)

8192(1 + 2𝑘)15/2
,

𝜆4 =
𝑖𝐴4𝐵2 (3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) (𝑘 − 3)

2 (−9 + 3𝑘 − 2𝑝)

49152(1 + 2𝑘)10
,

𝜆5 =
𝑖𝐴4𝐵
2
1 (3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) (𝑘 − 3)

4 (−9 + 3𝑘 − 2𝑝)

2654208(1 + 2𝑘)25/2
.

(21)

When 𝐴4 = 0, 𝐵1 /= 0
𝜆2 = 𝑖𝐴3𝐵1 (𝑘 − 3)32(1 + 2𝑘)5 . (22)

When 𝐴4 /= 0, 𝐵1 = 0
𝜆2 = 3𝑖𝐴4𝐵3 (𝑘 − 3)64(1 + 2𝑘)5 ,

𝜆3 = 3𝑖𝐴4 (2𝐴3 − 3𝐴4 + 𝐴4𝑘) (−2𝐴3 − 27𝐴4 + 9𝐴4𝑘) (𝑘 − 3)8192(1 + 2𝑘)15/2 ,

𝜆4 = − 𝑖𝐴4𝐵2 (−2𝐴3 − 27𝐴4 + 9𝐴4𝑘) (𝑘 − 3)
2

49152(1 + 2𝑘)10 .
(23)

When 𝐴4 = 𝐵1 = 0
𝜆2 = 𝜆3 = 𝜆4 = ⋅ ⋅ ⋅ = 0. (24)

In the above expression of 𝜆𝑘, one has already let 𝜆1 = 𝜆2 =𝜆3 = 𝜆4 = 0.
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FromTheorem 7, we obtain the following assertion.

Proposition 8. The first 5 Lyapunov constants at the origin of
system (18) are zero if and only if one of the following conditions
is satisfied:

𝑘 = 3, 𝐴2 = 0, (25)

𝐴2 = 0, 𝐴3 = 3 (3𝑘 − 9)2 𝐴4, 𝐵3 = −2 (3𝑘 − 9) 𝐵1,
(26)

𝐴2 = 0, 2𝐴3𝐵1 = −3𝐴4𝐵3, 𝐵1 = −32𝐴4, (27)

𝐴2 = 0, 2𝐴3𝐵1 = −3𝐴4𝐵3, 𝐵1 = 32𝐴4, (28)

𝐴2 = 𝐴3 = 𝐴4 = 0, (29)

𝐴2 = 𝐵1 = 𝐵2 = 𝐵3 = 0, 𝐴3 = −𝑘 − 32 𝐴4, (30)

𝑘 = 1, 𝐴3 = −9𝐴4, 𝐵3 = 6𝐵1, (31)

𝑘 = 1, 2𝐴3𝐵1 = −3𝐴4𝐵3, 𝐵1 = −32𝐴4, (32)

𝑘 = 1, 2𝐴3𝐵1 = −3𝐴4𝐵3, 𝐵1 = 32𝐴4, (33)

𝑘 = 1, 𝐴3 = 𝐴4 = 0, (34)

𝑘 = 1, 𝐵1 = 𝐵2 = 𝐵3 = 0, 𝐴3 = 𝐴4. (35)

Furthermore, we have the following.

Theorem 9. The origin of system (18) is a center if and only
if the first 5 Lyapunov constants are zero; that is, one of the
conditions in Proposition 8 is satisfied.

Proof. When one of conditions (25), (27), (28), (29), (30),
(32), (33), and (34) holds, according to Theorems 6, we get
all 𝜇𝑘 = 0, 𝑘 = 1, 2 . . ..

When condition (26) holds, system (18) could be written
as

𝑑𝑥
𝑑𝑡 = −𝑦 +

(𝑘 − 3)𝐴4
2(1 + 2𝑘)5/2 𝑥

3 − 𝐵2
8(1 + 2𝑘)5/2 𝑥

2𝑦

+ 3 (𝑘 − 3)𝐴44(1 + 2𝑘)5/2 𝑥𝑦
2 + 4𝐵1𝑘 − 𝐵2 − 12𝐵18(1 + 2𝑘)5/2 𝑦3,

𝑑𝑦
𝑑𝑡 = 𝑥 +

4𝐵1𝑘 + 𝐵2 − 12𝐵1
8(1 + 2𝑘)5/2 𝑥3 − 3 (𝑘 − 3)𝐴42(1 + 2𝑘)5/2 𝑥

2𝑦

+ 𝐵2
8(1 + 2𝑘)5/2 𝑥𝑦

2 − (𝑛 − 3)𝐴4
4(1 + 2𝑘)5/2𝑦

3.

(36)

System (36) has an analytic first integral

𝐻(𝑥, 𝑦) = 12𝑥2 +
1
2𝑦2 +

4𝐵1𝑛 + 𝐵2 − 12𝐵1
32(1 + 2𝑘)5/2 𝑥4

− (𝑘 − 3)𝐴4
2(1 + 2𝑘)5/2 𝑥

3𝑦 + 𝐵2
16(1 + 2𝑘)5/2 𝑥

2𝑦2

− 𝑘 − 3
4(1 + 2𝑘)5/2𝐴4𝑥𝑦

3 − 4𝐵1𝑛 − 𝐵2 − 12𝐵132(1 + 2𝑘)5/2 𝑦4.
(37)

When condition (31) holds, system (18) could be written
as

𝑑𝑥
𝑑𝑡 = −𝑦 + √3(

𝐴427 𝑥3 −
𝐵2216𝑥2𝑦

+𝐴418 𝑥𝑦2 −
−8𝐵1 + 𝐵2216 𝑦3) ,

𝑑𝑦
𝑑𝑡 = 𝑥 +

−8𝐵1 + 𝐵272√3 𝑥3 + 𝐴43√3𝑥
2𝑦

+ 𝐵272√3𝑥𝑦
2 + 𝐴418√3𝑦

3.

(38)

System (38) has an analytic first integral

𝐻(𝑥, 𝑦) = 12𝑥2 +
1
2𝑦2 −

−8𝐵1 − 𝐵2864 𝑦4 + √3 (−8𝐵1 + 𝐵2)864 𝑥4

+ √3432𝐵2𝑥2𝑦2 +
√3𝐴49 𝑥3𝑦.

(39)

When condition (35) holds, system (18) could be written
as

𝑑𝑥
𝑑𝑡 = −𝑦 +

√3𝐴4108 𝑥3 −
√3𝐴4108 𝑥𝑦2,

𝑑𝑦
𝑑𝑡 = 𝑥 +

7√3𝐴4108 𝑥2𝑦 − √3𝐴436 𝑦3.
(40)

System (40) has an analytic first integral

𝐻(𝑥, 𝑦) = 12𝑥2 +
1
2𝑦2 −

√3𝐴4108 𝑥3𝑦 −
√3𝐴436 𝑥𝑦3. (41)

Next, wewill prove that when the critical point𝑂(0, 0) is a
5-order weak focus, the perturbed system of (15) can generate
5 limit cycles enclosing the origin of perturbation system (15).

Using the fact

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 0, 𝜆5 /= 0, (42)

we obtain the following.
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Theorem 10. The origin of system (18) is a 5-order weak focus
if and only if one of the following conditions is satisfied:

𝐴2=0, 𝐴3= 3 − 𝑘2 𝐴4, 𝐵3=−3 − 𝑘3 𝐵1, 𝐵2=0,
𝐴4𝐵21 (3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) (𝑘 − 3) /= 0,

(43)

𝑘 = 1, 𝐴3 = 𝐴4, 𝐵3 = −23𝐵1, 𝐵2 = 0,
𝐴4𝐵1 (3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) /= 0.

(44)

We next study the perturbed system of (15) as follows:

𝑑𝑥
𝑑𝑡 = 𝛿𝑥 − 𝑦 − √2𝑘 + 1(𝐴30𝑥3 +

𝐴21√2𝑘 + 1𝑥
2𝑦

+ 𝐴122𝑘 + 1𝑥𝑦2 +
𝐴03

(2𝑘 + 1)3/2) ,
𝑑𝑦
𝑑𝑡 = 𝛿𝑦 + 𝑥 − (𝐵30𝑥3 +

𝐵21√2𝑘 + 1𝑥
2𝑦

+ 𝐵122𝑘 + 1𝑥𝑦2 +
𝐵03

(2𝑘 + 1)3/2) .
(45)

Theorem 11. If the origin of system (15) is a 5-order weak focus,
for 0 < 𝛿 ≪ 1, making a small perturbation to the coefficients
of system (15), then, for system (45), in a small neighborhood
of the origin, there exist exactly 5 small amplitude limit cycles
enclosing the origin 𝑂(0, 0).
Proof. It is easy to check that when condition (43) or (44)
holds,

𝜕 (𝜆1, 𝜆2, 𝜆3, 𝜆4)𝜕 (𝐴2, 𝐴3, 𝐵3, 𝐵2) /= 0. (46)

From the statement mentioned above, according to the
classical theory of Bautin, there exist 5 limit cycles in a small
enough neighborhood of the origin.
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[6] M. J. Álvarez and A. Gasull, “Monodromy and stability for
nilpotent critical points,” International Journal of Bifurcation
and Chaos, vol. 15, no. 4, pp. 1253–1265, 2005.
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