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This paper aims at studying the problem of the dynamics of switched Cohen-Grossberg neural networks with mixed delays by
using Lyapunov functional method, average dwell time (ADT) method, and linear matrix inequalities (LMIs) technique. Some
conditions on the uniformly ultimate boundedness, the existence of an attractors, the globally exponential stability of the switched
Cohen-Grossberg neural networks are developed. Our results extend and complement some earlier publications.

1. Introduction

In recent years, much attention has been devoted to the
study of neural networks due to the fact that they have been
fruitfully applied in classification of patterns and associative
memories, image processing, parallel computation, optimiza-
tion, and so on [1–3]. These applications rely crucially on the
analysis of the dynamical behavior [4–7]. Various neural net-
works, such as Hopfield neural networks, cellular neural net-
works, bidirectional associative neural networks, and Cohen-
Grossberg neural networks, have been successfully applied.
Among them, theCohen-Grossberg neural network (CGNN)
[8] is an important one, which can be described as follows:
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where 𝑡 ≥ 0, 𝑛 ≥ 2; 𝑛 corresponds to the number of units in a
neural network; 𝑥
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(𝑡) denotes the potential (or voltage) of cell
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)
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denotes the strengths of connectivity between

cells, and if the output from neuron 𝑗 excites (resp., inhibits)
neuron 𝑖, 𝑎

𝑖𝑗
≥ 0 (resp., 𝑎

𝑖𝑗
≤ 0); 𝐽

𝑖
denotes an external input

source.
Neural network is nonlinearity; in the real world, non-

linear problems are not exceptional, but regular phenomena.
Nonlinearity is the nature of matter and its development
[9, 10]. In many practical cases, time delays are common
phenomenon encountered in the implementation of neural
networks, and they may cause the undesirable dynamic
behaviors such as oscillation, divergence, or other poor
performances. Time delay exists due to the finite speeds of
the switching and transmission of signals in a network, which
is degenerate to the instability of networks furthermore. For
model (1), Ye et al. [11] introduced delays by considering the
following differential equation:
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Then, the dynamics of delayed neural networks has been
widely studied; see [1, 11–18] for some recent results concern-
ingmixed delays.TheCGNNmodels with discrete delays and
distributed delays can be characterized as follows:
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System (3) for convenience can be rewritten as the
following compact matrix form:
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where 𝑥(𝑡) = (𝑥
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𝑇 is the
constant external input.

With the rapid development of intelligent control, hybrid
systems have been investigated extensively for their signifi-
cance, which is in theory and application. As one of the most
important classes of hybrid systems, switched systems have
drawn increasing attention in the last decade [19–21]. A typi-
cal switched systems are composed of a set of subsystems and
a logical switching rule whose subsystem will be activated at
each instant of time and orchestrates the switching among the
subsystems [22]. In general, the switching rule is a piecewise
constant function dependent on the state or time.The logical
rule that orchestrates switching between these subsystems
generates switching signals [23]. Recently,many results on the
stability of switched system with time delay and parametric
uncertainties have been reported [24, 25]. Switched system
in which all subsystems are stable was studied in [26], and
Hu and Michel used dwell time approach to analyse the local
asymptotic stability of non-linear switched systems in [27].
Hespanha and Morse [28] extended this concept to develop
the average dwell time approach subsequently. Furthermore,
in [29], the stability results of switched system extended to the
case when subsystems are both stable and unstable have been
reported, and therefore we derive less conservative results.
So, average dwell time (ADT) approach turns out to be an
effective tool to study the stability of switched systems [28]
and specially when not all subsystems are stable [29].

Meanwhile, neural networks as a special kind of complex
networks, the connection topology of networks may change
frequently and often lead to link failure or new link cre-
ation during the hardware implemtation. Hence, the abrupt
changes in the network structure often occur, and switchings
between some different topologies are inevitable [30]. Thus,
the switched neural networkwas proposed and has successful
applications in the field of high-speed signal processing and
artificial intelligence [31, 32], and switched neural networks
are also used to perform the gene selection in aDNAmicroar-
ray analysis in [33]. Thus, it is of great meaning to discuss the
switched neural networks. Recently, the stability of switching
neural networks has been intensively investigated [34–36].
Robust exponential stability and 𝐻

∞
control for switched

neutral-type neural networks were discussed in [34].
In [35], delay-dependent stability analysis for switched

neural networks with time-varying delay was analyzed. In
[36], by employing nonlinear measure and LMI techniques,
some new sufficient conditions were obtained to ensure
global robust asymptotical stability and global robust expo-
nential stability of the unique equilibrium for a class of
switched recurrent neural networks with time-varying delay.

By combining the theories of switched systems and
Cohen-Grossberg neural networks, the mathematical model
of the switched Cohen-Grossberg neural networks is dis-
cussed in detail, which can be written as follows:

𝑥̇ (𝑡) = − 𝛼̂ (𝑥 (𝑡))
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(5)

The function 𝜎(𝑡) : [𝑡

0
, +∞) → 𝑁 = {1, 2 . . . , 𝑁}

is a piece-wise constant function of time, called a switching
signal, which specifies that subsystem will be activated. 𝑁
denotes the number of subsystems. The switched sequence
can be described as {𝜎(𝑡) : (𝑡

0
, 𝜎(𝑡

0
)), . . . , (𝑡

𝑘
, 𝜎(𝑡

𝑘
)), . . . , |

𝜎(𝑡

𝑘
) ∈ 𝑁, 𝑘 = 0, 1 ⋅ ⋅ ⋅ }, where 𝑡

0
denotes the initial time

and 𝑡
𝑘
is the 𝑘th switching instant. Moreover, 𝜎(𝑡) = 𝑖means

that the 𝑖th subsystem is activated. For any 𝑖 ∈ 𝑁, this means
that the matrices (𝐴

𝜎
, 𝐵

𝜎
, 𝐶

𝜎
) can taken values in the finite

set {(𝐴
1
, 𝐵

1
, 𝐶

1
), . . . , (𝐴

𝑁
, 𝐵

𝑁
, 𝐶

𝑁
)}. Meanwhile, we assume

that the state of the switched CGNN does not jump at the
switching instants; that is, the trajectory 𝑥

𝑡
is everywhere

continuous.
However, these available literatures mainly consider the

stability property of switching neural networks. In fact, except
for stability property, boundedness and attractor are also
foundational concepts of dynamical neural networks, which
play an important role in investigation of the uniqueness of
equilibrium point (periodic solutions), stability and synchro-
nization and so on [13, 14]. To the best of the author’s knowl-
edge, few authors have considered the uniformly ultimate
boundedness and attractors for switchedCGNNwith discrete
delays and distributed delays.
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As is well known, compared with linear matrix inequali-
ties (LMIs) result, algebraic result is more conservative, and
criteria in terms of LMI can be easily checked by using the
powerful Matlab LMI toolbox. This motivates us to investi-
gate the problems of the uniformly ultimate boundedness and
the existence of an attractor for switchedCGNN in this paper.
The illustrative examples are given to demonstrate the validity
of the theoretical results.

The paper is organized as follows. In Section 2, prelim-
inaries and problem formulation are introduced. Section 3
gives the sufficient conditions of uniformly ultimate bound-
edness (UUB) and the existence of an attractor for switched
CGNN. It is the main result of this paper. In Section 4, an
example is given to illustrate the effectiveness of the proposed
approach. The conclusions are summarized in Section 5.

2. Problem Formulation

Throughout this paper, we use the following notations. The
superscript “𝑇” stands for matrix transposition; 𝑅𝑛 denotes
the 𝑛-dimensional Euclidean space; the notation 𝑃 > 0

means that 𝑃 is real symmetric and positive definite; 𝐼 and
𝑂 represent the identity matrix and a zero matrix; diag{⋅ ⋅ ⋅ }
stands for a block-diagonal matrix; 𝜆min(𝑃) denotes the
minimum eigenvalue of symmetric matrix 𝑃; in symmetric
block matrices or long matrix expressions, “∗” is used to
represent a term that is induced by symmetry. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

Consider the following Cohen-Grossberg neural network
model with mixed delays (discrete delays and distributed
delays):
𝑥̇ (𝑡) = − 𝛼̂ (𝑥 (𝑡))

× [
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(6)

where

𝐻(𝑡) =
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The discrete delays and distributed delays are bounded as
follows:

0 ≤ 𝜏

𝑖
, 𝜏

∗
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1≤𝑖≤𝑛
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𝑖
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∗
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𝑖
} ; 𝛿 = max {𝜏∗, ℎ∗} ,

(8)

where 𝜏∗, ℎ∗, 𝛿 are scalars.
As usual, the initial conditions associated with system (6)

are given in the form

𝑥 (𝑡) = 𝜑 (𝑡) , −𝛿 ≤ 𝑡 ≤ 0, (9)

where 𝜑(𝑡) is a differentiable vector-valued function.

Throughout this paper, we make the following assump-
tions.

(H
1
) For any 𝑗 ∈ {1, 2, . . . , 𝑛}, there exist constants 𝑙

𝑗
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𝑗
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𝑗
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Remark 1. Theconstants 𝑙
𝑗
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𝑗
can be positive, negative, or

zero.Therefore, the activation functions𝑓(⋅) aremore general
than the forms |𝑓

𝑗
(𝑢)| ≤ 𝐾

𝑗
|𝑢|, 𝐾

𝑗
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2
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𝑗
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𝑗
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𝑗
, such that

𝛼
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𝑗
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𝑗
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𝑥

2

𝑗
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So, to obtain main results of this paper, the following
definitions and lemmas are introduced.

Definition 2 (see [15]). System (6) is uniformly ultimately
bounded; if there is ̃

𝐵 > 0, for any constant 󰜚 > 0, there is
𝑡

󸀠
= 𝑡

󸀠
(󰜚) > 0, such that ‖𝑥(𝑡, 𝑡

0
, 𝜑)‖ <

̃

𝐵 for all 𝑡 ≥ 𝑡

0
+ 𝑡

󸀠,
𝑡

0
> 0, ‖𝜑‖ < 󰜚, where the supremum norm ‖𝑥(𝑡, 𝑡

0
, 𝜑)‖ =

max
1≤𝑖≤𝑛
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−𝛿≤𝑠≤0

|𝑥

𝑖
(𝑡 + 𝑠, 𝑡

0
, 𝜑)|.

Definition 3 (see [37]). The nonempty closed set 𝐴 ⊂ 𝑅

𝑛 is
called the attractor for the solution 𝑥(𝑡; 𝜑) of system (6) if the
following formula holds:

lim
𝑡→∞

𝑑 (𝑥 (𝑡; 𝜑) ;A) = 0 a.s. (13)

in which 𝜑 ∈ 𝐶([−𝛿, 0], 𝑅

𝑛
), 𝑑(𝑥,A) = inf

𝑦∈A‖𝑥 − 𝑦‖.

Definition 4 (see [28]). For a switching signal 𝜎(𝑡) and each
𝑇 > 𝑡 ≥ 0, let 𝑁

𝜎
(𝑡, 𝑇) denote the number of discontinuities

of 𝜎(𝑡) in the interval (𝑡, 𝑇). If there exist𝑁
0
> 0 and 𝑇

𝑎
> 0

such that𝑁
𝜎
(𝑡, 𝑇) ≤ 𝑁

0
+ (𝑇 − 𝑡)/𝑇

𝑎
holds, then 𝑇

𝑎
is called

the average dwell time.𝑁
0
is the chatter bound.

Remark 5. In Definition 4, it is obvious that there exists a
positive number 𝑇

𝑎
such that a switched signal has the ADT

property, which means that the average dwell time between
any two consecutive switchings is no less than a specified
constant 𝑇

𝑎
, Hespanha and Morse have proved that if 𝑇

𝑎
is

sufficiently large, then the switched system is exponentially
stable. In addition, in [18], one can choose𝑁

0
= 0, but in our

paper, we assume that𝑁
0
> 0, this is more preferable.

Lemma 6 (see [16]). For any positive definite constant matrix
𝑊 ∈ 𝑅

𝑛×𝑛, scalar 𝑟 > 0, and vector function 𝑢(𝑡) : [𝑡 − 𝑟, 𝑡] →

𝑅

𝑛, 𝑡 ≥ 0, then

(∫

𝑟

0

𝑢 (𝑠) d𝑠)
𝑇
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𝑟

0

𝑢 (𝑠) d𝑠) ≤ 𝑟∫

𝑟

0

𝑢

𝑇
(𝑠)𝑊𝑢 (𝑠) d𝑠.

(14)
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Lemma 7 (see [38]). For any given symmetric positive definite
matrix𝑋 ∈ 𝑅

𝑛×𝑛 and scalars 𝛼 > 0, 0 ≤ 𝑑

1
< 𝑑

2
, if there exists

a vector function 𝑥̇(𝑡) : [−𝑑
2
, 0] → 𝑅

𝑛 such that the following
integration is well defined, then

− ∫

−𝑑1

−𝑑2

𝑥̇

𝑇
(𝑡 + 𝜃) 𝑒
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≤

𝛼

𝑒
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[
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1
)
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2
)
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𝑇

[

𝑋 −𝑋

−𝑋 𝑋

]
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𝑥 (𝑡 − 𝑑

1
)

𝑥 (𝑡 − 𝑑

2
)

] .

(15)

3. Main Results

Theorem 8. For a given constant 𝑎 > 0, if there is
positive definite matrix 𝑃 = diag(𝑝

1
, 𝑝

2
. . . , 𝑝

𝑛
), 𝐷
𝑖

=

diag(𝐷
𝑖1
, 𝐷
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. . . , 𝐷
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), 𝑖 = 1, 2, . . . , 𝑄, 𝑆

𝑖, such that the
following condition holds:

△ =

[

[

[

[

[

[

[

[

[

[

Φ

11
Φ

12
Φ

13
𝑃𝐵 0 𝑃𝐶 0

∗ Φ

22
0 Φ

24
0 0 0

∗ ∗ Φ
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0 0 0 0

∗ ∗ ∗ Φ
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0 0 0

∗ ∗ ∗ ∗ Φ

55
Φ
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0

∗ ∗ ∗ ∗ ∗ Φ

66
0

∗ ∗ ∗ ∗ ∗ ∗ Φ
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]

]

]

]

]

]

]

]

]

]

< 0, (16)

where

𝑄 = (

𝑄

11
𝑄

12

∗ 𝑄

22
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𝑖
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= 𝑎Ω

1
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2
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∗

𝜏

∗
𝑆
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− Ω

3
𝐷

1
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4𝑎
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𝐼 + 𝑆
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∗

𝑆
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+ ℎ

∗
𝑄
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+
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1 − 𝑒

𝑎𝜏
∗ 𝑆
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Φ
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4
𝐷

1
+ ℎ

∗
𝑄
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Φ
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3
𝐷

2
−
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∗

𝜏

∗
𝑆
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− 𝑒

−𝑎𝜏
∗

𝑆

(1)
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𝛿𝑎

1 − 𝑒

𝑎𝜏
∗ 𝑆
(2)

+

1

4𝑎

2
𝐼,

Φ

24
= Ω

4
𝐷

2
, Φ

33
= −𝐷

1
+

1

𝑎

2
𝐼 + ℎ

∗
𝑄

22
,

Φ

44
= −𝐷

2
+

1

𝑎

2
𝐼, Φ

55
= −

𝑒

−𝑎ℎ
∗

ℎ

∗
𝑄

11
,

Φ

56
= −

𝑒
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ℎ

∗
𝑄

12
, Φ

66
= −

𝑒

−𝑎ℎ
∗

ℎ

∗
𝑄

22
,

Φ

77
= 𝛿𝜏

∗
𝛼

2
𝑆

(2)
,

Ω

1
= diag{ 1

𝛼

1

,

1

𝛼

2

, . . . ,

1

𝛼

𝑛

} ,

Ω

2
= diag {𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑛
} ,

Ω

3
= diag {𝑙

1
𝐿

1
, 𝑙

2
𝐿

2
, . . . , 𝑙

𝑛
𝐿

𝑛
} ,

Ω

4
= diag{𝑙1 + 𝐿

1

2

,

𝑙

2
+ 𝐿

2

2

, . . . ,

𝑙

𝑛
+ 𝐿

𝑛

2

} ,

𝜌 = max
1≤𝑖≤𝑛

{

󵄨

󵄨

󵄨

󵄨

󵄨

𝑙

2

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

,

󵄨

󵄨

󵄨

󵄨

󵄨

𝐿

2

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

} + 1;

(17)

the symbol “∗” within the matrix represents the symmetric
term of the matrix, and then system (6) is uniformly ultimately
bounded.

Proof. Let us consider the following Lyapunov-Krasovskii
functional:

𝑉 (𝑡) = 𝑉

1 (
𝑡) + 𝑉

2 (
𝑡) + 𝑉

3 (
𝑡) , (18)

where

𝑉

1 (
𝑡) =

𝑛

∑

𝑗=1

𝑒

𝑎𝑡
𝑝

𝑗
∫

𝑥𝑗(𝑡)

0

2𝑠

𝛼

𝑗 (
𝑠)

d𝑠,

𝑉

2 (
𝑡) = ∫

𝑡

𝑡−ℎ

𝑒

𝑎𝑠
(𝑠 − (𝑡 − ℎ)) 𝜉

𝑇
(𝑠) 𝑄𝜉 (𝑠) d𝑠,

𝜉 (𝑡) = [𝑥

𝑇
(𝑡) , 𝐹

𝑇
(𝑥 (𝑡))]

𝑇

,

𝑉

3 (
𝑡) = ∫

𝑡

𝑡−𝜏

𝑒

𝑎𝑠
𝑥

𝑇
(𝑠) 𝑆

(1)
𝑥 (𝑠) d𝑠 d𝜃

+ 𝛿∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑒

𝑎𝑠
𝑥̇

𝑇
(𝑠) 𝑆

(2)
𝑥̇ (𝑠) d𝑠 d𝜃.

(19)

We proceed to evaluate the time derivative of 𝑉
1
(𝑡) along the

trajectory of system (6), and one can get

̇

𝑉

1 (
𝑡) =

𝑛

∑

𝑗=1

2 [𝑎𝑝

𝑗
𝑒

𝑎𝑡
∫

𝑥𝑗(𝑡)

0

𝑠

𝛼

𝑗 (
𝑠)

d𝑠 − 𝑝

𝑗
𝑒

𝑎𝑡
𝑥

𝑗 (
𝑡) 𝛽𝑗

(𝑥

𝑗 (
𝑡))]

+ [2𝑥

𝑇
(𝑡) 𝑃𝐴𝐹 (𝑥 (𝑡)) + 2𝑥

𝑇
(𝑡) 𝑃𝐽

+ 2𝑥

𝑇
(𝑡) 𝑃𝐵𝐹 (𝑥 (𝑡 − 𝜏))

+2𝑥

𝑇
(𝑡) 𝑃𝐶∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠] 𝑒𝑎𝑡.

(20)
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According to assumption (H
2
), we obtain the following

inequality:

2𝑎𝑝

𝑗
∫

𝑥𝑗(𝑡)

0

𝑠

𝛼

𝑗 (
𝑠)

d𝑠 ≤ 𝑎

𝛼

𝑗

𝑝

𝑗
𝑥

2

𝑗
(𝑡) . (21)

From assumption (H
3
) and inequality (21), we obtain

̇

𝑉

1 (
𝑡) ≤ 𝑎𝑒

𝑎𝑡
[𝑥

𝑇
(𝑡) Ω1

𝑃𝑥 (𝑡) − 2𝑥

𝑇
(𝑡) Ω2

𝑃𝑥 (𝑡)]

+ [2𝑥

𝑇
(𝑡) 𝑃𝐴𝐹 (𝑥 (𝑡)) + 2𝑥

𝑇
(𝑡) 𝑃𝐵𝐹 (𝑥 (𝑡 − 𝜏))

+ 2𝑥

𝑇
(𝑡) 𝑃𝐶∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 + 𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡)

+𝐽

𝑇
𝑃𝐽] 𝑒

𝑎𝑡
.

(22)

Similarly, taking the time derivative of 𝑉
2
(𝑡) along the

trajectory of system (6), we obtain

̇

𝑉

2 (
𝑡) = 𝑡𝑒

𝑎𝑡
𝜉

𝑇
(𝑡) 𝑄𝜉 (𝑡)

− (𝑡 − ℎ) 𝑒

𝑎(𝑡−ℎ)
𝜉

𝑇
(𝑡 − ℎ) × 𝑄𝜉 (𝑡 − ℎ)

− [∫

𝑡

𝑡−ℎ

𝑒

𝑎𝑠
𝜉

𝑇
(𝑠) 𝑄𝜉 (𝑠) d𝑠 + 𝑡𝑒

𝑎𝑡
𝜉

𝑇
(𝑡) 𝑄𝜉 (𝑡)

−𝑡𝑒

𝑎(𝑡−ℎ)
𝜉

𝑇
(𝑡 − ℎ) × 𝑄𝜉 (𝑡 − ℎ) ]

+ ℎ𝑒

𝑎𝑡
𝜉

𝑇
(𝑡) 𝑄𝜉 (𝑡) − ℎ𝑒

𝑎(𝑡−ℎ)
𝜉

𝑇
(𝑡 − ℎ)𝑄𝜉 (𝑡 − ℎ)

≤ ℎ

∗
𝑒

𝑎𝑡

× [𝑥

𝑇
(𝑡) 𝑄11

𝑥 (𝑡) + 𝐹

𝑇
(𝑥 (𝑡)) 𝑄

𝑇

12
𝑥 (𝑡)

+𝑥

𝑇
(𝑡) 𝑄12

𝐹 (𝑥 (𝑡)) + 𝐹

𝑇
(𝑥 (𝑡)) 𝑄22

𝐹 (𝑥 (𝑡))]

− 𝑒

𝑎(𝑡−ℎ
∗
)
∫

𝑡

𝑡−ℎ

𝜉

𝑇
(𝑠) 𝑄𝜉 (𝑠) d𝑠.

(23)

According to Lemma 6, we can conclude that

− 𝑒

𝑎(𝑡−ℎ
∗
)
∫

𝑡

𝑡−ℎ

𝜉

𝑇
(𝑠) 𝑄𝜉 (𝑠) d𝑠

≤ −

𝑒

𝑎(𝑡−ℎ
∗
)

ℎ

∗
(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠)
𝑇

𝑄(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠)

≤ −

𝑒

−𝑎ℎ
∗

ℎ

∗
(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠)
𝑇

𝑄(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠) .

(24)

Computing the derivative of 𝑉
3
(𝑡) along the trajectory of

system (6) turns out to be

̇

𝑉

3 (
𝑡) = 𝑒

𝑎𝑡
𝑥

𝑇
(𝑡) 𝑆

(1)
𝑥 (𝑡) − 𝑒

𝑎(𝑡−𝜏)
𝑥

𝑇
(𝑡 − 𝜏) 𝑆

(1)
𝑥 (𝑡 − 𝜏)

+ 𝛿∫

0

−𝜏

[𝑒

𝑎𝑡
𝑥̇

𝑇
(𝑡) 𝑆

(2)
𝑥̇ (𝑡)

−𝑒

𝑎(𝑡+𝜃)
𝑥̇

𝑇
(𝑡 + 𝜃) 𝑆

(2)
𝑥̇ (𝑡 + 𝜃)] d𝜃

≤ 𝑒

𝑎𝑡
𝑥

𝑇
(𝑡) 𝑆

(1)
𝑥 (𝑡) − 𝑒

−𝑎𝜏
∗

𝑥

𝑇
(𝑡 − 𝜏) 𝑆

(1)
𝑥 (𝑡 − 𝜏)

+ 𝛿𝜏

∗
𝑒

𝑎𝑡
𝑥̇

𝑇
(𝑡) 𝑆

(2)
𝑥̇ (𝑡)

− 𝛿∫

0

−𝜏

𝑒

𝑎(𝑡+𝜃)
𝑥̇

𝑇
(𝑡 + 𝜃) 𝑆

(2)
𝑥̇ (𝑡 + 𝜃) d𝜃,

(25)

where 𝜏∗ = max
1≤𝑖≤𝑛

{𝜏

𝑖
}.

Denoting that 𝛼 = max{𝛼
1
, 𝛼

2
, . . . , 𝛼

𝑛
}, we obtain

𝛿𝜏

∗
𝑒

𝑎𝑡
𝑥̇

𝑇
(𝑡) 𝑆

(2)
𝑥̇ (𝑡)

= 𝛿𝜏

∗
𝑒

𝑎𝑡
[𝛼̂ (𝑥 (𝑡))𝐻 (𝑡)]

𝑇
𝑆

(2)
𝛼̂ (𝑥 (𝑡))𝐻 (𝑡)

≤ 𝛿𝜏

∗
𝛼

2
𝑒

𝑎𝑡
𝐻

𝑇
(𝑡) 𝑆

(2)
𝐻(𝑡) .

(26)

Using Lemma 7, the following inequality is easily
obtained:

− 𝛿∫

0

−𝜏

𝑒

𝑎𝜃
𝑥̇

𝑇
(𝑡 + 𝜃) 𝑆

(2)
𝑥̇ (𝑡 + 𝜃) d𝜃

≤

𝛿𝑎

1 − 𝑒

𝑎𝜏
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

]

𝑇

[

𝑆

(2)
−𝑆

(2)

−𝑆

(2)
𝑆

(2)
] × [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

]

≤

𝛿𝑎

1 − 𝑒

𝑎𝜏
∗ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

]

𝑇

[

𝑆

(2)
−𝑆

(2)

−𝑆

(2)
𝑆

(2)
] × [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

] .

(27)

From assumption (H
1
), it follows that, for 𝑗 = 1, 2, . . . , 𝑛,

[𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐹

𝑗 (
0) − 𝑙

𝑗
𝑥

𝑗 (
𝑡)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐹

𝑗 (
0) − 𝐿

𝑗
𝑥

𝑗 (
𝑡)] ≤ 0,

[𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐹

𝑗 (
0) − 𝑙

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐹

𝑗 (
0) − 𝐿

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)] ≤ 0.

(28)

Then, let

Υ

1
= −

𝑛

∑

𝑗=1

𝐷

1𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐹

𝑗 (
0) − 𝑙

𝑗
𝑥

𝑗 (
𝑡)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐹

𝑗 (
0) − 𝐿

𝑗
𝑥

𝑗 (
𝑡)] ,

Υ

2
= −

𝑛

∑

𝑗=1

𝐷

2𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐹

𝑗 (
0) − 𝑙

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐹

𝑗 (
0) − 𝐿

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)] .

(29)



6 Abstract and Applied Analysis

So,

Υ

1
+ Υ

2
= −

𝑛

∑

𝑗=1

𝐷

1𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐹

𝑗 (
0) − 𝑙

𝑗
𝑥

𝑗 (
𝑡)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐹

𝑗 (
0) − 𝐿

𝑗
𝑥

𝑗 (
𝑡)]

−

𝑛

∑

𝑗=1

𝐷

2𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐹

𝑗 (
0) − 𝑙

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐹

𝑗 (
0) − 𝐿

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

= −

𝑛

∑

𝑗=1

𝐷

1𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝑙

𝑗
𝑥

𝑗 (
𝑡)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐿

𝑗
𝑥

𝑗 (
𝑡)]

−

𝑛

∑

𝑗=1

𝐷

2𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝑙

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐿

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

−

𝑛

∑

𝑗=1

𝐷

1𝑗
𝐹

2

𝑗
(0)

+

𝑛

∑

𝑗=1

𝐷

1𝑗
𝐹

𝑗 (
0) [2𝐹𝑗

(𝑥

𝑗 (
𝑡)) − (𝐿

𝑗
+ 𝑙

𝑗
) 𝑥

𝑗 (
𝑡)]

−

𝑛

∑

𝑗=1

𝐷

2𝑗
𝐹

2

𝑗
(0)

+

𝑛

∑

𝑗=1

𝐷

2𝑗
𝐹

𝑗(
0)[2𝐹𝑗

(𝑥

𝑗(
𝑡 − 𝜏)) − (𝐿

𝑗
+ 𝑙

𝑗
)𝑥

𝑗(
𝑡 − 𝜏)]

≤ −

𝑛

∑

𝑗=1

𝐷

1𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝑙

𝑗
𝑥

𝑗 (
𝑡)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡)) − 𝐿

𝑗
𝑥

𝑗 (
𝑡)]

−

𝑛

∑

𝑗=1

𝐷

2𝑗
[𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝑙

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

× [𝐹

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) − 𝐿

𝑗
𝑥

𝑗 (
𝑡 − 𝜏)]

+

𝑛

∑

𝑗=1

[

1

𝑎

2
𝐹

2

𝑗
(𝑥

𝑗 (
𝑡)) + 𝑎

2
𝐷

2

1𝑗
𝐹

2

𝑗
(0)

+

1

4𝑎

2
𝑥

2

𝑗
(𝑡) + 𝑎

2
𝐷

2

1𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

]

+

𝑛

∑

𝑗=1

[

1

𝑎

2
𝐹

2

𝑗
(𝑥

𝑗 (
𝑡 − 𝜏)) + 𝑎

2
𝐷

2

2𝑗
𝐹

2

𝑗
(0)

+

1

4𝑎

2
𝑥

2

𝑗
(𝑡 − 𝜏) + 𝑎

2
𝐷

2

2𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

] .

(30)

Using (20)–(27) and adding (29), we can derive

̇

𝑉 (𝑡) ≤

̇

𝑉

1 (
𝑡) +

̇

𝑉

2 (
𝑡) +

̇

𝑉

3 (
𝑡) +

̇

𝑉

4 (
𝑡) + 𝑒

𝑎𝑡
(Υ

1
+ Υ

2
)

≤ 𝑒

𝑎𝑡
𝑀

𝑇
(𝑡) Δ 1

𝑀(𝑡) + 𝑒

𝑎𝑡
𝐽

𝑇
𝑃𝐽

+ 𝑒

𝑎𝑡

𝑛

∑

𝑗=1

[𝑎

2
𝐷

2

1𝑗
𝐹

2

𝑗
(0) + 𝑎

2
𝐷

2

1𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

+𝑎

2
𝐷

2

2𝑗
𝐹

2

𝑗
(0) + 𝑎

2
𝐷

2

2𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

] .

(31)

Denote that

𝑀

𝑇
(𝑡) = (𝑥

𝑇
(𝑡) , 𝑥

𝑇
(𝑡 − 𝜏) , 𝐹

𝑇
(𝑥 (𝑡)) , 𝐹

𝑇
(𝑥 (𝑡 − 𝜏)) ,

(∫

𝑡

𝑡−ℎ

𝑥(𝑠)d𝑠)
𝑇

, (∫

𝑡

𝑡−ℎ

𝐹(𝑥(𝑠))d𝑠)
𝑇

, 𝐻

𝑇
(𝑥(𝑡)))

𝑇

.

(32)

By integrating both sides of (31) in time interval 𝑡 ∈ [𝑡

0
, 𝑡],

then we can obtain

𝐾𝑒

𝑎𝑡
‖𝑥 (𝑡)‖

2
≤ 𝑉 (𝑥 (𝑡))

≤ 𝑉 (𝑥 (𝑡

0
)) + 𝑎

−1
𝑒

𝑎𝑡
𝐽

𝑇
𝑃𝐽

+ 𝑒

𝑎𝑡

𝑛

∑

𝑗=1

[𝑎𝐷

2

1𝑗
𝐹

2

𝑗
(0) + 𝑎𝐷

2

1𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

+ 𝑎𝐷

2

2𝑗
𝐹

2

𝑗
(0) + 𝑎𝐷

2

2𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

] ,

(33)

which implies that

‖𝑥 (𝑡)‖

2
≤

𝑒

−𝑎𝑡
𝑉 (𝑥 (𝑡

0
)) + 𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ

𝐾

,

(34)

where𝐾 = min
1≤𝑖≤𝑛

{𝜆min(𝑃)/𝛼𝑖}, and

Υ =

𝑛

∑

𝑗=1

[𝑎𝐷

2

1𝑗
𝐹

2

𝑗
(0) + 𝑎𝐷

2

1𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

+ 𝑎𝐷

2

2𝑗
𝐹

2

𝑗
(0) + 𝑎𝐷

2

2𝑗
𝐹

2

𝑗
(0) (𝐿𝑗

+ 𝑙

𝑗
)

2

] .

(35)

If one chooses ̃𝐵 =
√
(1 + 𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ)/𝐾 > 0, then for

any constant 󰜚 > 0 and ‖𝜑‖ < 󰜚, there is 𝑡󸀠 = 𝑡

󸀠
(󰜚) > 0, such

that 𝑒−𝑎𝑡𝑉(𝑥(𝑡
0
))

2
< 1 for all 𝑡 ≥ 𝑡

󸀠. According toDefinition 2,
we have ‖𝑥(𝑡, 𝑥(𝑡

0
), 𝜑)‖ <

̃

𝐵 for all 𝑡 ≥ 𝑡

󸀠. That is to say,
system (6) is uniformly ultimately bounded. This completes
the proof.

From (18), we know that there is a positive constant 𝐿
0
,

such that

𝑉 (𝑥 (𝑡

0
)) ≤ 𝐿

0

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎𝑡0
.

(36)
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Thus, considering (34) and (36), we have the following
result:

‖𝑥 (𝑡)‖

2
≤

𝑒

−𝑎𝑡
𝑉 (𝑥 (𝑡

0
)) + 𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ

𝐾

=

𝑒

−𝑎𝑡
𝑉 (𝑥 (𝑡

0
))

𝐾

+

𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ

𝐾

≤

𝐿

0

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡0)

𝐾

+𝑁,

(37)

where𝑁 = (𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ)/𝐾.

Theorem 9. If all of the conditions of Theorem 8 hold, then
there exists an attractor ̃A

𝐵
for the solutions of system (6),

where ̃A
𝐵
= {𝑥(𝑡) : ‖𝑥(𝑡)‖ ≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If one chooses ̃

𝐵 =
√
(1 + 𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ)/𝐾 > 0,

Theorem 8 shows that for any 𝜙, there is 𝑡

󸀠
> 0, such

that ‖𝑥(𝑡, 𝑡
0
, 𝜙)‖ <

̃

𝐵 for all 𝑡 ≥ 𝑡

󸀠. Let ̃A
𝐵

= {𝑥(𝑡) :

‖𝑥(𝑡)‖ ≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}. Clearly, ̃A

𝐵
is closed, bounded, and

invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈Ã𝐵

‖𝑥(𝑡; 𝑡

0
, 𝜙)−𝑦‖ =

0. Therefore, ̃A
𝐵
is an attractor for the solutions of system

(6).

Corollary 10. In addition to the fact that all of the conditions
of Theorem 8 hold, if 𝐽 = 0, and 𝐹

𝑗
(0) = 0, then system (6) has

a trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of system (6)
is globally exponentially stable.

Proof. If 𝐽 = 0, and 𝐹
𝑗
(0) = 0, then it is obvious that system

(6) has a trivial solution 𝑥(𝑡) ≡ 0. FromTheorem 8, one has
󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡; 0, 𝜙)

󵄩

󵄩

󵄩

󵄩

2
≤ 𝐾

1
𝑒

−𝑎𝑡
, ∀𝜙,

(38)

where𝐾
1
= 𝑉(𝑥(0))/𝐾.

Therefore, the trivial solution of system (6) is globally
exponentially stable. This completes the proof.

In this section, we will present conditions for uniformly
ultimate boundedness and the existence of an attractor of the
switching CGNN by applying the average dwell time.

Now, we can consider the switched Cohen-Grossberg
neural networks with discrete delays and distributed delays
as follows:
𝑥̇ (𝑡) = − 𝛼̂ (𝑥 (𝑡))

× [

̂

𝛽 (𝑥 (𝑡)) − 𝐴

𝜎 (
𝑡) 𝐹 (𝑥 (𝑡)) − 𝐵𝐹

𝜎 (
𝑡) (𝑥 (𝑡 − 𝜏))

−𝐶

𝜎 (
𝑡) ∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽] ,

(39)

𝑥 (𝑡) = 𝜑 (𝑡) , when 𝑡 ∈ [−𝛿, 0] . (40)

Theorem 11. For a given constant 𝑎 > 0, if there is positive
definite matrix 𝑃 = diag(𝑝

𝑖1
, 𝑝

𝑖2
. . . , 𝑝

𝑖𝑛
), 𝐷
𝑖
= diag(𝐷

𝑖1
,

𝐷

𝑖2
. . . , 𝐷

𝑖𝑛
), 𝑖 = 1, 2, 𝑄

𝑖
, 𝑆

(𝑖)

𝑖
, such that the following condi-

tion holds:

△ =

[

[

[

[

[

[

[

[

[

[

Φ

𝑖11
Φ

𝑖12
Φ

𝑖13
𝑃

𝑖
𝐵

𝑖
0 𝑃

𝑖
𝐶

𝑖
0

∗ Φ

𝑖22
0 Φ

𝑖24
0 0 0

∗ ∗ Φ

𝑖33
0 0 0 0

∗ ∗ ∗ Φ

𝑖44
0 0 0

∗ ∗ ∗ ∗ Φ

𝑖55
Φ

𝑖56
0

∗ ∗ ∗ ∗ ∗ Φ

𝑖66
0

∗ ∗ ∗ ∗ ∗ ∗ Φ

𝑖77

]

]

]

]

]

]

]

]

]

]

< 0, (41)

where

𝑄 = (

𝑄

𝑖11
𝑄

𝑖12

∗ 𝑄

𝑖22

) ≥ 0, 𝐷

𝑖
≥ 0, 𝑖 = 1, 2,

Φ

𝑖11
= 𝑎Ω

1
𝑃

𝑖
− 2𝑎Ω

2
𝑃

𝑖
+ 𝑃

𝑖
−

𝛿𝑒

−𝑎𝜏
∗

𝜏

∗
𝑆

(2)

𝑖

− Ω

3
𝐷

1
+

1

4𝑎

2
𝐼 + 𝑆

(1)

𝑖
− 𝑒

−𝑎𝜏
∗

𝑆

(1)

𝑖

+ ℎ

∗
𝑄

𝑖11
+

𝛿𝑎

1 − 𝑒

𝑎𝜏
∗ 𝑆
(2)

𝑖
,

Φ

𝑖12
= −

𝛿𝑎

1 − 𝑒

𝑎𝜏
∗ 𝑆
(2)

𝑖
,

Φ

𝑖13
= 𝑃

𝑖
𝐴

𝑖
+ ℎ

∗
2

𝑅

𝑖12
+ Ω

4
𝐷

1
+ ℎ

∗
𝑄

𝑖12
,

Φ

𝑖22
= −Ω

3
𝐷

2
−

𝛿𝑒

−𝑎𝜏
∗

𝜏

∗
𝑆

(2)

𝑖
− 𝑒

−𝑎𝜏
∗

𝑆

(1)

𝑖

+

𝛿𝑎

1 − 𝑒

𝑎𝑡
∗ 𝑆
(2)

𝑖
+

1

4𝑎

2
𝐼,

Φ

𝑖24
= Ω

4
𝐷

2
, Φ

𝑖33
= −𝐷

1
+

1

𝑎

2
𝐼 + ℎ

∗
𝑄

𝑖22
,

Φ

𝑖44
= −𝐷

2
+

1

𝑎

2
𝐼, Φ

𝑖55
= −

𝑒

−𝑎ℎ
∗

ℎ

∗
𝑄

𝑖11
,

Φ

𝑖56
= −

𝑒

−𝑎ℎ
∗

ℎ

∗
𝑄

𝑖12
, Φ

𝑖66
= −

𝑒

−𝑎ℎ
∗

ℎ

∗
𝑄

𝑖22
,

Φ

𝑖77
= 𝛿𝜏

∗
𝛼

2
𝑆

(2)

𝑖
.

(42)

Then, system (39) is uniformly ultimately bounded for any
switching signal with average dwell time satisfying

𝑇

𝑎
> 𝑇

∗

𝑎
=

ln𝑀max
𝑎

,

(43)

where𝑀max = 𝐿max/𝐾min, 𝐿max = max
𝑘∈𝑁,1≤𝑖≤𝑛

{𝐿

𝑖𝑘
}, 𝐾min =

min
𝑖𝑘
{𝐾

𝑖𝑘
}.
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Proof. Define the Lyapunov functional candidate of the form

𝑉

𝜎 (
𝑡) =

𝑛

∑

𝑗=1

2𝑝

𝜎(𝑡)
𝑒

𝑎𝑡
∫

𝑥𝑗(𝑡)

0

𝑠

𝛼

𝑗 (
𝑠)

d𝑠

+ ∫

𝑡

𝑡−ℎ

𝑒

𝑎𝑠
(𝑠 − (𝑡 − ℎ)) 𝜉

𝑇
(𝑠) 𝑄𝜎(𝑡)

𝜉 (𝑠) d𝑠

+ ∫

𝑡

𝑡−𝜏

𝑒

𝑎𝑠
𝑥̇

𝑇
(𝑠) 𝑆

(1)

𝜎(𝑡)
𝑥̇ (𝑠) d𝑠 d𝜃

+ 𝛿∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑒

𝑎𝑠
𝑥̇

𝑇
(𝑠) 𝑆

(2)

𝜎(𝑡)
𝑥̇ (𝑠) d𝑠 d𝜃.

(44)

When 𝑡 ∈ [𝑡

𝑘
, 𝑡

𝑘+1
), the 𝑖

𝑘
th subsystem is activated, and from

Theorem 8 and (34), we can conclude that there is a positive
constant 𝐿

𝑖𝑘
, such that

‖𝑥 (𝑡)‖

2
≤

𝐿

𝑖𝑘

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡𝑘)
+ 𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ

𝐾

𝑖𝑘

= 𝑀

𝑖𝑘

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡𝑘)
+ 𝑁

𝑖𝑘
,

(45)

where

𝑀

𝑖𝑘
=

𝐿

𝑖𝑘

𝐾

𝑖𝑘

, 𝐾

𝑖𝑘
= min
𝑘∈𝑁,1≤𝑖≤𝑛

{

𝜆min (𝑃𝑖)

𝛼

𝑖

} ,

𝑁

𝑖𝑘
=

𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ

𝐾

𝑖𝑘

.

(46)

The system state is continuous. Therefore, it follows that

‖𝑥 (𝑡)‖

2
≤

𝐿

𝑖𝑘

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡𝑘)
+ 𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ

𝐾

𝑖𝑘

= 𝑀

𝑖𝑘

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡𝑘)
+ 𝑁

𝑖𝑘

≤ ⋅ ⋅ ⋅ ≤ 𝑒

∑
𝑘
V=0 ln𝑀𝑖V−𝑎(𝑡−𝑡0)󵄩󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+ [𝑀

𝑖𝑘
𝑒

−𝑎(𝑡−𝑡𝑘)
𝑁

𝑖𝑘
+𝑀

𝑖𝑘
𝑀

𝑖𝑘−1
𝑒

−𝑎(𝑡−𝑡𝑘−1)
𝑁

𝑖𝑘−1

+𝑀

𝑖𝑘
𝑀

𝑖𝑘−1
𝑀

𝑖𝑘−2
𝑒

−𝑎(𝑡−𝑡𝑘−2)
𝑁

𝑖𝑘−2
+ ⋅ ⋅ ⋅

+𝑀

𝑖𝑘
𝑀

𝑖𝑘−1
𝑀

𝑖𝑘−2
⋅ ⋅ ⋅𝑀

𝑖1
𝑒

−𝑎(𝑡−𝑡1)
𝑁

𝑖1
+ 𝑁

𝑖𝑘
]

≤ 𝑒

(𝑘+1) ln𝑀max−𝑎(𝑡−𝑡0)󵄩
󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+ [𝑀

𝑘

max𝑁max +𝑀

(𝑘−1)

max 𝑁max +𝑀

(𝑘−2)

max 𝑁max

+ ⋅ ⋅ ⋅ + 𝑀

2

max𝑁max +𝑀max𝑁max + 𝑁max]

≤ 𝑀max𝑒
𝑘 ln𝑀max−𝑎(𝑡−𝑡0)󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+

𝑁max (1 −𝑀

(𝑘+1)

max )

1 −𝑀max

≤ 𝑀max𝑒
ln𝑀max𝑁𝜎(𝑡−𝑡0)−𝑎(𝑡−𝑡0)󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+

𝑁max (1 −𝑀

(𝑘+1)

max )

1 −𝑀max

≤ 𝑀max𝑒
𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝑎)(𝑡−𝑡0)󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+

𝑁max (1 −𝑀

(𝑘+1)

max )

1 −𝑀max

≤

𝐿max𝑒
𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝑎)(𝑡−𝑡0)󵄩󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

𝑘min

+

(𝑎

−1
𝐽

𝑇
𝑃𝐽 + Υ) (1 − 𝐿

(𝑘+1)

max /𝐾
(𝑘+1)

min )

𝐾min − 𝐿max
.

(47)

If one chooses ̃

𝐵 =

√

1/𝐾min + (𝑎
−1
𝐽

𝑇
𝑃𝐽 +Υ)(1 − 𝐿

(𝑘+1)

max /𝐾
(𝑘+1)

min )/(𝐾min − 𝐿max) >

0, then for any constant 󰜚 > 0 and ‖𝜑‖ < 󰜚, there is 𝑡󸀠 = 𝑡

󸀠
(󰜚) >

0, such that 𝐿max𝑒
𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝑎)(𝑡−𝑡0)

‖𝑥(𝑡

0
)‖

2
< 1 for

all 𝑡 ≥ 𝑡

󸀠. According to Definition 2, we have ‖𝑥(𝑡, 𝑡
0
, 𝜑)‖ <

̃

𝐵

for all 𝑡 ≥ 𝑡

󸀠. That is to say, the switched Cohen-Grossberg
neural networks system (39) is uniformly ultimately
bounded. This completes the proof.

Theorem 12. If all of the conditions of Theorem 11 hold, then
there exists an attractor A

𝐵
for the solutions of system (39),

where A
𝐵
= {𝑥(𝑡) : ‖𝑥(𝑡)‖ ≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If we choose ̃

𝐵 =

√

1/𝐾min + (𝑎
−1
𝐽

𝑇
𝑃𝐽 +Υ)(1 − 𝐿

(𝑘+1)

max /𝐾
(𝑘+1)

min )/(𝐾min − 𝐿max) >

0, Theorem 11 shows that for any 𝜙, there is 𝑡󸀠 > 0, such that
‖𝑥(𝑡, 𝑡

0
, 𝜙)‖ <

̃

𝐵 for all 𝑡 ≥ 𝑡

󸀠. Let A
𝐵
= {𝑥(𝑡) : ‖𝑥(𝑡)‖ ≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}. Clearly, A

𝐵
is closed, bounded, and invariant.

Furthermore, lim
𝑡→∞

sup inf
𝑦∈A𝐵

‖𝑥(𝑡; 𝑡

0
, 𝜙) − 𝑦‖ = 0.

Therefore, A
𝐵
is an attractor for the solutions of system

(39).

Corollary 13. In addition to the fact that all of the conditions
of Theorem 8 hold, if 𝐽 = 0 and 𝐹

𝑖
(0) = 0, then system (39) has

a trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of system
(39) is globally exponentially stable.

Proof. If 𝐽 = 0 and 𝐹

𝑖
(0) = 0, then it is obvious that the

switched system (39) has a trivial solution 𝑥(𝑡) ≡ 0. From
Theorem 8, one has

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡; 𝑡

0
, 𝜙)

󵄩

󵄩

󵄩

󵄩

2
≤ 𝐾

2
𝑒

−𝑎(𝑡−𝑡0)
, ∀𝜙,

(48)

where𝐾
2
= 𝑀max𝑒

𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝛼)(𝑡−𝑡0)
‖𝑥(𝑡

0
)‖

2.
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It means that the trivial solution of the switched Cohen-
Grossberg neural networks (39) is globally exponentially
stable. This completes the proof.

Remark 14. It is noted that common Lyapunov function
method requires all the subsystems of the switched system
to share a positive definite radially unbounded common
Lyapunov function. Generally speaking, this requirement
is difficult to achieve. So, in this paper, we select a novel
multiple Lyapunov function to study the uniformly ultimate
boundedness and the existence of an attractor for switched
Cohen-Grossberg neural networks. furthermore, this type of
Lyapunov function enables us to establish less conservative
results.

Remark 15. When 𝑁 = 1, we have 𝑃

𝑖
= 𝑃

𝑗
, 𝑄
𝑖
= 𝑄

𝑗
,

𝑆

(1)

𝑖
= 𝑆

(1)

𝑗
, 𝑆(2)
𝑖

= 𝑆

(2)

𝑗
, 𝑖, 𝑗 ∈ Σ, then the switched Cohen-

Grossberg neural networks (4) degenerates into a general
Cohen-Grossberg neural networks with time-delay [15, 17].
Obviously, our result generalizes the previous result.

Remark 16. It is easy to see that 𝜏
𝑎

= 0 is equivalent to
existence of a common function for all subsystems, which
implies that switching signals can be arbitrary. Hence, the
results reported in this paper aremore effective than arbitrary
switching signal in the previous literature [16].

Remark 17. The constants 𝑙

𝑖
, 𝐿
𝑖
in assumption (H

1
) are

allowed to be positive, negative, or zero, whereas the constant
𝑙

𝑖
is restricted to be the zero in [1, 15], and the non-linear

output function in [5, 18, 34–37] is required to satisfy 𝐹
𝑗
(0) =

0. However, in our paper, the assumption condition was
deleted. Therefore, assumption (H

1
) of this paper is weaker

than those given in [1, 5, 15, 18, 34–37].

4. Illustrative Examples

In this section, we present an example to show the effective-
ness and advantages of the proposedmethod and consider the
switched neural networks with two subsystems.

Example. Consider the following switched Cohen-Grossberg
neural network with discrete delays and distributed delays:

𝑥̇ (𝑡) = − 𝛼̂ (𝑥 (𝑡))

× [

̂

𝛽 (𝑥 (𝑡)) − 𝐴

𝜎 (
𝑡) 𝐹 (𝑥 (𝑡)) − 𝐵

𝜎
𝐹 (𝑡) (𝑥 (𝑡 − 𝜏))

−𝐶

𝜎 (
𝑡) ∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 − 𝐽] ,

(49)

where the behaved function is described by ̂

𝛽

𝑖
(𝑥

𝑖
(𝑡)) = 𝑥

𝑖
(𝑡),

and 𝐹
𝑖
(𝑥

𝑖
(𝑡)) = 0.5 tanh(𝑥

𝑖
(𝑡)) (𝑖 = 1, 2); let

𝛼̂ (𝑥 (𝑡)) = (

1 + sin2 (𝑥
1 (
𝑡)) 0

0 1 + cos2 (𝑥
1 (
𝑡))

) . (50)

Take the parameters as follows:

𝐴

1
= (

−0.1 −0.4

0.2 −0.5

) , 𝐵

1
= (

−0.1 −1

1.4 −0.4

) ,

𝐶

1
= (

−0.1 −0.2

0.2 −0.1

) , 𝐴

2
= (

−0.3 −0.5

0.2 −0.1

) ,

𝐵

2
= (

−0.25 −0.7

0.9 −0.5

) , 𝐶

2
= (

−0.15 −0.3

1.6 0.25

) .

(51)

From assumptions H
1
,H
2
, we can gain 𝑙

𝑖
= 0.5, 𝐿

𝑖
=

1, 𝛼 = 1, 𝛼 = 1.5, 𝛼 = 2, 𝑏

𝑖
= 1.2, 𝜏

∗
= 0.15, ℎ

∗
=

0.3, and 𝛿 = 0.3 and 𝑖 = 1, 2.
Therefore, for 𝑎 = 2 and 𝐹

𝑖
(0) = 0, by solving the

inequality (41), we get

𝑃

1
= (

7.2667 0

0 7.2667

) ,

𝑆

(1)

1
= (

56.5921 0.2054

0.2054 56.1324

) ,

𝑆

(2)

1
= (

12.2582 −0.1936

−0.1936 11.9901

) ,

𝑃

2
= (

7.3794 0

0 7.3794

) ,

𝑆

(1)

2
= (

55.5355 −0.0809

−0.0809 55.8300

) ,

𝑆

(2)

2
= (

11.4579 −0.5681

−0.5681 13.4627

) ,

𝑄

1
= (

17.8905 −0.1476 −3.0462 0.0962

−0.1476 18.0434 0.0962 −2.5606

−3.0462 0.0962 15.9117 0.1066

0.0962 −2.5606 0.1066 16.2315

) ,

𝑄

2
= (

17.8004 0.0091 −2.6444 0.1427

0.0091 17.5986 0.1427 −2.9014

−2.6444 0.1427 17.0233 −0.0953

0.1427 −2.9014 −0.0953 15.8802

) .

(52)

Using (41), we can get the average dwell time 𝜏
𝑎
> 𝜏

∗

𝑎
=

2.0889.

5. Conclusion

In this paper, the dynamics of switched Cohen-Grossberg
neural networks with average dwell time is investigated. A
novel multiple Lyapunov-Krasovskii functional is designed
to get new sufficient conditions guaranteeing the uniformly
ultimate boundedness, the existence of an attractor, and
the globally exponential stability. The derived conditions
are expressed in terms of LMIs, which are more relaxed
than algebraic formulation and can be easily checked by
the effective LMI toolbox in Matlab in practice. Based on
the method provided in this paper, stochastic disturbance,
impulse, and reaction diffusion for switched systems will be
considered in the future works.
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USA, 2003.

[23] X.-M. Sun, J. Zhao, and D. J. Hill, “Stability and 𝐿

2
-gain

analysis for switched delay systems: a delay-dependentmethod,”
Automatica, vol. 42, no. 10, pp. 1769–1774, 2006.

[24] X. M. Sun, W. Wang, G. P. Liu, and J. Zhao, “Stability analysis
for linear switched systems with time-varying delay,” IEEE
Transactions on Systems, Man, and Cybernetics B, vol. 38, no.
2, pp. 528–533, 2008.

[25] K. Gu, “An integral inequality in the stability problem of
time-delay systems,” in Proceedings of the 39th IEEE Confernce
on Decision and Control, pp. 2805–2810, Sydney, Australia,
December 2000.

[26] C.-H. Lien, K.-W. Yu, Y.-J. Chung, Y.-F. Lin, L.-Y. Chung, and J.-
D. Chen, “Exponential stability analysis for uncertain switched
neutral systems with interval-time-varying state delay,”Nonlin-
ear Analysis. Hybrid Systems, vol. 3, no. 3, pp. 334–342, 2009.

[27] B. Hu and A. N. Michel, “Stability analysis of digital feedback
control systems with time-varying sampling periods,”Automat-
ica, vol. 36, no. 6, pp. 897–905, 2000.

[28] J. P. Hespanha and A. S. Morse, “Stability of switched systems
with average dwell-time,” in Proceedings of the 38th IEEE
Conference on Decision and Control (CDC ’99), pp. 2655–2660,
December 1999.

[29] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Stability analysis
of switched systems with stable and unstable subsystems: an
average dwell time approach,” International Journal of Systems
Science, vol. 32, no. 8, pp. 1055–1061, 2001.

[30] J. Zhao, D. J. Hill, and T. Liu, “Synchronization of complex
dynamical networks with switching topology: a switched sys-
tem point of view,” Automatica, vol. 45, no. 11, pp. 2502–2511,
2009.



Abstract and Applied Analysis 11

[31] Y. Tsividis, “Switched neural networks,” US Patent, 1989.
[32] T. X. Brown, “Neural networks for switching,” IEEE Communi-

cations Magazine, vol. 27, no. 11, pp. 72–81, 1989.
[33] M.Muselli, “Gene selection through switched neural networks,”

in Proceedings of the NETTAB Workshop on Bioinformatics for
Microarrays, CINECA, Bologna, Italy, 2003.

[34] K. Mathiyalagan, R. Sakthivel, and S. M. Anthoni, “Robust
exponential stability and𝐻

∞
control for switched neutral-type

neural networks,” International Journal of Adaptive Control and
Signal Processing, 2012.

[35] Z.-G. Wu, P. Shi, H. Su, and J. Chu, “Delay-dependent stability
analysis for switched neural networks with time-varying delay,”
IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41,
no. 6, Article ID 5872072, pp. 1522–1530, 2011.

[36] P. Li and J. Cao, “Global stability in switched recurrent neural
networks with time-varying delay via nonlinear measure,”
Nonlinear Dynamics, vol. 49, no. 1-2, pp. 295–305, 2007.

[37] L. Wan and Q. Zhou, “Attractor and ultimate boundedness
for stochastic cellular neural networks with delays,” Nonlinear
Analysis. Real World Applications, vol. 12, no. 5, pp. 2561–2566,
2011.

[38] Z. Wu, P. Shi, H. Su, and J. Chu, “Delay-dependent stability
analysis for switched neural networks with time-varying delay,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 41, pp.
1522–1530, 2011.


