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The asymptotic behavior of a class of switched stochastic cellular neural networks (CNNs) with mixed delays (discrete time-
varying delays and distributed time-varying delays) is investigated in this paper. Employing the average dwell time approach
(ADT), stochastic analysis technology, and linearmatrix inequalities technique (LMI), some novel sufficient conditions on the issue
of asymptotic behavior (the mean-square ultimate boundedness, the existence of an attractor, and the mean-square exponential
stability) are established. A numerical example is provided to illustrate the effectiveness of the proposed results.

1. Introduction

Since Chua and Yang’s seminal work on cellular neural
networks (CNNs) in 1988 [1, 2], it has witnessed the suc-
cessful applications of CNN in various areas such as signal
processing, pattern recognition, associative memory, and
optimization problems (see, e.g., [3–5]). From a practical
point of view, both in biological and man-made neural net-
works, processing of moving images and pattern recognition
problems require the introduction of delay in the signals
transmitted among the cells [6, 7]. After the widely use of
discrete delays, distributed delays arise because that neural
networks usually have a spatial extent due to the presences
of a multitude of parallel pathway with a variety of axon sizes
and lengths.Themathematical model can be described by the
following differential equations:

𝑑𝑥
𝑖 (𝑡) = − 𝑑

𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖 (𝑡)))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

𝑡−ℎ𝑖(𝑡)

𝑓
𝑗
(𝑥
𝑗 (𝑠)) d𝑠 + 𝐽𝑖,

𝑖 = 1, . . . , 𝑛,

(1)

where 𝑡 ≥ 0, 𝑛 ≥ 2 corresponds to the number of units in a
neural network; 𝑥

𝑖
(𝑡) denotes the potential (or voltage) of cell

𝑖 at time 𝑡; 𝑓
𝑗
(⋅) denotes a nonlinear output function; 𝑑

𝑖
> 0

denotes the rate with which the cell 𝑖 resets its potential to
the resting state when isolated from other cells and external
inputs; 𝑎

𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
denote the strengths of connectivity between

cell 𝑖 and 𝑗 at time 𝑡, respectively; 𝜏
𝑖
(𝑡) and ℎ

𝑖
(𝑡) correspond to

the discrete time-varying delays and distributed time-varying
delays, respectively.

Neural network is nonlinearity; in the real world, non-
linear problems are not exceptional, but regular phenomena.
Nonlinearity is the nature of matter and its development
[8, 9]. Although discrete delays combined with distributed
delays can usually provide a good approximation for prime
model, most real models are often affected by so many
external perturbations which are of great uncertainty. For
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instance, in electronic implementations, it was realized
that stochastic disturbances are mostly inevitable owing to
thermal noise. Just as Haykin [10] point out that in real
nervous systems, synaptic transmission is a noisy process
brought on by random fluctuations from the release of neu-
rotransmitters and other probabilistic causes. Consequently,
noise is unavoidable and should be taken into considera-
tion in modeling. Moreover, it has been well recognized
that a CNN could be stabilized or destabilized by certain
stochastic inputs. Therefore, it is of significant importance
to consider stochastic effects to the delayed neural networks.
One approach to the mathematical incorporation of such
effects is to use probabilistic threshold models. However, the
previous literatures all focus on the stability of stochastic
neural networks with delays [11–14]. Actually, studies on
dynamical systems involve not only a discussion of the
stability property, but also other dynamic behaviors such as
the ultimate boundedness and attractor. However, there are
very few results on the ultimate boundedness and attractor
for stochastic neural networks [15–17]. Hence, discussing the
asymptotic behavior of neural networks with mixed delays is
valuable and meaningful.

On the other hand, neural networks often exhibit a special
characteristic of network mode switching; that is, a neural
network sometimes has finite modes that switch from one to
another at different times according to a switching law gener-
ated from a switching logic. As an important class of hybrid
systems, switched systems arise in many practical processes.
In current papers, the analysis of switched systems has drawn
considerable attention since they have numerous applications
in control of mechanical systems, computer communities,
automotive industry, electric power systems and many other
fields [18–22]. Most recently, the stability analysis of switched
neural systems has been further investigated which was
mainly based on Lyapunov functions [23, 24]. It is worth
noting that the average dwell time (ADT) approach is an
effective method for the switched systems, which avoid
the common Lyapunov function and can be adopted to
obtain less conservative stability conditions. For instance,
based on the average dwell time method, the problems of
stability have been discussed for uncertain switched Cohen-
Grossberg neural networks with interval time-varying delay
and distributed time-varying delay in [25]. In [26], the
average dwell time method has been utilized to get some
sufficient conditions for the exponential stability and the
weighted 𝐿

2
gain for a class of switched systems.

However, it is worth emphasizing thatwhen the activation
functions are unbounded in some special applications, the
existence of equilibrium point cannot be guaranteed [27].
Therefore, in these circumstances, the discussing of stability
of equilibrium point for switched neural networks turns to
be unreachable, which motivated us to consider the ultimate
boundedness and attractor for the switched neural networks.
Unfortunately, as far as we know, the issue of asymptotic
behavior of switched systems with mixed time delays has
not been investigated yet, let alone studying the asymptotic
behavior of switched stochastic systems. Therefore, these
researches are challenging and interesting since they integrate
the switched hybrid system into the stochastic system and are

thus theoretically and practically significant. Notice that the
asymptotic behavior of switched stochastic neural networks
with mixed delays should be studied intensively.

Motivated by the above analysis, the main purpose of this
paper is to get sufficient conditions on the asymptotic behav-
ior (the mean-square ultimate boundedness, the existence of
an attractor, and mean-square exponential stability) for the
switched stochastic system.This paper is organized as follows.
In Section 2, the considered model of switched stochas-
tic CNN with mixed delays is presented. Some necessary
assumptions, definitions and lemmas are also given in this
section. In Section 3,mean-square ultimate boundedness and
attractor for the proposed model are studied. A numerical
example is arranged to demonstrate the effectiveness of the
theoretical results in Section 4, and we conclude this paper in
Section 5.

2. Problem Formulation

In general, a stochastic cellular neural network with mixed
delays can be described as follows:

𝑑𝑥 (𝑡) = [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽] 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(2)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑅
𝑛, 𝐹(𝑥(𝑡)) = (𝑓

1
(𝑥
1
(𝑡)),

. . . , 𝑓
𝑛
(𝑥
𝑛
(𝑡)))
𝑇, 𝐷 = diag(𝑑

1
, . . . , 𝑑

𝑛
), 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 =
(𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

, 𝐽 = (𝐽
1
, . . . , 𝐽

𝑛
)
𝑇, 𝜏(𝑡) = (𝜏

1
(𝑡), . . .,

𝜏
𝑛
(𝑡))
𝑇, ℎ(𝑡) = (ℎ

1
(𝑡), . . . , ℎ

𝑛
(𝑡))
𝑇, 𝐺(⋅, ⋅) is a 𝑛 × 𝑛 matrix

valued function, and 𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑛
(𝑡))
𝑇 is an 𝑛-dim-

ensional Brownian motion defined on a complete probability
space (Ω,F,P) with a natural filtration {F

𝑡
}
𝑡≥0

(i.e., F
𝑡
=

𝜎{𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}).
By introducing switching signal into the system (2) and

taking a set of neural networks as the individual subsystems,
the switched system can be obtained, which is described as

𝑑𝑥 (𝑡) = [ − 𝐷
𝜎(𝑡)
𝑥 (𝑡) + 𝐴𝜎(𝑡)𝐹 (𝑥 (𝑡)) + 𝐵𝜎(𝑡)𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶
𝜎(𝑡)
∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽] 𝑑𝑡

+ 𝐺
𝜎(𝑡) (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(3)

where 𝜎(𝑡) : [0, +∞) → Σ = {1, 2 . . . 𝑚} is the switching
signal. At each time instant 𝑡, the index 𝜎(𝑡) ∈ Σ (i.e., 𝜎(𝑡) =
𝑖) of the active subsystem means that the 𝑖th subsystem is
activated.

For the convenience of discussion, it is necessary to
introduce some notations. 𝑅𝑛 denotes the 𝑛-dimensional
Euclidean space. 𝑋 ≤ 𝑌 (𝑋 < 𝑌) means that each pair of
corresponding elements of𝑋 and𝑌 satisfies the inequality “≤
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(<)”.𝑋 is especially called a positive (negative)matrix if𝑋 > 0

(< 0). 𝑋𝑇 denotes the transpose of any square matrix 𝑋, and
the symbol “∗” within the matrix represents the symmetric
term of the matrix. 𝜆min(𝑋)means the minimum eigenvalue
of matrix𝑋, and 𝜆max(𝑋)means the maximum eigenvalue of
matrix𝑋. 𝐼 denotes unit matrix.

Let C([−𝜏∗, 0], 𝑅𝑛) denote the Banach space of contin-
uous functions which mapping from [−𝜏

∗
, 0] to 𝑅𝑛 with

is the topology of uniform convergence. For any ‖𝜑‖ ∈

C([−𝜏∗, 0], 𝑅𝑛), we define ‖𝜑‖ = max
1≤𝑖≤𝑛

sup
𝑡−𝜏∗<𝑠≤𝑡

|𝜑
𝑖
(𝑠)|.

The initial conditions for system (3) are given in the form:

𝑥 (𝑡) = 𝜑, 𝜑 ∈ CF0
([−𝜏
∗
, 0] , 𝑅

𝑛
) , (4)

where CF0
([−𝜏
∗
, 0], 𝑅

𝑛
) is the family of all F

0
-measurable

boundedC([−𝜏∗, 0], 𝑅𝑛)-valued random variables.
Throughout this paper, we assume the following assump-

tions are always satisfied.
(𝐻
1
) The discrete time-varying delay 𝜏(𝑡) and distributed
time-varying delay ℎ(𝑡) are satisfying

0 ≤ 𝜏 (𝑡) ≤ 𝜏, 0 ≤ ℎ (𝑡) ≤ ℎ, 𝜏
∗
= max
1≤𝑖≤𝑛

{𝜏, ℎ} , (5)

where 𝜏, ℎ, 𝜏∗ are scalars.
(𝐻
2
) There exist constants 𝑙

𝑗
and 𝐿

𝑗
, 𝑖 = 1, 2, . . . , 𝑛, such

that

𝑙
𝑗
≤
𝑓
𝑗 (𝑥) − 𝑓𝑗 (𝑦)

𝑥 − 𝑦
≤ 𝐿
𝑗
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦. (6)

Moreover, we define

Σ
1
= diag {𝑙

1
𝐿
1
, 𝑙
2
𝐿
2
, . . . , 𝑙
𝑛
𝐿
𝑛
} ,

Σ
2
= diag {𝑙

1
+ 𝐿
1
, 𝑙
2
+ 𝐿
2
, . . . , 𝑙
𝑛
+ 𝐿
𝑛
} .

(7)

(𝐻
3
) We assume that 𝐺(𝑡, 𝑥, 𝑦) : 𝑅

+
× 𝑅
𝑛
× 𝑅
𝑛

→

𝑅
𝑛×𝑚 is locally Lipschitz continuous and satisfies the

following condition:

trace [𝐺𝑇 (𝑡, 𝑥, 𝑦) 𝐺 (𝑡, 𝑥, 𝑦)] ≤ 𝑥𝑇𝑈𝑇
1
𝑈
1
𝑥

+ 𝑦
𝑇
𝑈
𝑇

2
𝑈
2
𝑦 + 2𝑥

𝑇
𝑈
𝑇

1
𝑈
2
𝑦,

(8)

where 𝑈
1
> 0, 𝑈

2
> 0 are constant matrices with

appropriate dimensions.
Some definitions and lemmas are introduced as follows.

Definition 1 (see [15]). System (2) is called mean-square
ultimate boundedness if there exists a constant vector 𝐵 > 0,
such that, for any initial value 𝜑 ∈ CF0

, there is a 𝑡 = 𝑡(𝜑) >
0, for all 𝑡 ≥ 𝑡, the solution 𝑥(𝑡, 𝜑) of system (2) satisfies

𝐸
𝑥 (𝑡, 𝜑)


2
≤ 𝐵. (9)

In this case, the set A = {𝜑 ∈ CF0
| 𝐸‖𝜑(𝑠)‖

2
≤ 𝐵} is said

to be an attractor of system (2) in mean square sense.
Clearly, proposition above equals to

lim
𝑡→∞

sup𝐸‖𝑥(𝑡)‖2 ≤ 𝐵.

Definition 2 (see [28]). For any switching signal 𝜎(𝑡), corre-
sponding a switching sequence {(𝜎(𝑡

0
), 𝑡
0
), . . . (𝜎(𝑡

𝑘
), 𝑡
𝑘
), . . . , |

𝑘 = 0, 1, . . .}, where (𝜎(𝑡
𝑘
), 𝑡
𝑘
) means the 𝜎(𝑡

𝑘
)th subsystem,

is activated during 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘−1
), and 𝑘 denotes the switching

ordinal number. Given any finite constants 𝑇
1
, 𝑇
2
satisfying

𝑇
2
> 𝑇
1
≥ 0 denotes the number of discontinuity of

a switching signal 𝜎(𝑡) over the time interval (𝑇
1
, 𝑇
2
) by

𝑁
𝜎
(𝑇
1
, 𝑇
2
). If𝑁

𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+(𝑇
2
−𝑇
1
)/𝑇
𝛼
holds for𝑇

𝛼
> 0,

𝑁
0
> 0, then 𝑇

𝛼
> 0 is called the average dwell time.𝑁

0
is the

chatter bound.

Lemma 3. Let 𝑋 and 𝑌 be any 𝑛-dimensional real vectors, 𝑃
be a positive semidefinite matrix and a scalar 𝜀 > 0. Then the
following inequality holds:

2𝑋
𝑇
𝑃𝑌 ≤ 𝜀𝑋

𝑇
𝑃𝑋 + 𝜀

−1
𝑌
𝑇
𝑃𝑌. (10)

Lemma 4 (see [29]). For any positive definite constant matrix
𝑀 ∈ R𝑛×𝑛, and a scalar 𝑟, if there exists a vector function
𝜂 : [0, 𝑟] → R𝑛 such that the integrals ∫𝑟

0
𝜂
𝑇
(𝑠)𝑀𝜂(𝑠)d𝑠 and

∫
𝑟

0
𝜂(𝑠)d𝑠 are well defined, then

∫

𝑟

0

𝜂
𝑇
(𝑠)𝑀𝜂 (𝑠) d𝑠 ≥ 1

𝑟
∫

𝑟

0

𝜂
𝑇
(𝑠) d𝑠𝑀∫

𝑟

0

𝜂 (𝑠) d𝑠. (11)

3. Main Results

LetC2,1 : (𝑅𝑛 × 𝑅+; 𝑅+) denote the family of all nonnegative
functions 𝑉(𝑡, 𝑥) on 𝑅𝑛 × 𝑅+ which are continuously twice
differentiable in 𝑥 and once differentiable in 𝑡. If 𝑉 ∈

C2,1 : (𝑅𝑛 × 𝑅+; 𝑅+), define an operatorL𝑉 associated with
general stochastic system 𝑑𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑡)𝑑𝑡 + 𝐺(𝑥(𝑡), 𝑥(𝑡 −

𝜏(𝑡)))𝑑𝑤(𝑡) as

L𝑉 (𝑡, 𝑥) = 𝑉𝑡 (𝑡, 𝑥) + 𝑉𝑥 (𝑡, 𝑥) 𝑓 (𝑥 (𝑡) , 𝑡)

+
1

2
trace {𝐺𝑇 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑉𝑥𝑥 (𝑡, 𝑥)

×𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) } ,

(12)

where

𝑉
𝑡 (𝑡, 𝑥)=

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
, 𝑉

𝑥 (𝑡, 𝑥)=(
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑛

)

𝑇

,

𝑉
𝑥𝑥 (𝑡, 𝑥) = (

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(13)

Theorem 5. If there are constants 𝜇, ] such that ̇𝜏(𝑡) ≤ 𝜇,
ℎ̇(𝑡) ≤ ], we denote 𝑔(𝜇), 𝑘(]) as:

𝑔 (𝜇) = {
(1 − 𝜇) 𝑒

−𝛼𝜏
, 𝜇 ≤ 1;

1 − 𝜇, 𝜇 ≥ 1,

𝑘 (]) = {
(1 − ]) 𝑒−𝛼ℎ, ] ≤ 1;

1 − ], ] ≥ 1.

(14)
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For a given constant 𝛼 > 0, if there exist positive definite
matrixes 𝑃 = diag(𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
), 𝑄, 𝑅, 𝑆, 𝑍, 𝑈

1
, 𝑈
2
, 𝑌
𝑖
=

diag(𝑌
𝑖1
, 𝑌
𝑖2
, . . . , 𝑌

𝑖𝑛
), 𝑖 = 1, 2, such that the following condition

holds:

Δ
1
=

[
[
[
[
[

[

Φ
11
Φ
12
Φ
13
Φ
14

0 Φ
16

∗ Φ
22

0 Φ
24

0 0

∗ ∗ Φ
33

0 0 0

∗ ∗ ∗ Φ
44
Φ
55

0

∗ ∗ ∗ ∗ 0 Φ
66

]
]
]
]
]

]

< 0,

Φ
11
= 2𝛼𝑃 − 2𝐷𝑃 + 𝑄 + 𝜏

2
𝑆 − 2Σ

1
𝑌
1
+ 𝛼𝐼 + 𝑈

𝑇

1
𝑃𝑈
1
,

Φ
12
= 𝑈
𝑇

1
𝑃𝑈
2
, Φ

13
= 𝑃𝐴 + Σ

2
𝑌
1
,

Φ
14
= 𝑃𝐵, Φ

16
= 𝑃𝐶,

Φ
22
= −𝑔 (𝜇)𝑄 − 2Σ

1
𝑌
2
+ 𝛼𝐼 + 𝑈

𝑇

2
𝑃𝑈
2
,

Φ
24
= Σ
2
𝑌
2
, Φ

33
= 𝑅 + ℎ

2
𝑍 − 2𝑌

1
+ 𝛼𝐼,

Φ
44
= −𝑘 (]) 𝑅 − 2𝑌2 + 𝛼𝐼,

Φ
55
= −𝑔 (𝜇) 𝑆, Φ

66
= −𝑘 (]) 𝑍,

(15)

then system (2) is mean-square ultimate boundedness.

Proof. Consider the positive definite Lyapunov functional as
follows:

𝑉 (𝑡) = 𝑉1 (𝑡) + 𝑉2 (𝑡) + 𝑉3 (𝑡) + 𝑉4 (𝑡) + 𝑉5 (𝑡) , (16)

where

𝑉
1 (𝑡) = 𝑒

𝛼𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2 (𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇
(𝑠) 𝑄𝑒

𝛼𝑠
𝑥 (𝑠) d𝑠,

𝑉
3 (𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇
(𝑥 (𝑠)) 𝑅𝑒

𝛼𝑠
𝐹 (𝑥 (𝑠)) d𝑠,

𝑉
4 (𝑡) = 𝜏∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

𝑥
𝑇
(𝑠) 𝑆𝑒
𝛼𝑠
𝑥 (𝑠) d𝑠d𝜃,

𝑉
5 (𝑡) = ℎ∫

0

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

𝐹
𝑇
(𝑥 (𝑠)) 𝑍𝑒

𝛼𝑠
𝐹 (𝑥 (𝑠)) d𝑠d𝜃.

(17)

Then, by Ito’s formula, the stochastic derivative of 𝑉(𝑥, 𝑡) is

𝑑𝑉 (𝑥, 𝑡) = L𝑉 (𝑥, 𝑡) 𝑑𝑡

+ 𝑉
𝑥 (𝑥, 𝑡) 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(18)

the operator L𝑉 along the trajectory of system (2) can be
obtained

L𝑉
1 (𝑡) =

𝜕𝑉
1 (𝑥 (𝑡) , 𝑡)

𝜕𝑡
+
𝜕𝑉
1 (𝑥 (𝑡) , 𝑡)

𝜕𝑥

× [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽]

+
1

2
trace[𝐺𝑇 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))

𝜕
2
𝑉
1 (𝑥 (𝑡) , 𝑡)

𝜕𝑥2

×𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) ]

= 𝛼𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 2𝑒

𝛼𝑡
𝑥
𝑇
(𝑡) 𝑃

× [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽]

+ 𝑒
𝛼𝑡trace [𝐺𝑇 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑃

×𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) ] .

(19)

From Assumption (𝐻
3
), Lemma 3, and (19), we can get

L𝑉
1 (𝑡) ≤ 2𝛼𝑒

𝛼𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 2𝑒

𝛼𝑡
𝑥
𝑇
(𝑡) 𝑃

× [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠] + 𝑒𝛼𝑡𝛼−1𝐽𝑇𝑃𝐽

+ 𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑈
𝑇

1
𝑃𝑈
1
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑈

𝑇

2
𝑃𝑈
2
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇
(𝑡) 𝑈
𝑇

1
𝑃𝑈
2
𝑥 (𝑡 − 𝜏 (𝑡)) .

(20)

Similarly, calculating the operator L𝑉
𝑖
(𝑖 = 2, 3, 4, 5),

along the trajectory of system (2), one can get

L𝑉
2
= 𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑒
𝛼(𝑡−𝜏(𝑡))

𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))
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≤ 𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡)

− (1 − 𝜇) 𝑒
𝛼(𝑡−𝜏)

𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

≤ 𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡)

− 𝑔 (𝜇) 𝑒
𝛼𝑡
𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡)) ,

L𝑉
3
≤ 𝑒
𝛼𝑡
𝐹
𝑇
(𝑥 (𝑡)) 𝑅𝐹 (𝑥 (𝑡))

− 𝑘 (]) 𝑒
𝛼𝑡
𝐹
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑅𝐹 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

L𝑉
4
= 𝜏 [𝜏 (𝑡) 𝑒

𝛼𝑡
𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑒
𝛼(𝑡−𝜏(𝑡))

∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇
(𝑠) 𝑆𝑥 (𝑠) d𝑠]

≤ 𝜏
2
𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡)

− 𝜏𝑔 (𝜇) 𝑒
𝛼𝑡
∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇
(𝑠) 𝑆𝑥 (𝑠) d𝑠,

L𝑉
5
≤ ℎ
2
𝑒
𝛼𝑡
𝐹
𝑇
(𝑥 (𝑡)) 𝑍𝐹 (𝑥 (𝑡))

− ℎ𝑘 (]) 𝑒
𝛼𝑡
∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇
(𝑥 (𝑠)) 𝑍𝐹 (𝑥 (𝑠)) d𝑠.

(21)

According to Lemma 4, the following inequalities can be
obtained:

∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇
(𝑠) 𝑆𝑥 (𝑠) d𝑠

≥
1

𝜏
∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇
(𝑠) d𝑠𝑆 ∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠,

∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇
(𝑥 (𝑠)) 𝑍𝐹 (𝑥 (𝑠)) d𝑠

≥
1

ℎ
∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇
(𝑥 (𝑠)) d𝑠𝑍∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠.

(22)

Then, we can get

L𝑉
4
≤ 𝜏
2
𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑆𝑥 (𝑡)

− 𝑔 (𝜇) 𝑒
𝛼𝑡
∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇
(𝑠) d𝑠𝑆 ∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠,

L𝑉
5
≤ ℎ
2
𝑒
𝛼𝑡
𝐹
𝑇
(𝑥 (𝑡)) 𝑍𝐹 (𝑥 (𝑡))

− 𝑘 (]) 𝑒
𝛼𝑡
∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇
(𝑥 (𝑠)) d𝑠𝑍∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠.

(23)

On the other hand, it follows from Assumption (𝐻
2
) that

we can easily obtain

[𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝑓𝑖 (0) − 𝐿 𝑖𝑥𝑖 (𝑡)]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝑓𝑖 (0) − 𝑙𝑖𝑥𝑖 (𝑡)] ≤ 0,

[𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑓𝑖 (0) − 𝐿 𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑓𝑖 (0) − 𝑙𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡))] ≤ 0,

𝑖 = 1, 2, . . . , 𝑛.

(24)

Then we obtain

0 ≤ 𝛿
1
= − 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝑓𝑖 (0) − 𝐿 𝑖𝑥𝑖 (𝑡)]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝑓𝑖 (0) − 𝑙𝑖𝑥𝑖 (𝑡)] ,

0 ≤ 𝛿
2
= − 2

𝑛

∑

𝑖=1

𝑦
2𝑖
[𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑓𝑖 (0)

−𝐿
𝑖
𝑥
𝑖 (𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡)))−𝑓𝑖 (0)−𝑙𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡))] ,

𝛿
1
= − 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝐿 𝑖𝑥𝑖 (𝑡)] [𝑓𝑖 (𝑥𝑖 (𝑡)) − 𝑙𝑖𝑥𝑖 (𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦
1𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑦
1𝑖
𝑓
𝑖 (0) [2𝑓𝑖 (𝑥𝑖 (𝑡)) − (𝐿 𝑖 + 𝑙𝑖) 𝑥𝑖 (𝑡)]

≤ − 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝐿 𝑖𝑥𝑖 (𝑡)] [𝑓𝑖 (𝑥𝑖 (𝑡)) − 𝑙𝑖𝑥𝑖 (𝑡)]

+

𝑛

∑

𝑖=1

[𝛼𝑓
2

𝑖
(𝑥
𝑖 (𝑡)) + 4𝛼

−1
𝑓
2

𝑖
(0) 𝑦
2

1𝑖
+ 𝛼𝑥
2

𝑖
(𝑡)

+𝛼
−1
𝑓
2

𝑖
(0) 𝑦
2

1𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
] .

(25)

Similarly, one can get

𝛿
2
≤ − 2

𝑛

∑

𝑖=1

𝑦
2𝑖
[𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝐿 𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑙𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡))]

+ [𝛼𝑓
2

𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) + 4𝛼

−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖

+𝛼𝑥
2

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝛼

−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
] .

(26)
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Denote

𝜁 (𝑡) = [𝑥
𝑇
(𝑡) , 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝐹

𝑇
(𝑥 (𝑡)) ,

𝐹
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) , (∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠)
𝑇

,

(∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠)
𝑇

]

𝑇

,

(27)

and combing with (16)–(26), we can get

𝑑𝑉 = L𝑉
1
𝑑𝑡 +L𝑉

2
𝑑𝑡 +L𝑉

3
𝑑𝑡 +L𝑉

4
𝑑𝑡 +L𝑉

5
𝑑𝑡

+ 2𝑃𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡)

≤ 𝑒
𝛼𝑡
𝜁
𝑇
(𝑡) Δ 1𝜁 (𝑡) 𝑑𝑡 + 𝑒

𝛼𝑡
N
1
𝑑𝑡

+ 2𝑃𝑒
𝛼𝑡
𝑥 (𝑡) 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(28)

where

N
1
= 𝛼
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

[4𝛼
−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖
+ 𝛼
−1
𝑓
2

𝑖
(0) 𝑦
2

1𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2

+4𝛼
−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖
+ 𝛼
−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
] .

(29)

By integrating both sides of (28) in time interval 𝑡 ∈ [𝑡
0
, 𝑡]

and then taking expectation results in

𝐾𝑒
𝛼𝑡
‖𝑥 (𝑡)‖

2
≤ 𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡0)) + 𝛼

−1
𝑒
𝛼𝑡
N
1

+ ∫

𝑡

𝑡0

2𝑃𝑒
𝛼𝑡
𝑥 (𝑠) 𝐺 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠))) d𝑤 (𝑠) ,

(30)

where𝐾 = 𝜆min(𝑃).
Therefore, one obtains

𝐸 {𝑉 (𝑥 (𝑡))} ≤ 𝐸 {𝑉 (𝑥 (𝑡0))} + 𝐸 {𝛼
−1
𝑒
𝛼𝑡
N
1
} , (31)

which implies

𝐸‖𝑥 (𝑡)‖
2
≤
𝑒
−𝛼𝑡
𝐸 {𝑉 (𝑥 (𝑡

0
))} + 𝛼

−1N
1

𝐾
. (32)

If one chooses 𝐵 = (1 + 𝛼
−1N
1
)/𝐾 > 0, then, for initial

value 𝜑 ∈ CF0
, there is 𝑡 = 𝑡


(𝜑) > 0, such that

𝑒
−𝛼𝑡
𝐸{𝑉(𝑥(𝑡

0
))} ≤ 1 for all 𝑡 ≥ 𝑡. According to Definition 1,

we have 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤ 𝐵 for all 𝑡 ≥ 𝑡. That is to say, system
(2) is mean-square ultimate boundedness.This completes the
proof.

Theorem 6. If all of the conditions of Theorem 5 hold, then
there exists an attractor A

𝐵
= {𝜑 ∈ CF0

| 𝐸‖𝜑(𝑠)‖
2
≤ 𝐵}

for the solutions of system (2).

Proof. If one chooses 𝐵 = (1 + 𝛼
−1N
1
)/𝐾 > 0, Theorem 5

shows that, for any 𝜑, there is 𝑡 > 0, such that 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤
𝐵 for all 𝑡 ≥ 𝑡

. Let A
𝐵

denote by A
𝐵

= {𝜑 ∈

CF0
| 𝐸‖𝜑(𝑠)‖

2
≤ 𝐵}. Clearly, A

𝐵
is closed, bounded, and

invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈A
𝐵

‖𝑥(𝑡, 𝜑)−𝑦‖ = 0.
Therefore, A

𝐵
is an attractor for the solutions of system (2).

This completes the proof.

Corollary 7. In addition to that all of the conditions of
Theorem 5 hold, if 𝐽 = 0, 𝐺(𝑡, 0, 0) = 0, and 𝑓

𝑖
(0) = 0

for all 𝑖 = 1, 2, . . . , 𝑛, then system (2) has a trivial solution
𝑥(𝑡) ≡ 0, and the trivial solution of system (2) is mean-square
exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 (𝑖 = 1, 2, . . . , 𝑛), then N

1
= 0,

and it is obvious that system (2) has a trivial solution 𝑥(𝑡) ≡ 0.
FromTheorem 5, one has

𝐸
𝑥 (𝑡, 𝜑)


2
≤ 𝐾
∗
𝑒
−𝛼𝑡
, ∀𝜑, (33)

where 𝐾∗ = 𝐸{𝑉(𝑥(𝑡
0
))}/𝐾. Therefore, the trivial solution of

system (2) is mean-square exponentially stable. This com-
pletes the proof.

According to Theorem 5–Corollary 7, we will present
conditions of mean-square ultimate boundedness for the
switched systems (3) by applying the average dwell time
method in the follow-up studies.

Theorem 8. If there are constants 𝜇, ] such that ̇𝜏(𝑡) ≤ 𝜇,
ℎ̇(𝑡) ≤ ], we denote 𝑔(𝜇), 𝑘(]) as

𝑔 (𝜇) = {
(1 − 𝜇) 𝑒

−𝛼𝜏
, 𝜇 ≤ 1;

1 − 𝜇, 𝜇 ≥ 1,

𝑘 (]) = {
(1 − ]) 𝑒−𝛼ℎ, ] ≤ 1;

1 − ], ] ≥ 1.

(34)

For a given constant 𝛼 > 0, if there exist positive definite
matrixs 𝑄

𝑖
,𝑅
𝑖
, 𝑆
𝑖
, 𝑍
𝑖
, 𝑈
1𝑖
, 𝑈
2𝑖
, 𝑃
𝑖
= diag (𝑝

𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑛
),

𝑌
𝑖
= diag (𝑌

𝑖1
, 𝑌
𝑖2
, . . . , 𝑌

𝑖𝑛
), 𝑖 = 1, 2, such that the following

condition holds

Δ
𝑖1
=

[
[
[
[
[

[

Φ
𝑖11

Φ
𝑖12

Φ
𝑖13

Φ
𝑖14

0 Φ
𝑖16

∗ Φ
𝑖22

0 Φ
𝑖24

0 0

∗ ∗ Φ
𝑖33

0 0 0

∗ ∗ ∗ Φ
𝑖44

Φ
𝑖55

0

∗ ∗ ∗ ∗ 0 Φ
𝑖66

]
]
]
]
]

]

< 0, (35)
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where

Φ
𝑖11
= 2𝛼𝑃

𝑖
− 2𝐷𝑃

𝑖
+ 𝑄
𝑖
+ 𝜏
2
𝑆
𝑖
− 2Σ
1
𝑌
1
+ 𝛼𝐼 + 𝑈

𝑇

1𝑖
𝑃𝑈
1𝑖
,

Φ
𝑖12
= 𝑈
𝑇

1𝑖
𝑃𝑈
2𝑖
, Φ

𝑖13
= 𝑃
𝑖
𝐴
𝑖
+ Σ
2
𝑌
1
,

Φ
𝑖14
= 𝑃
𝑖
𝐵
𝑖
, Φ

16
= 𝑃
𝑖
𝐶
𝑖
,

Φ
𝑖22
= −𝑔 (𝜇)𝑄

𝑖
− 2Σ
1
𝑌
2
+ 𝛼𝐼 + 𝑈

𝑇

2𝑖
𝑃𝑈
2𝑖
,

Φ
𝑖24
= Σ
2
𝑌
2
, Φ

𝑖33
= 𝑅
𝑖
+ ℎ
2
𝑍
𝑖
− 2𝑌
1
+ 𝛼𝐼,

Φ
𝑖44
= −𝑘 (]) 𝑅𝑖 − 2𝑌2 + 𝛼𝐼, Φ

𝑖55
= −𝑔 (𝜇) 𝑆

𝑖
,

Φ
𝑖66
= −𝑘 (]) 𝑍𝑖.

(36)

Then system (3) is mean-square ultimate boundedness for any
switching signal with average dwell time satisfying

𝑇
𝛼
> 𝑇
∗

𝛼
=
lnRmax
𝛼

, (37)

whereRmax = max
𝑘∈Σ,1≤𝑖≤𝑛

{R
𝑖𝑘
}.

Proof. Define the Lyapunov functional candidate

𝑉
𝜎(𝑡)

= 𝑒
𝛼𝑡
𝑥
𝑇
(𝑡) 𝑃𝜎(𝑡)𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇
(𝑠) 𝑄𝜎(𝑡)𝑒

𝛼𝑠
𝑥 (𝑠) d𝑠

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇
(𝑥 (𝑠)) 𝑅𝜎(𝑡)𝑒

𝛼𝑠
𝐹 (𝑥 (𝑠)) d𝑠

+ 𝜏∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

𝑥
𝑇
(𝑠) 𝑆𝜎(𝑡)𝑒

𝛼𝑠
𝑥 (𝑠) d𝑠 d𝜃

+ ℎ∫

0

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

𝐹
𝑇
(𝑥 (𝑠)) 𝑍𝜎(𝑡)𝑒

𝛼𝑠
𝐹 (𝑥 (𝑠)) d𝑠 d𝜃.

(38)

From (16) and (32), we have the following result:

𝐸‖𝑥 (𝑡)‖
2
≤
R
0
𝐸
𝑥 (𝑡0)


2
𝑒
−𝛼(𝑡−𝑡0)

𝐾
+
Λ

𝐾
, (39)

where Λ = 𝛼−1N
1
,R
0
is a positive constant.

When 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
], the 𝑖

𝑘
th subsystem is activated; from

(39) andTheorem 5,we can get

𝐸‖𝑥 (𝑡)‖
2
≤

R
𝑖𝑘
𝐸
𝑥 (𝑡𝑘)


2
𝑒
−𝛼(𝑡−𝑡𝑘)

𝐾
𝑖𝑘

+
Λ

𝐾
𝑖𝑘

= 𝐻
𝑖𝑘
𝐸
𝑥 (𝑡𝑘)


2
𝑒
−𝛼(𝑡−𝑡𝑘) + 𝐽

𝑖𝑘
,

(40)

where R
𝑖𝑘
is a positive constant, 𝐾

𝑖𝑘
= 𝜆min(𝑃𝑖), 𝐻𝑖𝑘 =

R
𝑖𝑘
/𝐾
𝑖𝑘
, 𝐽
𝑖𝑘
= Λ/𝐾

𝑖𝑘
.

Since the system state is continuous, it follows from (40)
that

𝐸‖𝑥 (𝑡)‖
2
≤

R
𝑖𝑘

𝑥 (𝑡𝑘)

2
𝑒
−𝛼(𝑡−𝑡𝑘)

𝐾
𝑖𝑘

+
Λ

𝐾
𝑖𝑘

= 𝐻
𝑖𝑘
𝐸
𝑥 (𝑡𝑘)


2
𝑒
−𝛼(𝑡−𝑡𝑘) + 𝐽

𝑖𝑘
≤ ⋅ ⋅ ⋅

≤ 𝑒
∑
𝑘

V=0 ln𝐻𝑖V−𝛼(𝑡−𝑡0)𝐸
𝑥 (𝑡0)


2

+ [𝐻
𝑖𝑘
𝑒
−𝛼(𝑡−𝑡𝑘)𝐽

𝑖𝑘
+ 𝐻
𝑖𝑘
𝐻
𝑖𝑘−1
𝑒
−𝛼(𝑡−𝑡𝑘−1)𝐽

𝑖𝑘−1

+ 𝐻
𝑖𝑘
𝐻
𝑖𝑘−1
𝐻
𝑖𝑘−2
𝑒
−𝛼(𝑡−𝑡𝑘−2)𝐽

𝑖𝑘−2
+ ⋅ ⋅ ⋅

+𝐻
𝑖𝑘
𝐻
𝑖𝑘−1
𝐻
𝑖𝑘−2
⋅ ⋅ ⋅ 𝐻
𝑖1
𝑒
−𝛼(𝑡−𝑡1)𝐽

𝑖1
+ 𝐽
𝑖𝑘
]

≤ 𝑒
(𝑘+1) ln𝐻max−𝛼(𝑡−𝑡0)𝐸

𝑥 (𝑡0)

2

+ [𝐻
𝑘

max𝐽max + 𝐻
𝑘−1

max𝐽max + 𝐻
𝑘−2

max𝐽max

+ ⋅ ⋅ ⋅ + 𝐻
2

max𝐽max + 𝐻max𝐽max + 𝐽max]

≤ 𝐻max𝑒
𝑘 ln𝐻max−𝛼(𝑡−𝑡0)𝐸

𝑥 (𝑡0)

2

+
𝐽max

𝐻max − 1
[𝐻
𝑘+1

max − 1]

≤ 𝐻max𝑒
ln𝐻max𝑁𝜎(𝑡0 ,𝑡)−𝛼(𝑡−𝑡0)𝐸

𝑥 (𝑡0)

2

+
𝐽max

𝐻max − 1
[𝐻
𝑘+1

max − 1]

≤
Rmax𝑒

𝑁0 lnRmax−(𝛼−(lnRmax/𝑇𝛼))(𝑡−𝑡0)

𝐾
𝑘+1

min
𝐸
𝑥 (𝑡0)


2

+
Λ [(R𝑛+1max/𝐾

𝑛+1

min) − 1]

Rmax − 𝐾min
,

(41)

where𝐾min = min
𝑖𝑘
{𝐾
𝑖𝑘
},𝐻max = max

𝑖𝑘
{𝐻
𝑖𝑘
}.

If one chooses 𝐵 = (1/𝐾min) + Λ[(R
𝑛+1

max/𝐾
𝑛+1

min) −
1]/(Rmax − 𝐾min) > 0, then, for initial value
𝜑 ∈ CF0

, there is 𝑡


= 𝑡

(𝜑) > 0, such that

Rmax𝑒
𝑁0 lnRmax−(𝛼−(lnRmax/𝑇𝛼))(𝑡−𝑡0)𝐸‖𝑥(𝑡

0
)‖
2
≤ 1 for all 𝑡 ≥ 𝑡.

According to Definition 1, we have 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤ 𝐵 for all
𝑡 ≥ 𝑡

. That is to say, system (3) is mean-square ultimate
boundedness, and the proof is completed.

Remark 9. In this paper, we construct two piecewise func-
tions 𝑔(𝜇), 𝑘(]) to remove the restrictive condition 𝜇 < 1 and
] < 1 in the results, which have reduced the conservatism of
the obtained results and also avoid the computational com-
plexity.

Remark 10. Thecondition (35) is given as in the formof linear
matrix inequalities, which are more relaxing than the alge-
braic formulation. Furthermore, by using the MATLAB LMI
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toolbox, we can check the feasibility of (35) straightforward
without tuning any parameters.

Theorem 11. If all of the conditions of Theorem 8 hold, then
there exists an attractor A

𝐵
for the solutions of system (3),

where A
𝐵
= {𝜑 ∈ CF0

| 𝐸‖𝜑(𝑠)‖
2
≤ 𝐵}.

Proof. If one chooses 𝐵 = (1/𝐾min) + Λ[(R
𝑛+1

max/𝐾
𝑛+1

min) −
1]/(Rmax −𝐾min) > 0, Theorem 8 shows that, for any 𝜑, there
is 𝑡 > 0, such that 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤ 𝐵 for all 𝑡 ≥ 𝑡

.
Let A

𝐵
denote by A

𝐵
= {𝜑 ∈ CF0

| 𝐸‖𝜑(𝑠)‖
2
≤ 𝐵}.

Clearly, A
𝐵
is closed, bounded, and invariant. Furthermore,

lim
𝑡→∞

sup inf
𝑦∈A
𝐵

‖𝑥(𝑡, 𝜑) − 𝑦‖ = 0. Therefore, A
𝐵
is an

attractor for the solutions of system (3). This completes the
proof.

Corollary 12. In addition to all that of the conditions of
Theorem 8 hold, if 𝐽 = 0, 𝐺(𝑡, 0, 0) = 0 and 𝑓

𝑖
(0) = 0

for all 𝑖 = 1, 2, . . . , 𝑛, then system (3) has a trivial solution
𝑥(𝑡) ≡ 0, and the trivial solution of system (3) is mean-square
exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 for all 𝑖 = 1, 2, . . . , 𝑛, then it is

obvious that system (3) has a trivial solution 𝑥(𝑡) ≡ 0. From
Theorem 8, one has

𝐸
𝑥 (𝑡, 𝜑)


2
≤ �̃�
∗
𝑒
−𝛼𝑡
, ∀𝜑, (42)

where �̃�∗ = (Rmax𝑒
𝑁0 lnRmax−(𝛼−(lnRmax/𝑇𝛼))(𝑡−𝑡0)𝐸‖𝑥(𝑡

0
)‖
2
/

𝐾
𝑘+1

min. Therefore, the trivial solution of system (3) is mean-
square exponentially stable. This completes the proof.

Remark 13. Assumption (𝐻
3
) is less conservative than that in

[17] since the constants 𝑙
𝑗
and 𝐿

𝑗
are allowed to be positive,

negative, or zero. Hence, the resulting activation functions
𝑓(⋅) could be nonmonotonic and are more general than the
usual forms |𝑓

𝑗
(𝑢)| ≤ 𝐾

𝑗
|𝑢|,𝐾
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛. Moreover,

unlike the bounded case, there will be no equilibrium point
for the switched system (3) under the assumption (𝐻

3
).

For this reason, to investigate the asymptotic behavior (the
ultimate boundedness and the existence of attractor) of
switched system that contains mixed delays is more complex
and challenge.

Remark 14. In this paper, the chatter bound 𝑁
0
is a positive

integer, which is more practical in significance and can
include the model𝑁

0
= 0 in [16, 25, 26] as a special case.

Remark 15. If Σ = 0, which implies that the switched delay
system (3) reduces to the usual stochastic CNN with delays.
In this case, attractor and ultimate boundedness are discussed
in [17]. And when𝑈

1
= 𝑈
2
= 0, the model in our paper turns

out to be a switchedCNNwithmixed delays; to the best of our
knowledge, there are no published results in this aspect yet.
Thus, themain results of this paper are novel.Moreover, when
uncertainties appear in the switched stochastic CNN system
(3), we can obtain the corresponding results, by applying the
similar method as in [25].

4. Illustrative Examples

In this section, we shall give a numerical example to demon-
strate the validity and effectiveness of our results. Consider
the switched cellular neural networks with two subsystems.

Consider the switched stochastic cellular neural network
system (3) with 𝑓

𝑖
(𝑥
𝑖
(𝑡)) = 0.5 tanh(𝑥

𝑖
(𝑡)),𝑓
𝑖
(0) = 0 (𝑖 = 1, 2),

𝜏(𝑡) = 0.25sin2(𝑡), ℎ(𝑡) = 0.3sin2(𝑡), and the connection
weight matrices as follows:

𝐴
1
= (

0.3 0.1

0.2 0.2
) , 𝐵

1
= (

0.2 0

0.3 0.5
) ,

𝐶
1
= (

0.2 −0.1

0.3 0.1
) , 𝑈

11
= (

0.1 0

−0.1 0.2
) ,

𝑈
21
= (

0.2 0.1

0 0.1
) , 𝐴

2
= (

0.2 0.4

0.1 0.3
) ,

𝐵
2
= (

0.1 0

−0.1 0.2
) , 𝐶

2
= (

0.3 0.2

0.1 0.2
) ,

𝑈
12
= (

0.2 0.1

0 0.3
) , 𝑈
22
= (

0.1 0

0.2 0.1
) .

(43)

From assumptions (𝐻
1
)–(𝐻
3
), we can gain 𝑑

𝑖
= 1, 𝑙
𝑖
=

0, 𝐿
𝑖
= 0.5, (𝑖 = 1, 2), 𝜏 = 0.25, ℎ = 0.3, and 𝜇 = 0.5, ] = 0.6.

Therefore, for 𝛼 = 0.5, by solving LMIs (35), we get

𝑃
1
= (

1.4968 0

0 1.4851
) , 𝑄

1
= (

1.6073 −0.0528

−0.0528 1.4567
) ,

𝑅
1
= (

1.8642 0.4698

0.4698 1.5241
) , 𝑆

1
= (

2.7467 0.0225

0.0225 1.9941
) ,

𝑍
1
= (

5.4373 0.0644

0.0644 4.5969
) , 𝑃

2
= (

1.4316 0

0 1.4528
) ,

𝑄
2
= (

1.6541 0.0229

0.0229 1.8391
) , 𝑅

2
= (

1.0837 0.4540

0.4540 1.2710
) ,

𝑆
2
= (

1.6888 0.4356

0.4356 1.6165
) , 𝑍

2
= (

4.5736 0.5698

0.5698 4.4524
) .

(44)

Using (37), we can get the average dwell time𝑇∗
𝑎
= 1.3445.

5. Conclusions

In this paper, we studied the switched stochastic cellular
neural networks with discrete time-varying delays and dis-
tributed time-varying delays. With the help of the average
dwell time approach, the novel multiple Lyapunov-Krasovkii
functionals methods, and some inequality techniques, we
obtain the new sufficient conditions guaranteeing the mean-
square ultimate boundedness, the existence of an attractor,
and the mean-square exponential stability. A numerical
example is also given to demonstrate our results. Further-
more, our derived conditions are presented in the forms of
LMIs, which aremore relaxing than the algebraic formulation
and can be easily checked in practice by the effective LMI
toolbox in MATLAB.
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