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The global exponential stability for bidirectional associative memory neural networks with time-varying delays is studied. In our
study, the lower and upper bounds of the activation functions are allowed to be either positive, negative, or zero. By constructing
new and improved Lyapunov-Krasovskii functional and introducing free-weightingmatrices, a new and improved delay-dependent
exponential stability for BAM neural networks with time-varying delays is derived in the form of linear matrix inequality (LMI).
Numerical examples are given to demonstrate that the derived condition is less conservative than some existing results given in the
literature.

1. Introduction

A class of neural networks related to bidirectional associative
memory (BAM) has been introduced by Kosko [1]. This
model generalized the single-layer autoassociative Hebbian
correlator to a two-layer pattern-matched heteroassociative
circuit. It is an important model with the ability of informa-
tion memory and information association, which is crucial
for various applications such as pattern recognition, solving
optimization problems, and automatic control engineering
[2–10]. In [1, 11], Kosko investigates the global stability of
BAM models and obtains a severe constraint of having a
symmetric connectionweightmatrix. Since it is impossible to
maintain an absolutely symmetric connection weight matrix,
asymmetric connection has been a focus of this field. Some
of these applications require that there should be a well-
defined computable solution for all possible initial states.
From a mathematical point of view, this means that the
equilibrium point of the designed cellular neural networks
(CNNs) is globally asymptotically stable (GAS) or globally
exponentially stable (GES). Moreover, in biological and
artificial neural networks, time delays arise in the process
of information transmission; for example, in the electronic
implementation of analogue neural networks, time delays

occur in the communication and response of neurons owing
to the finite switching speed of amplifiers. It is known that
they can create an oscillatory or an unstable phenomenon.
Therefore, the study of the stability and convergent dynamics
of BAM neural networks with delays has raised considerable
interest in recent years; see for examples [5, 7, 9, 10, 12–23]
and the references cited therein. In [14, 15, 18, 20–22, 24–
27], several sufficient conditions on the global exponential
stability of BAM neural networks with time-varying delays
have been derived. It is worth pointing out that the given
criteria in [14, 15, 18, 20–22, 24–27] required the following
hypothesis: the time-varying delays are continuously differ-
entiable, the derivative of time-varying delays is smaller than
one, and activation functions are bounded andmonotonically
nondecreasing. The common approach for studying stability
of BAM neural networks is Lyapunov stability theory. With a
properly designed Lyapunov-Krasovskii functional as well as
introducing free-weightingmatrices, onemay derive stability
criteria in term of linear matrix inequality (LMI) which is
easily solved by several available algorithms.

Based on the above discussion, we propose to study
the problem of global exponential stability of BAM neural
networks with time-varying delays and generalized activa-
tion functions. The main contributions of our works are
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that the system consists of both memoryless and delayed
activation functions, and the lower and upper bounds of
the activation functions are allowed to be either positive,
negative, or zero which is more general than systems con-
sidered in [14, 15, 18, 21, 22, 24–27]. By constructing a
new and improved Lyapunov-Krasovskii functional which
contains some integral terms of the activation functions, less
conservative results are obtained by introducing appropriate
free-weightingmatrices and by using some improved integral
inequality. Finally, two numerical examples are presented to
show that our result is less conservative than some existing
ones.

Notations. Throughout the paper,R denotes the set of all real
numbers. ∗ denotes the elements below the main diagonal
of a symmetric block matrix. diag{⋅ ⋅ ⋅ } denotes the diagonal
matrix. For symmetric matrices𝑋 and 𝑌, the notation𝑋 > 𝑌

(resp.,𝑋 ≥ 𝑌) means that thematrix𝑋−𝑌 is positive definite
(resp., nonnegative). 𝜆

𝑚
(⋅) and 𝜆

𝑀
(⋅) denote the smallest and

largest eigenvalue of given square matrix, respectively.

2. Model Description and Preliminaries

Consider the following BAM neural network with time-
varying delays of the form

𝑢̇
𝑖
(𝑡) = − 𝑐

𝑖
𝑢
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑎
(1)

𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑎
(2)

𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − ℎ (𝑡))) + 𝐼

𝑖
,

V̇
𝑗
(𝑡) = − 𝑑

𝑗
V
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑏
(1)

𝑗𝑖

̃
𝑓
𝑖
(𝑢
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑏
(2)

𝑗𝑖

̃
𝑓
𝑖
(𝑢
𝑖
(𝑡 − 𝑑 (𝑡))) + 𝐼

𝑗
,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(1)

where 𝑢
𝑖
(𝑡) and V

𝑗
(𝑡) are the state of the 𝑖th neurons from

the neural field 𝐹
𝑢
and the 𝑗th neurons from the neural

field 𝐹V, at time 𝑡, respectively; 𝑐
𝑖
and 𝑑

𝑗
denote the neuron

charging time constants and passive delay rates, respectively;
𝑎
(1)

𝑖𝑗
and 𝑏

(1)

𝑗𝑖
are the synaptic connection strengths; 𝑎(2)

𝑖𝑗
and

𝑏
(2)

𝑗𝑖
are delayed synaptic connection strengths; ̃𝑓

𝑖
(⋅) and 𝑔

𝑗
(⋅)

denote the activation functions of the 𝑖th neurons from the
neural field 𝐹

𝑢
and the 𝑗th neurons from the neural field 𝐹V,

respectively; 𝐼
𝑖
and 𝐼
𝑗
denote the external inputs; and 𝑑(𝑡)

and ℎ(𝑡) represent the time-varying differentiable functions
which satisfy

(i) 0 ≤ 𝑑 (𝑡) ≤ 𝑑,
̇

𝑑 (𝑡) ≤ 𝜏 < 1,

(ii) 0 ≤ ℎ (𝑡) ≤ ℎ,
̇
ℎ (𝑡) ≤ 𝜇 < 1,

(2)

where 𝑑, ℎ, 𝜇, and 𝜏 are positive scalars.

The initial conditions associated with (1) are assumed to
be

𝑢
𝑖
(𝑠) =

̃
𝜙
𝑖
(𝑠) , V

𝑗
(𝑠) = 𝜑

𝑗
(𝑠) , 𝑠 ∈ [−max {𝑑, ℎ} , 0] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(3)

Throughout this paper, we make the following assump-
tion on the activation function ̃

𝑓
𝑖
(⋅), 𝑔
𝑗
(⋅).

(A1) ̃
𝑓
𝑖
(⋅) and 𝑔

𝑗
(⋅) are bounded on R.

(A2) For any 𝛼, 𝛽 ∈ R, 𝛼 ̸= 𝛽, there exist four con-
stant matrices 𝐸 = diag(𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
), 𝐹 =

diag(𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
),𝑀 = diag(𝑀

1
,𝑀
2
, . . . ,𝑀

𝑚
), and

𝑁 = diag(𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
) satisfying

𝐸
𝑖
≤

̃
𝑓
𝑖
(𝛼) −

̃
𝑓
𝑖
(𝛽)

𝛼 − 𝛽

≤ 𝐹
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑁
𝑗
≤

𝑔
𝑗
(𝛼) − 𝑔

𝑗
(𝛽)

𝛼 − 𝛽

≤ 𝑀
𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

(4)

It is clear that under (A1) and (A2), the system (1) has at
least one equilibrium; see [20]. In order to simplify our proof,
we shift the equilibrium point 𝑢∗ = (𝑢

∗

1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑛
)
𝑇, V∗ =

(V∗
1
, V∗
2
, . . . , V∗

𝑚
)
𝑇 of system (1) to the origin. Let 𝑥

𝑖
(𝑡) = 𝑢

𝑖
(𝑡)−

𝑢
∗

𝑖
, 𝑦
𝑗
(𝑡) = V

𝑗
(𝑡) − V∗

𝑗
, 𝑓
𝑖
(𝑥
𝑖
(𝑡)) =

̃
𝑓
𝑖
(𝑥
𝑖
(𝑡) + 𝑢

∗

𝑖
) −

̃
𝑓
𝑖
(𝑢
∗

𝑖
),

𝑔
𝑗
(𝑦
𝑗
(𝑡)) = 𝑔

𝑗
(𝑦
𝑗
(𝑡) + V∗

𝑗
) − 𝑔
𝑗
(V∗
𝑗
), 𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝑑(𝑡))) =

̃
𝑓
𝑖
(𝑥
𝑖
(𝑡 −

𝑑(𝑡)) + 𝑢
∗

𝑖
) −

̃
𝑓
𝑖
(𝑢
∗

𝑖
), 𝑔
𝑗
(𝑦
𝑗
(𝑡 − ℎ(𝑡))) = 𝑔

𝑗
(𝑦
𝑗
(𝑡 − ℎ(𝑡)) + V∗

𝑗
) −

𝑔
𝑗
(V∗
𝑗
), 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚. Then the system (1)

can be transformed to

𝑥̇ (𝑡) = − 𝑐
𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑎
(1)

𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑎
(2)

𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡 − ℎ (𝑡))) ,

̇𝑦 (𝑡) = − 𝑑
𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑏
(1)

𝑗𝑖
𝑓
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑏
(2)

𝑗𝑖
𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝑑 (𝑡))) .

(5)

The activation functions 𝑓
𝑖
(⋅) and 𝑔

𝑗
(⋅) satisfy the following

properties.

(H1) 𝑓
𝑖
and 𝑔

𝑗
are bounded on R.
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(H2) For any 𝛼, 𝛽 ∈ R, 𝛼 ̸= 𝛽, there exist constant matrices
𝐸 = diag(𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
), 𝐹 = diag(𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑛
),

𝑀 = diag(𝑀
1
,𝑀
2
, . . . ,𝑀

𝑚
), and 𝑁 = diag(𝑁

1
,

𝑁
2
, . . . , 𝑁

𝑚
) satisfying

𝐸
𝑖
≤

𝑓
𝑖
(𝛼) − 𝑓

𝑖
(𝛽)

𝛼 − 𝛽

≤ 𝐹
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑁
𝑗
≤

𝑔
𝑗
(𝛼) − 𝑔

𝑗
(𝛽)

𝛼 − 𝛽

≤ 𝑀
𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

(6)

(H3) 𝑓
𝑖
(0) = 0 and 𝑔

𝑗
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

Rewrite the system (7) into the vector form
𝑥̇ (𝑡) = −𝐶𝑥 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡)) + 𝐴

2
𝑔 (𝑦 (𝑡 − ℎ (𝑡))) ,

̇𝑦 (𝑡) = −𝐷𝑦 (𝑡) + 𝐵
1
𝑓 (𝑥 (𝑡)) + 𝐵

2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡))) .

(7)

The initial conditions associated with (7) are assumed to be
𝑥
𝑖
(𝑠) = 𝜙

𝑖
(𝑠) , 𝑦

𝑗
(𝑠) = 𝜑

𝑗
(𝑠) , 𝑠 ∈ [−max {𝑑, ℎ} , 0] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(8)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇, 𝑦(𝑡) = (𝑦

1
(𝑡),

𝑦
2
(𝑡), . . . , 𝑦

𝑚
(𝑡))
𝑇, 𝐶 = diag(𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
), 𝐷 =

diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
), 𝐴
1
= (𝑎
(1)

𝑖𝑗
)
𝑚×𝑛

, 𝐴
2
= (𝑎
(2)

𝑖𝑗
)
𝑚×𝑛

, 𝐵
1
=

(𝑏
(1)

𝑖𝑗
)
𝑛×𝑚

, 𝐵
2
= (𝑏
(2)

𝑖𝑗
)
𝑛×𝑚

, 𝑓(⋅) = (𝑓
1
(⋅), 𝑓
2
(⋅), . . . , 𝑓

𝑛
(⋅))
𝑇,

𝑔(⋅) = (𝑔
1
(⋅), 𝑔
2
(⋅), . . . , 𝑔

𝑚
(⋅))
𝑇.

Definition 1 (see [14]). The trivial solution of system (7) is said
to be globally exponentially stable if there exist constants 𝑘 >
0 and 𝜌 ≥ 1 such that

‖𝑥(𝑡)‖
2

+

󵄩
󵄩
󵄩
󵄩
𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜌𝑒
−2𝑘𝑡

(

󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩

2

) , ∀𝑡 ≥ 0, (9)

where one denotes
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

= sup
−max{𝑑,ℎ}≤𝑠≤0

󵄩
󵄩
󵄩
󵄩
𝜙(𝑠)

󵄩
󵄩
󵄩
󵄩

2

+ sup
−max{𝑑,ℎ}≤𝑠≤0

󵄩
󵄩
󵄩
󵄩
𝜑(𝑠)

󵄩
󵄩
󵄩
󵄩

2

.

(10)

Lemma 2 (see [28]). If there exist symmetric positive-definite
matrix 𝑋

33
> 0 and arbitrary matrices 𝑋

11
, 𝑋
12
, 𝑋
13
, 𝑋
22
,

and 𝑋
23
such that

𝑋 =

[

[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
𝑋
33

]

]

]

≥ 0, (11)

then,

− ∫

𝑡

𝑡−ℎ(𝑡)

𝑥̇ (𝑠) 𝑋
33
𝑥̇ (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−ℎ(𝑡)

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑥̇
𝑇

(𝑠)]

×

[

[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
0

]

]

]

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ (𝑡))

𝑥̇ (𝑠)

]

]

𝑑𝑠.

(12)

Lemma 3 (see [25]). For any real vectors 𝑎, 𝑏 and any matrix
𝑄 > 0 with appropriate dimensions, it follows that

2𝑎
𝑇

𝑏 ≤ 𝑎
𝑇

𝑄𝑎 + 𝑏
𝑇

𝑄
−1

𝑏. (13)

Lemma 4 (see [25]). Suppose that (H2) holds; then

∫

𝑢

V

[𝑓
𝑖
(𝑠) − 𝑓

𝑖
(V)] 𝑑𝑠 ≤ [𝑢 − V] [𝑓

𝑖
(𝑢) − 𝑓

𝑖
(V)] ,

𝑖 = 1, 2, . . . , 𝑛,

∫

𝑢

V

[𝑔
𝑗
(𝑠) − 𝑔

𝑗
(V)] 𝑑𝑠 ≤ [𝑢 − V] [𝑔

𝑗
(𝑢) − 𝑔

𝑗
(V)] ,

𝑗 = 1, 2, . . . , 𝑚.

(14)

3. Main Result

In this section, we present a theorem which states the con-
ditions that guarantee the global exponential stability of the
system (7) employing the Lyapunov stability theory and linear
matrix inequality approach.

Theorem 5. Under the assumptions (H1)–(H3), for given
four diagonal matrices 𝐸 = diag(𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
), 𝐹 =

diag(𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
), 𝑀 = diag(𝑀

1
,𝑀
2
, . . . ,𝑀

𝑚
), and 𝑁 =

diag(𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
) and positive constants 𝑑, ℎ, 𝜏, 𝜇, and

𝑘, the system (7) is globally exponentially stable with the
convergent rate 𝑘, if there exist positive matrices 𝑃

𝑖
, 𝑊
𝑖
, 𝑍
𝑖
,

𝑖 = 1, 2, 𝑄
𝑗
, 𝑗 = 1, 2, 3, 4, positive diagonal matrices 𝐾 =

diag(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
), 𝑅 = diag(𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑚
), and positive-

definite matrices

𝑆 =

[

[

[

𝑆
11

𝑆
12

𝑆
13

𝑆
𝑇

12
𝑆
22

𝑆
23

𝑆
𝑇

13
𝑆
𝑇

23
𝑍
1

]

]

]

,

𝑇 =

[

[

[

𝑇
11

𝑇
12

𝑇
13

𝑇
𝑇

12
𝑇
22

𝑇
23

𝑇
𝑇

13
𝑇
𝑇

23
𝑍
2

]

]

]

,

(15)

such that the following LMI holds:

Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
1

1
Σ
1

2
Σ
1

3
0 0 0 Σ

1

7
Σ
1

8

∗ Σ
2

2
0 0 0 0 0 0

∗ ∗ Σ
3

3
Σ
3

4
Σ
3

5
0 Σ
3

7
Σ
3

8

∗ ∗ ∗ Σ
4

4
Σ
4

5
0 Σ
4

7
0

∗ ∗ ∗ ∗ Σ
5

5
Σ
5

6
Σ
5

7
0

∗ ∗ ∗ ∗ ∗ Σ
6

6
0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
7

7
Σ
7

8

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
8

8

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (16)
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where
Σ
1

1
= 2𝑘𝑃

1
− 𝑃
1
𝐶 − 𝐶

𝑇

𝑃
1
− 2𝑘𝐸

𝑇

𝐾 − 2𝑘𝐾
𝑇

𝐸

+ 𝐸
𝑇

𝐾𝐶 + 𝐶
𝑇

𝐾𝐸 + 𝑄
1
+ 𝑑𝐶
𝑇

𝑍
1
𝐶

+ 𝑒
−2𝑘𝑑

(𝑑𝑆
11
+ 𝑆
𝑇

13
+ 𝑆
13
) +𝑊

1
,

Σ
1

2
= 𝑒
−2𝑘𝑑

(𝑑𝑆
12
+ 𝑆
𝑇

23
− 𝑆
13
) ,

Σ
1

3
= 2𝑘𝐾,

Σ
1

7
= 𝑃
1
𝐴
1
− 𝐸
𝑇

𝐾𝐴
1
− 𝑑𝐶
𝑇

𝑍
1
𝐴
1
,

Σ
1

8
= 𝑃
2
𝐴
2
− 𝐸
𝑇

𝐾𝐴
2
− 𝑑𝐶
𝑇

𝑍
1
𝐴
2
,

Σ
2

2
= 𝑒
−2𝑘𝑑

(𝑑𝑆
22
− 𝑆
𝑇

23
− 𝑆
23
) − 𝑒
−2𝑘𝑑

𝑄
1
,

Σ
3

3
= ℎ𝐵
𝑇

1
𝑍
2
𝐵
1
+ 𝑄
3
− 2𝐾𝐶𝐹

−1

,

Σ
3

4
= ℎ𝐵
𝑇

1
𝑍
2
𝐵
2
,

Σ
3

5
= 𝑃
2
𝐵
1
− 𝑁
𝑇

𝑅𝐵
1
− ℎ𝐵
𝑇

1
𝑍
2
𝐷,

Σ
3

7
= 𝐾𝐴

1
+ 𝑅𝐵
1
,

Σ
3

8
= 𝐾𝐴

2
,

Σ
4

4
= ℎ𝐵
𝑇

2
𝑍
2
𝐵
2
− (1 − 𝜏) 𝑒

−2𝑘𝑑

𝑄
3

− (1 − 𝜏) 𝑒
−2𝑘𝑑

𝐹
−1

𝑊
1
𝐹
−1

,

Σ
4

5
= 𝑃
2
𝐵
2
− 𝑁
𝑇

𝑅𝐵
2
− ℎ𝐵
𝑇

2
𝑍
2
𝐷,

Σ
4

7
= 𝑅𝐵
2
,

Σ
5

5
= 2𝑘𝑃

2
− 𝑃
2
𝐷 − 𝐷

𝑇

𝑃
2
− 2𝑘𝑁

𝑇

𝑅 − 2𝑘𝑅
𝑇

𝑁

+𝑁
𝑇

𝑅𝐷 + 𝐷
𝑇

𝑅𝑁 + 𝑄
2
+ ℎ𝐷
𝑇

𝑍
2
𝐷

+ 𝑒
−2𝑘ℎ

(ℎ𝑇
11
+ 𝑇
𝑇

13
+ 𝑇
13
) +𝑊

2
,

Σ
5

6
= 𝑒
−2𝑘ℎ

(ℎ𝑇
12
+ 𝑇
𝑇

23
− 𝑇
13
) ,

Σ
5

7
= 2𝑘𝑅,

Σ
6

6
= 𝑒
−2𝑘ℎ

(ℎ𝑇
22
− 𝑇
𝑇

23
− 𝑇
23
) − 𝑒
−2𝑘ℎ

𝑄
2
,

Σ
7

7
= 𝑑𝐴
𝑇

1
𝑍
1
𝐴
1
+ 𝑄
4
− 2𝑅𝐷𝑀

−1

,

Σ
7

8
= 𝑑𝐴
𝑇

1
𝑍
1
𝐴
2
,

Σ
8

8
= 𝑑𝐴
𝑇

2
𝑍
1
𝐴
2
− (1 − 𝜇) 𝑒

−2𝑘ℎ

𝑄
4

− (1 − 𝜇) 𝑒
−2𝑘ℎ

𝑀
−1

𝑊
2
𝑀
−1

.

(17)

Proof. Choose the Lyapunov-Krasovskii function candidate
for the system (7) to be

𝑉 (𝑡) =

5

∑

𝑙=1

𝑉
𝑙
(𝑡) , (18)

where

𝑉
1
(𝑡) = 𝑒

2𝑘𝑡

𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡)

+ 2

𝑛

∑

𝑖=1

𝑘
𝑖
𝑒
2𝑘𝑡

∫

𝑥𝑖(𝑡)

0

[𝑓
𝑖
(𝑠) − 𝐸

𝑖
𝑠] 𝑑𝑠

+ 𝑒
2𝑘𝑡

𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡)

+ 2

𝑚

∑

𝑗=1

𝑟
𝑗
𝑒
2𝑘𝑡

∫

𝑦𝑗(𝑡)

0

[𝑔
𝑗
(𝑠) − 𝑁

𝑗
𝑠] 𝑑𝑠,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝑑

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠) 𝑄
2
𝑦 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

𝑒
2𝑘𝑠

𝑓
𝑇

(𝑥 (𝑠)) 𝑄
3
𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝑒
2𝑘𝑠

𝑔
𝑇

(𝑦 (𝑠)) 𝑄
4
𝑔 (𝑦 (𝑠)) 𝑑𝑠,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠)𝑊
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) 𝑑𝑠,

𝑉
5
(𝑡) = ∫

𝑡

𝑡−𝑑

∫

𝑡

𝑠

𝑒
2𝑘𝜃

𝑥̇
𝑇

(𝜃) 𝑍
1
𝑥̇ (𝜃) 𝑑𝜃 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

∫

𝑡

𝑠

𝑒
2𝑘𝜃

̇𝑦
𝑇

(𝜃) 𝑍
2
̇𝑦 (𝜃) 𝑑𝜃 𝑑𝑠.

(19)

The derivative of 𝑉(𝑡) along the trajectories of system (7) is
given by

̇
𝑉
1
(𝑡) = 2𝑘𝑒

2𝑘𝑡

𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) + 2𝑒

2𝑘𝑡

𝑥
𝑇

(𝑡) 𝑃
1
𝑥̇ (𝑡)

+ 4𝑘

𝑛

∑

𝑖=1

𝑘
𝑖
𝑒
2𝑘𝑡

∫

𝑥𝑖(𝑡)

0

[𝑓
𝑖
(𝑠) − 𝐸

𝑖
𝑠] 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑘
𝑖
𝑒
2𝑘𝑡

𝑥̇
𝑖
(𝑡) [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐸

𝑖
𝑥
𝑖
(𝑡)]

+ 2𝑘𝑒
2𝑘𝑡

𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡) + 2𝑒

2𝑘𝑡

𝑦
𝑇

(𝑡) 𝑃
2
̇𝑦 (𝑡)

+ 4𝑘

𝑚

∑

𝑗=1

𝑟
𝑗
𝑒
2𝑘𝑡

∫

𝑦𝑗(𝑡)

0

[𝑔
𝑗
(𝑠) − 𝑁

𝑗
𝑠] 𝑑𝑠

+ 2

𝑚

∑

𝑗=1

𝑟
𝑗
𝑒
2𝑘𝑡

̇𝑦
𝑗
(𝑡) [𝑔
𝑗
(𝑦
𝑗
(𝑡)) − 𝑁

𝑗
𝑦
𝑗
(𝑡)]
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≤ 𝑒
2𝑘𝑡

{2𝑘𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) + 2𝑥

𝑇

(𝑡)

× 𝑃
1
[−𝐶𝑥 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡))

+𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))]

+ 4𝑘[𝑓 (𝑥 (𝑡)) − 𝐸𝑥 (𝑡)]

𝑇

𝐾𝑥 (𝑡)

+ 2[𝑓 (𝑥 (𝑡)) − 𝐸𝑥 (𝑡)]

𝑇

× 𝐾 [−𝐶𝑥 (𝑡) + 𝐴
1
𝑔 (𝑦 (𝑡))

+𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))]

+ 2𝑘𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡) 𝑃
2
[−𝐷𝑦 (𝑡) + 𝐵

1
𝑓 (𝑥 (𝑡))

+𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))]

+ 4𝑘[𝑔 (𝑦 (𝑡)) − 𝑁𝑦 (𝑡)]

𝑇

𝑅𝑦 (𝑡)

+ 2[𝑔 (𝑦 (𝑡)) − 𝑁𝑦 (𝑡)]

𝑇

𝑅

× [−𝐷𝑦 (𝑡) + 𝐵
1
𝑓 (𝑥 (𝑡))

+𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))] } .

(20)

By (H2), we have

−2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐶𝑥 (𝑡) ≤ −2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐶𝐹
−1

𝑓 (𝑥 (𝑡)) ,

−2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐷𝑦 (𝑡) ≤ −2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐷𝑀
−1

𝑔 (𝑦 (𝑡)) .

(21)

Substituting (21) into (20), we obtain

̇
𝑉
1
(𝑡) ≤ 𝑒

2𝑘𝑡

× {2𝑘𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) − 2𝑥

𝑇

(𝑡) 𝑃
1
𝐶𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃
1
𝐴
1
𝑔 (𝑦 (𝑡)) + 2𝑥

𝑇

(𝑡) 𝑃
1
𝐴
2

× 𝑔 (𝑦 (𝑡 − ℎ (𝑡))) + 4𝑘𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝑥 (𝑡)

− 4𝑘𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝑥 (𝑡) − 2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐶

× 𝐹
−1

𝑓 (𝑥 (𝑡)) + 2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐴
1
𝑔 (𝑦 (𝑡))

+ 2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))

+ 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝐶𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝐴
1
𝑔 (𝑦 (𝑡))

− 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))

+ 2𝑘𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡) − 2𝑦

𝑇

(𝑡) 𝑃
2
𝐷𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡) 𝑃
2
𝐵
1
𝑓 (𝑥 (𝑡))

+ 2𝑦
𝑇

(𝑡) 𝑃
2
𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 4𝑘𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝑦 (𝑡) − 4𝑘𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝑦 (𝑡)

− 2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐷𝑀
−1

𝑔 (𝑦 (𝑡))

+ 2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐵
1
𝑓 (𝑥 (𝑡))

+ 2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 2𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝐷𝑦 (𝑡)

− 2𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝐵
1
𝑓 (𝑥 (𝑡))

− 2𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))} ,

̇
𝑉
2
(𝑡) = 𝑒

2𝑘𝑡

{𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡)

− 𝑒
−2𝑘𝑑

𝑥
𝑇

(𝑡 − 𝑑)𝑄
1
𝑥 (𝑡 − 𝑑)

+ 𝑦
𝑇

(𝑡) 𝑄
2
𝑦 (𝑡)

− 𝑒
−2𝑘ℎ

𝑦
𝑇

(𝑡 − ℎ)𝑄
2
𝑦 (𝑡 − ℎ)} ,

̇
𝑉
3
(𝑡) = 𝑒

2𝑘𝑡

× {𝑓
𝑇

(𝑥 (𝑡)) 𝑄
3
𝑓 (𝑥 (𝑡))

− (1 −
̇

𝑑 (𝑡)) 𝑒
−2𝑘𝑑(𝑡)

𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡)))

× 𝑄
3
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑔
𝑇

(𝑦 (𝑡)) 𝑄
4
𝑔 (𝑦 (𝑡))

− (1 −
̇
ℎ (𝑡)) 𝑒

−2𝑘ℎ(𝑡)

× 𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡))) 𝑄
4
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))}

≤ 𝑒
2𝑘𝑡

{𝑓
𝑇

(𝑥 (𝑡)) 𝑄
3
𝑓 (𝑥 (𝑡))

− (1 − 𝜏) 𝑒
−2𝑘𝑑

𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡)))

× 𝑄
3
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑔
𝑇

(𝑦 (𝑡)) 𝑄
4
𝑔 (𝑦 (𝑡))

− (1 − 𝜇) 𝑒
−2𝑘ℎ

𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡)))

× 𝑄
4
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))} ,

(22)
̇

𝑉
4
(𝑡) = 𝑒

2𝑘𝑡

{𝑥
𝑇

(𝑡)𝑊
1
𝑥 (𝑡)

− (1 −
̇

𝑑 (𝑡)) 𝑒
−2𝑘𝑑(𝑡)

𝑥
𝑇

(𝑡 − 𝑑 (𝑡))

× 𝑊
1
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡) − (1 −

̇
ℎ (𝑡)) 𝑒

−2𝑘ℎ(𝑡)

× 𝑦
𝑇

(𝑡 − ℎ (𝑡)) (𝑠)𝑊
2
𝑦
𝑇

(𝑡 − ℎ (𝑡))}
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≤ 𝑒
2𝑘𝑡

{𝑥
𝑇

(𝑡)𝑊
1
𝑥 (𝑡) − (1 − 𝜏) 𝑒

−2𝑘𝑑

× 𝑥
𝑇

(𝑡 − 𝑑 (𝑡))𝑊
1
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡) − (1 − 𝜇) 𝑒

−2𝑘ℎ

× 𝑦
𝑇

(𝑡 − ℎ (𝑡)) (𝑠)𝑊
2
𝑦
𝑇

(𝑡 − ℎ (𝑡))} .

(23)

By (H2), we have

− 𝑒
−2𝑘𝑑

𝑥
𝑇

(𝑡 − 𝑑 (𝑡))𝑊
1
𝑥 (𝑡 − 𝑑 (𝑡))

≤ −𝑒
−2𝑘𝑑

𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) 𝐹
−1

𝑊
1

× 𝐹
−1

𝑓 (𝑥 (𝑡 − 𝑑 (𝑡))) ,

− 𝑒
−2𝑘ℎ

𝑦
𝑇

(𝑡 − ℎ (𝑡)) (𝑠)𝑊
2
𝑦
𝑇

(𝑡 − ℎ (𝑡))

≤ −𝑒
−2𝑘ℎ

𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡)))𝑀
−1

𝑊
2

×𝑀
−1

𝑔 (𝑦 (𝑡 − ℎ (𝑡))) .

(24)

By (24), we conclude that

̇
𝑉
4
(𝑡) ≤ 𝑒

2𝑘𝑡

{𝑥
𝑇

(𝑡)𝑊
1
𝑥 (𝑡) − (1 − 𝜏) 𝑒

−2𝑘𝑑

× 𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) 𝐹
−1

𝑊
1
𝐹
−1

× 𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡) − (1 − 𝜇) 𝑒

−2𝑘ℎ

× 𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡)))𝑀
−1

𝑊
2
𝑀
−1

× 𝑔 (𝑦 (𝑡 − ℎ (𝑡)))} .

(25)

̇
𝑉
5
(𝑡) = 𝑑𝑒

2𝑘𝑡

𝑥̇
𝑇

(𝑡) 𝑍
1
𝑥̇ (𝑡)

− ∫

𝑡

𝑡−𝑑

𝑒
2𝑘𝑠

𝑥̇
𝑇

(𝑠) 𝑍
1
𝑥̇ (𝑠) 𝑑𝑠

+ ℎ𝑒
2𝑘𝑡

̇𝑦
𝑇

(𝑡) 𝑍
2
̇𝑦 (𝑡)

− ∫

𝑡

𝑡−ℎ

𝑒
2𝑘𝑠

̇𝑦
𝑇

(𝑠) 𝑍
2
̇𝑦 (𝑠) 𝑑𝑠

≤ 𝑒
2𝑘𝑡

{𝑑𝑥̇
𝑇

(𝑡) 𝑍
1
𝑥̇ (𝑡)

− 𝑒
−2𝑘𝑑

∫

𝑡

𝑡−𝑑

𝑥̇
𝑇

(𝑠) 𝑍
1
𝑥̇ (𝑠) 𝑑𝑠

× ℎ ̇𝑦
𝑇

(𝑡) 𝑍
2
̇𝑦 (𝑡)

− 𝑒
−2𝑘ℎ

∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑍
2
̇𝑦 (𝑠) 𝑑𝑠} .

(26)

By Lemma 2, we obtain

− ∫

𝑡

𝑡−𝑑

𝑥̇
𝑇

(𝑠) 𝑍
1
𝑥̇ (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝑑

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑) 𝑥̇
𝑇

(𝑠)]

×
[

[

𝑆
11

𝑆
12

𝑆
13

𝑆
𝑇

12
𝑆
22

𝑆
23

𝑆
𝑇

13
𝑆
𝑇

23
0

]

]

×
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

𝑥̇ (𝑠)

]

]

𝑑𝑠

= ∫

𝑡

𝑡−𝑑

(𝑥
𝑇

(𝑡) 𝑆
11
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
𝑇

12
+ 𝑥̇
𝑇

(𝑠) 𝑆
𝑇

13
) 𝑥 (𝑡) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑

(𝑥
𝑇

(𝑡) 𝑆
12
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
22
+ 𝑥̇
𝑇

(𝑠) 𝑆
𝑇

23
)

× 𝑥 (𝑡 − 𝑑) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑

(𝑥
𝑇

(𝑡) 𝑆
13
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
23
) 𝑥̇ (𝑠) 𝑑𝑠

= 𝑥
𝑇

(𝑡) 𝑑𝑆
11
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝑑) 𝑑𝑆
𝑇

12
𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝑑

𝑥̇
𝑇

(𝑠) 𝑑𝑠𝑆
𝑇

13
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑑𝑆
12
𝑥 (𝑡 − 𝑑) + 𝑥

𝑇

(𝑡 − 𝑑) 𝑑𝑆
22
𝑥 (𝑡 − 𝑑)

+ ∫

𝑡

𝑡−𝑑

𝑥̇
𝑇

(𝑠) 𝑑𝑠𝑆
𝑇

23
𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡) 𝑆
13
∫

𝑡

𝑡−𝑑

𝑥̇ (𝑠) 𝑑𝑠

+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
23
∫

𝑡

𝑡−𝑑

𝑥̇ (𝑠) 𝑑𝑠

= 𝑥
𝑇

(𝑡) 𝑑𝑆
11
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝑑) 𝑑𝑆
𝑇

12
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑑𝑆
12
𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑑𝑆
22
𝑥 (𝑡 − 𝑑) + [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑)]

𝑇

× [𝑆
𝑇

13
𝑥 (𝑡) + 𝑆

𝑇

23
𝑥 (𝑡 − 𝑑)]

+ [𝑥
𝑇

(𝑡) 𝑆
13
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
23
]

× [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑)] ,
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− ∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑍
2
̇𝑦 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−ℎ

[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − ℎ) ̇𝑦
𝑇

(𝑠)]

×
[

[

𝑇
11

𝑇
12

𝑇
13

𝑇
𝑇

12
𝑇
22

𝑇
23

𝑇
𝑇

13
𝑇
𝑇

23
0

]

]

×
[

[

𝑦 (𝑡)

𝑦 (𝑡 − ℎ)

̇𝑦 (𝑠)

]

]

𝑑𝑠

= ∫

𝑡

𝑡−ℎ

(𝑦
𝑇

(𝑡) 𝑇
11
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
𝑇

12
+ ̇𝑦
𝑇

(𝑠) 𝑇
𝑇

13
) 𝑦 (𝑡) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

(𝑦
𝑇

(𝑡) 𝑇
12
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
22
+ ̇𝑦
𝑇

(𝑠) 𝑇
𝑇

23
)

× 𝑦 (𝑡 − ℎ) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

(𝑦
𝑇

(𝑡) 𝑇
13
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
23
) ̇𝑦 (𝑠) 𝑑𝑠

= 𝑦
𝑇

(𝑡) ℎ𝑇
11
𝑦 (𝑡) + 𝑦

𝑇

(𝑡 − ℎ) ℎ𝑇
𝑇

12
𝑦 (𝑡)

+ ∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑑𝑠𝑇
𝑇

13
𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) ℎ𝑇
12
𝑦 (𝑡 − ℎ) + 𝑦

𝑇

(𝑡 − ℎ) ℎ𝑇
22
𝑦 (𝑡 − ℎ)

+ ∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑑𝑠𝑇
𝑇

23
𝑦 (𝑡 − ℎ)

+ 𝑦
𝑇

(𝑡) 𝑇
13
∫

𝑡

𝑡−ℎ

̇𝑦 (𝑠) 𝑑𝑠

+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
23
∫

𝑡

𝑡−ℎ

̇𝑦 (𝑠) 𝑑𝑠

= 𝑦
𝑇

(𝑡) ℎ𝑇
11
𝑦 (𝑡) + 𝑦

𝑇

(𝑡 − ℎ) ℎ𝑇
𝑇

12
𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) ℎ𝑇
12
𝑦 (𝑡 − ℎ)

+ 𝑦
𝑇

(𝑡 − ℎ) ℎ𝑇
22
𝑦 (𝑡 − ℎ) + [𝑦 (𝑡) − 𝑦 (𝑡 − ℎ)]

𝑇

× [𝑇
𝑇

13
𝑦 (𝑡) + 𝑇

𝑇

23
𝑦 (𝑡 − ℎ)]

+ [𝑦
𝑇

(𝑡) 𝑇
13
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
23
]

× [𝑦 (𝑡) − 𝑦 (𝑡 − ℎ)] .

(27)

Substituting (27) into (26), we have

̇
𝑉
5
(𝑡) ≤ 𝑒

2𝑘𝑡

{𝑑𝑥̇
𝑇

(𝑡) 𝑍
1
𝑥̇ (𝑡)

+ 𝑒
−2𝑘𝑑

[𝑑𝑥
𝑇

(𝑡) 𝑆
11
𝑥 (𝑡)

+ 2𝑑𝑥
𝑇

(𝑡) 𝑆
𝑇

12
𝑥 (𝑡 − 𝑑)

+ 2[𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑)]
𝑇

× [𝑆
𝑇

13
𝑥 (𝑡) + 𝑆

𝑇

23
𝑥 (𝑡 − 𝑑)]

+ 𝑑𝑥
𝑇

(𝑡 − 𝑑) 𝑆
22
𝑥 (𝑡 − 𝑑)]

+ ℎ ̇𝑦
𝑇

(𝑡) 𝑍
2
̇𝑦 (𝑡)

+ 𝑒
−2𝑘ℎ

[ℎ𝑦
𝑇

(𝑡) 𝑇
11
𝑦 (𝑡)

+ 2ℎ𝑦
𝑇

(𝑡) 𝑇
12
𝑦 (𝑡 − ℎ)

+ 2[𝑦 (𝑡) − 𝑦 (𝑡 − ℎ)]

𝑇

× [𝑇
𝑇

13
𝑦 (𝑡) + 𝑇

𝑇

23
𝑦 (𝑡 − ℎ)]

+ ℎ𝑦
𝑇

(𝑡 − ℎ) 𝑇
22
𝑦 (𝑡 − ℎ)]} .

(28)

From (22), (25), and (28) we obtain

̇
𝑉 (𝑡) ≤ 𝑒

2𝑘𝑡

𝜉
𝑇

(𝑡) Ξ𝜉 (𝑡) , (29)

where Ξ is defined as in (16), and 𝜉(𝑡) = [𝑥(𝑡), 𝑥(𝑡 −

𝑑), 𝑓(𝑥(𝑡)), 𝑓(𝑥(𝑡−𝑑(𝑡))), 𝑦(𝑡), 𝑦(𝑡−ℎ), 𝑔(𝑦(𝑡)), 𝑔(𝑦(𝑡−ℎ(𝑡)))].
Since the matrix Ξ given inTheorem 5 is the negative definite
matrix, we have ̇

𝑉(𝑡) ≤ 0, for all 𝑡 ≥ 0 which implies that
𝑉(𝑡) ≤ 𝑉(0). From the definition of 𝑉(𝑡) in (20), we obtain

𝑉 (0) = 𝑥
𝑇

(0) 𝑃
1
𝑥 (0)

+ 2

𝑛

∑

𝑖=1

𝑘
𝑖
∫

𝑥𝑖(0)

0

[𝑓
𝑖
(𝑠) − 𝐸

𝑖
𝑠] 𝑑𝑠

+ ∫

0

−𝑑

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−𝑑(0)

𝑒
2𝑘𝑠

𝑓
𝑇

(𝑥 (𝑠)) 𝑄
3
𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ∫

0

−𝑑(0)

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠)𝑊
1
𝑥 (𝑠) 𝑑𝑠

+ 𝑦
𝑇

(0) 𝑃
2
𝑦 (0)

+ 2

𝑚

∑

𝑗=1

𝑟
𝑗
∫

𝑦𝑗(0)

0

[𝑔
𝑗
(𝑠) − 𝑁

𝑗
𝑠] 𝑑𝑠

+ ∫

0

−ℎ

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠) 𝑄
2
𝑦 (𝑠) 𝑑𝑠
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+ ∫

0

−ℎ(0)

𝑒
2𝑘𝑠

𝑔
𝑇

(𝑦 (𝑠)) 𝑄
4
𝑔 (𝑦 (𝑠)) 𝑑𝑠

+ ∫

0

−ℎ(0)

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) 𝑑𝑠

+ ∫

0

−𝑑

∫

0

𝑠

𝑒
2𝑘𝜃

𝑥̇
𝑇

(𝜃) 𝑍
1
𝑥̇ (𝜃) 𝑑𝜃 𝑑𝑠

+ ∫

0

−ℎ

∫

0

𝑠

𝑒
2𝑘𝜃

̇𝑦
𝑇

(𝜃) 𝑍
2
̇𝑦 (𝜃) 𝑑𝜃 𝑑𝑠

≤ 𝜆
𝑀
(𝑃
1
)

󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩

2

+ 2𝐾
𝑀
(𝐹 − 𝐸)

󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩

2

+ [𝜆
𝑀
(𝑄
1
) + 𝜆
𝑀
(𝑄
3
) (𝐹 − 𝐸) + 𝜆

𝑀
(𝑊
1
)]

× ∫

0

−𝑑

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠) 𝑥 (𝑠) 𝑑𝑠 + 𝜆
𝑀
(𝑃
2
)

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑅
𝑀
(𝑀 − 𝑁)

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩

2

+ [𝜆
𝑀
(𝑄
2
) + 𝜆
𝑀
(𝑄
4
) (𝑀 − 𝑁) + 𝜆

𝑀
(𝑊
2
)]

× ∫

0

−ℎ

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠

+ 𝜆
𝑀
(𝑍
1
) ∫

0

−𝑑

∫

0

𝑠

𝑥̇
𝑇

(𝜃) 𝑥̇ (𝜃) 𝑑𝜃 𝑑𝑠

+ 𝜆
𝑀
(𝑍
2
) ∫

0

−ℎ

∫

0

𝑠

̇𝑦
𝑇

(𝜃) ̇𝑦 (𝜃) 𝑑𝜃 𝑑𝑠,

(30)

where 𝐾
𝑀
= max

1≤𝑖≤𝑛
(𝑘
𝑖
), 𝐹 − 𝐸 = max

1≤𝑖≤𝑛
(𝐹
𝑖
− 𝐸
𝑖
), 𝑅
𝑀
=

max
1≤𝑗≤𝑚

(𝑟
𝑗
) and𝑀−𝑁 = max

1≤𝑗≤𝑛
(𝑀
𝑗
− 𝑁
𝑗
).

It follows from Lemma 3 that

𝑥̇
𝑇

(𝜃) 𝑥̇ (𝜃)

= [−𝐶𝑥 (𝜃) + 𝐴
1
𝑔 (𝑦 (𝜃)) + 𝐴

2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))]

𝑇

× [−𝐶𝑥 (𝜃) + 𝐴
1
𝑔 (𝑦 (𝜃)) + 𝐴

2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))]

= 𝑥
𝑇

(𝜃) 𝐶
𝑇

𝐶𝑥 (𝜃) + 𝑔
𝑇

(𝑦 (𝜃)) 𝐴
𝑇

1
𝐴
1
𝑔 (𝑦 (𝜃))

+ 𝑔
𝑇

(𝑦 (𝜃 − ℎ (𝜃))) × 𝐴
𝑇

2
𝐴
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))

− 2𝑥
𝑇

(𝜃) 𝐶
𝑇

𝐴
1
𝑔 (𝑦 (𝜃)) − 2𝑥

𝑇

(𝜃) 𝐶
𝑇

𝐴
2

× 𝑔 (𝑦 (𝜃 − ℎ (𝜃)))

+ 2𝑔
𝑇

(𝑦 (𝜃)) 𝐴
𝑇

1
𝐴
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))

≤ 3𝑥
𝑇

(𝜃) 𝐶
𝑇

𝐶𝑥 (𝜃)

+ 3𝑔
𝑇

(𝑦 (𝜃)) 𝐴
𝑇

1
𝐴
1
𝑔 (𝑦 (𝜃))

+ 3𝑔
𝑇

(𝑦 (𝜃 − ℎ (𝜃))) 𝐴
𝑇

2

× 𝐴
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃))) ,

̇𝑦
𝑇

(𝜃) ̇𝑦 (𝜃)

= [−𝐷𝑦 (𝜃) + 𝐵
1
𝑓 (𝑥 (𝜃)) + 𝐵

2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))]

𝑇

× [−𝐷𝑦 (𝜃) + 𝐵
1
𝑓 (𝑥 (𝜃)) + 𝐵

2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))]

= 𝑦
𝑇

(𝜃)𝐷
𝑇

𝐷𝑦 (𝜃) + 𝑓
𝑇

(𝑥 (𝜃)) 𝐵
𝑇

1
𝐵
1
𝑓 (𝑥 (𝜃))

+ 𝑓
𝑇

(𝑥 (𝜃 − 𝑑 (𝜃)))

× 𝐵
𝑇

2
𝐵
2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))

− 2𝑦
𝑇

(𝜃)𝐷
𝑇

𝐵
1
𝑓 (𝑥 (𝜃)) − 2𝑦

𝑇

(𝜃)𝐷
𝑇

𝐵
2

× 𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))

+ 2𝑓
𝑇

(𝑥 (𝜃)) 𝐵
𝑇

1
𝐵
2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))

≤ 3𝑦
𝑇

(𝜃)𝐷
𝑇

𝐷𝑦 (𝜃) + 3𝑓
𝑇

(𝑥 (𝜃)) 𝐵
𝑇

1
𝐵
1
𝑓 (𝑥 (𝜃))

+ 3𝑓
𝑇

(𝑥 (𝜃 − 𝑑 (𝜃))) 𝐵
𝑇

2
× 𝐵
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃))) .

(31)

Substituting (31) into (30), we obtain the bound of 𝑉(0) as
follows:

𝑉 (0) ≤ 𝜆
𝑀
(𝑃
1
)

󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩

2

+ 2𝐾
𝑀
(𝐹 − 𝐸)

󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩

2

+ (

1 − 𝑒
−2𝑘𝑑

2𝑘

)

× [𝜆
𝑀
(𝑄
1
) + 𝜆
𝑀
(𝑄
3
) × (𝐹 − 𝐸) + 𝜆

𝑀
(𝑊
1
)]

+ 𝜆
𝑀
(𝑃
2
)

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑅
𝑀
(𝑀 − 𝑁)

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩

2

+ (

1 − 𝑒
−2𝑘ℎ

2𝑘

)

× [𝜆
𝑀
(𝑄
2
) + 𝜆
𝑀
(𝑄
4
) (𝑀 − 𝑁) + 𝜆

𝑀
(𝑊
2
)]

+

𝑑
2

2

𝜆
𝑀
(𝑍
1
) [3𝜆
𝑀
(𝐶
𝑇

𝐶)
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩

2

+ 3𝜆
𝑀
(𝐴
𝑇

1
𝐴
1
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

+ 3𝜆
𝑀
(𝐴
𝑇

2
𝐴
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

]
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+

ℎ
2

2

𝜆
𝑀
(𝑍
2
) [3𝜆
𝑀
(𝐷
𝑇

𝐷)

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩

2

+ 3𝜆
𝑀
(𝐵
𝑇

1
𝐵
1
)

󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩

2

+ 3𝜆
𝑀
(𝐵
𝑇

2
𝐵
2
)
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩

2

] .

(32)

Thus,

𝑉 (0) ≤ 𝜒
1

󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩

2

+ 𝜒
2

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

, (33)

where

𝜒
1
= 𝜆
𝑀
(𝑃
1
) + 2𝐾

𝑀
(𝐹 − 𝐸) + (

1 − 𝑒
−2𝑘𝑑

2𝑘

)

× [𝜆
𝑀
(𝑄
1
) + 𝜆
𝑀
(𝑄
3
) (𝐹 − 𝐸) + 𝜆

𝑀
(𝑊
1
)]

+

3𝑑
2

2

𝜆
𝑀
(𝑍
1
) 𝜆
𝑀
(𝐶
𝑇

𝐶)

+

ℎ
2

2

𝜆
𝑀
(𝑍
2
) [3𝜆
𝑀
(𝐵
𝑇

1
𝐵
1
) + 3𝜆

𝑀
(𝐵
𝑇

2
𝐵
2
)] ,

𝜒
2
= 𝜆
𝑀
(𝑃
2
) + 2𝑅

𝑀
(𝑀 − 𝑁) + (

1 − 𝑒
−2𝑘ℎ

2𝑘

)

× [𝜆
𝑀
(𝑄
2
) + 𝜆
𝑀
(𝑄
4
) (𝑀 − 𝑁) + 𝜆

𝑀
(𝑊
2
)]

+

3ℎ
2

2

𝜆
𝑀
(𝑍
2
) 𝜆
𝑀
(𝐷
𝑇

𝐷)

+

𝑑
2

2

𝜆
𝑀
(𝑍
1
) [3𝜆
𝑀
(𝐴
𝑇

1
𝐴
1
) + 3𝜆

𝑀
(𝐴
𝑇

2
𝐴
2
)] .

(34)

On the other hand, we have

𝑉 (𝑡) ≥ 𝑒
2𝑘𝑡

{𝜆
𝑚
(𝑃
1
) ‖𝑥(𝑡)‖

2

+ 𝜆
𝑚
(𝑃
2
)
󵄩
󵄩
󵄩
󵄩
𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

} . (35)

Therefore,

‖𝑥(𝑡)‖
2

+

󵄩
󵄩
󵄩
󵄩
𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝜌𝑒
−2𝑘𝑡

{
󵄩
󵄩
󵄩
󵄩
𝜙

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩

2

} , (36)

where 𝜌 = max(𝜒
1
, 𝜒
2
)/min(𝜆

𝑚
(𝑃
1
), 𝜆
𝑚
(𝑃
2
)) ≥ 1. Therefore,

the system (7) is global exponentially stable with the conver-
gent rate 𝑘 > 0. This completes the proof.

Remark 6. In hypothesis (H2), lower bounds 𝐸
𝑖
, 𝑁
𝑗
and

upper bounds 𝐹
𝑖
, 𝑀
𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

of activation functions are allowed to be either positive,
negative, or zero. Clearly, hypothesis (H2) in our paper is
more general than those given in [14, 15, 18, 21, 22, 24–27].
Hence, our result is less conservative than some existing
results given in the literature.

4. Numerical Examples

Example 1. Consider the BAM neural networks in (7) with
𝐶 = diag(1, 1, 1),𝐷 = diag(2, 2, 2), 𝐴

1
= 𝐵
1
= 0,

𝐴
2
=
[

[

0.05 0.25 0.05

0.1 0.05 0.15

0.15 0.15 0.05

]

]

,

𝐵
2
=
[

[

0.75 0.75 0.95

0 0.50 0.15

0.15 0.15 0.05

]

]

.

(37)

In this example, the activation function and time delay are
given as follows: 𝑓

1
(𝑥) = 𝑓

2
(𝑥) = 𝑓

3
(𝑥) = (1/2)(|𝑥 + 1| − |𝑥 −

1|),𝑔
1
(𝑦) = 𝑔

2
(𝑦) = 𝑔

3
(𝑦) = (1/2)(|𝑦+1|−|𝑦−1|), 𝑑(𝑡) = 0.5,

ℎ(𝑡) = 1. It follows that 𝑑 = 0.5, 𝜏 = 0.3, ℎ = 1, and 𝜇 =

0.3. The assumption (H2) is satisfied with 𝐹 = diag(1, 1, 1),
𝑀 = diag(1, 1, 1), 𝐸 = 𝑁 = 0. Let 𝑘 = 0.1. By using the LMI
Toolbox in MATLAB, the LMI (16) of Theorem 5 is feasible
with 𝑘 = 0.1 and a set of solutions of (16) is given by

𝑃
1
=
[

[

28.6382 0.6843 0.7501

0.6843 28.2061 1.0981

0.7501 1.0981 27.7326

]

]

,

𝑃
2
=
[

[

11.7631 0.5671 0.4170

0.5671 25.8296 0.7934

0.4170 0.7934 26.2860

]

]

,

𝑄
1
=
[

[

14.4157 −0.0495 −0.0610

−0.0495 14.4217 −0.0911

−0.0610 −0.0911 14.4462

]

]

,

𝑄
2
=
[

[

12.8030 −0.9294 −0.9704

−0.9294 16.9982 −0.4287

−0.9704 −0.4287 17.2419

]

]

,

𝑄
3
=
[

[

16.7725 0.4495 0.2528

0.4495 15.0669 0.5969

0.2528 0.5969 13.1708

]

]

,

𝑄
4
=
[

[

11.9146 −0.2010 −0.3870

−0.2010 15.1767 −0.6757

−0.3870 −0.6757 15.3739

]

]

,

𝑊
1
=
[

[

14.6218 1.0858 0.9997

1.0858 13.0260 1.3001

0.9997 1.3001 11.6739

]

]

,

𝑊
2
=
[

[

8.4065 −0.0639 −0.2523

−0.0639 11.9959 0.1677

−0.2523 0.1677 11.6957

]

]

,

𝑍
1
=
[

[

13.3993 0.2142 0.3899

0.2142 13.5746 0.3941

0.3899 0.3941 13.7729

]

]

,

𝑍
2
=
[

[

2.3511 0.7468 0.6736

0.7468 11.2627 0.3500

0.6736 0.3500 11.7724

]

]

,
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𝑆
11
=
[

[

12.4617 −0.0242 −0.0266

−0.0242 12.4732 −0.0399

−0.0266 −0.0399 12.4949

]

]

,

𝑆
12
=
[

[

−1.1535 −0.0211 −0.0257

−0.0211 −1.1444 −0.0335

−0.0257 −0.0335 −1.1320

]

]

,

𝑆
13
=
[

[

−0.9075 −0.0415 −0.0544

−0.0415 −0.9093 −0.0805

−0.0544 −0.0805 −0.9019

]

]

,

𝑆
22
=
[

[

12.2314 −0.0115 −0.0101

−0.0115 12.2463 −0.0163

−0.0101 −0.0163 12.2626

]

]

,

𝑆
23
=
[

[

1.6306 0.0129 0.0208

0.0129 1.6430 0.0270

0.0208 0.0270 1.6490

]

]

,

𝑇
11
=
[

[

8.6800 −0.5650 −0.6089

−0.5650 12.0158 −0.3052

−0.6089 −0.3052 12.2653

]

]

,

𝑇
12
=
[

[

−1.8596 −0.2702 −0.2795

−0.2702 −1.2902 −0.1294

−0.2795 −0.1294 −1.2317

]

]

,

𝑇
13
=
[

[

−1.7089 −0.3795 −0.4069

−0.3795 −0.6642 −0.2437

−0.4069 −0.2437 −0.5078

]

]

,

𝑇
22
=
[

[

8.2813 −0.2103 −0.2276

−0.2103 10.2975 −0.1027

−0.2276 −0.1027 10.4221

]

]

,

𝑇
23
=
[

[

1.9707 0.1871 0.1870

0.1871 2.3062 0.0783

0.1870 0.0783 2.3346

]

]

,

𝐾 =
[

[

14.9427 0 0

0 14.2734 0

0 0 13.4467

]

]

,

𝑅 =
[

[

5.8315 0 0

0 8.1963 0

0 0 8.3562

]

]

.

(38)

Thus, the system (7) is 0.1-exponentially stable and the value
𝜌 = 13.4606. The solution of the closed-loop system satisfies

‖𝑥(𝑡)‖
2

+

󵄩
󵄩
󵄩
󵄩
𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 13.4606𝑒
−2(0.1)𝑡

{
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

} , ∀𝑡 ∈ R
+

.

(39)

By applyingTheorem 5 and by solving the LMI (16) using
MATLAB LMI Toolbox, we obtain the convergence rate
𝑘 which guarantees that the global exponential stability is
0.998. In Table 1, we give comparison of maximum allowable
convergence rate 𝑘 obtained by Theorem 5 and by other

Table 1: Maximum allowable convergence rate.

𝜏 = 𝜇 0 0.3 0.5 0.7 0.9
[24] — 0.459 0.455 0.455 0.455
[29] — 0.445 0.424 0.408 0.407
[25] — 0.52 0.47 0.39 0.21
This paper 0.998 0.998 0.998 0.998 0.998

methods in some previous existing results. From Table 1, it is
shown that the proposed global exponential stability criterion
is less conservative than those obtained in [24, 25, 29].

Example 2. Consider the BAM neural networks in (7) with

𝐶 =
[

[

5 0 0

0 5 0

0 0 5

]

]

,

𝐴
1
=
[

[

−0.72 −0.44 −0.21

−0.72 −0.83 −0.1

−0.01 0.01 −0.04

]

]

,

𝐴
2
=
[

[

−0.01 −0.12 −0.24

0.17 −0.33 −0.43

−0.25 0.33 −0.05

]

]

,

𝐷 =
[

[

5 0 0

0 5 0

0 0 5

]

]

,

𝐵
1
=
[

[

−0.31 −0.31 0.92

0.34 −0.33 −0.78

0.34 0.47 0.25

]

]

,

𝐵
2
=
[

[

−0.83 −0.12 −0.52

−0.65 0.5 −0.14

−0.05 −0.14 −0.65

]

]

.

(40)

In this example, the activation function and time-varying
delay are given as follows: 𝑓

1
(𝑥) = 𝑓

2
(𝑥) = 𝑓

3
(𝑥) =

(1/2)(|𝑥 + 1| − |𝑥 − 1|), 𝑔
1
(𝑦) = 𝑔

2
(𝑦) = 𝑔

3
(𝑦) = (1/2)(|𝑦 +

1| − |𝑦 − 1|), 𝑑(𝑡) = sin2(0.5𝑡), ℎ(𝑡) = 0.1cos2(𝑡); the
assumption (H2) is satisfied with𝐸 = diag(−0.2, −0.25, −0.2),
𝐹 = diag(0.3, 0.4, 0.5), 𝑁 = diag(−0.2, −0.25, −0.2), 𝑀 =

diag(0.3, 0.4, 0.5). It follows that 𝑑 = 0.5, 𝜏 = 0.3, ℎ = 0.1,
and 𝜇 = 0.3. Let 𝑘 = 0.1. By using the LMI Toolbox in
MATLAB, the LMI (16) is feasible with 𝑘 = 0.1 and a set of
solutions of (16) is given by

𝑃
1
=
[

[

110.3704 −30.1135 −5.4152

−30.1135 90.3013 8.8948

−5.4152 8.8948 115.0609

]

]

,

𝑃
2
=
[

[

43.9625 −2.3031 7.3341

−2.3031 38.1671 4.9969

7.3341 4.9969 62.3183

]

]

,
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𝑄
1
=
[

[

125.4489 −1.8802 0.9399

−1.8802 127.5495 −1.0063

0.9399 −1.0063 130.0399

]

]

,

𝑄
2
=
[

[

100.3079 −4.1254 −0.7526

−4.1254 101.8490 1.0897

−0.7526 1.0897 114.9297

]

]

,

𝑄
3
=
[

[

136.0956 −4.2919 38.6712

−4.2919 90.4808 19.2022

38.6712 19.2022 113.1213

]

]

,

𝑄
4
=
[

[

42.6986 −34.8491 −15.2241

−34.8491 96.7728 2.0801

−15.2241 2.0801 145.8684

]

]

,

𝑊
1
=
[

[

140.8059 25.3914 −0.9357

25.3914 146.4301 −4.4760

−0.9357 −4.4760 11.6128

]

]

,

𝑊
2
=
[

[

105.4681 −0.1405 5.1590

−0.1405 107.4419 16.7637

5.1590 16.7637 134.1991

]

]

,

𝑍
1
=
[

[

69.1695 −24.4444 −4.5155

−24.4444 48.7177 7.8545

−4.5155 7.8545 65.4657

]

]

,

𝑍
2
=
[

[

99.9490 1.3357 35.2470

1.3357 80.2179 10.6682

35.2470 10.6682 111.8243

]

]

,

𝑆
11
=
[

[

103.3199 −2.9895 0.4043

−2.9895 103.2019 −0.1404

0.4043 −0.1404 106.3073

]

]

,

𝑆
12
=
[

[

−2.9235 −0.6314 0.1584

−0.6314 −2.4889 −0.1672

0.1584 −0.1672 −1.9572

]

]

,

𝑆
13
=
[

[

1.0569 −2.4649 0.0237

−2.4649 0.4090 0.2113

0.0237 0.2113 2.4210

]

]

,

𝑆
22
=
[

[

97.0839 −2.1772 0.0865

−2.1772 96.3284 0.1980

0.0865 0.1980 98.4407

]

]

,

𝑆
23
=
[

[

8.9358 −1.7429 −0.3501

−1.7429 7.0242 0.7119

−0.3501 0.7119 8.3850

]

]

,

𝑇
11
=
[

[

105.0332 −0.4193 0.0331

−0.4193 105.2266 0.3043

0.0331 0.3043 107.5064

]

]

,

𝑇
12
=
[

[

−1.5261 −0.6096 −0.1149

−0.6096 −1.2415 0.0894

−0.1149 0.0894 0.3340

]

]

,

Table 2: Maximum allowable convergence rate.

𝜏 = 𝜇 0 0.3 0.5 0.7
Convergence rate 𝑘 0.81 0.638 0.48 0.221
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Figure 1: Time responses of state variables.

𝑇
13
=
[

[

−7.6562 −3.2414 −0.6934

−3.2414 −5.7650 0.5527

−0.6934 0.5527 4.8321

]

]

,

𝑇
22
=
[

[

104.9648 −0.5090 −0.0471

−0.5090 105.1940 0.0964

−0.0471 0.0964 106.5444

]

]

,

𝑇
23
=
[

[

2.6072 0.1420 0.2077

0.1420 2.6111 −0.0404

0.2077 −0.0404 2.2053

]

]

,

𝐾 =
[

[

106.5957 0 0

0 63.3921 0

0 0 6.3380

]

]

,

𝑅 =
[

[

86.0059 0 0

0 72.0231 0

0 0 71.2919

]

]

.

(41)

Thus, the system (7) is 0.1-exponentially stable and the value
𝜌 = 14.1811. The solution of the closed-loop system satisfies

‖𝑥(𝑡)‖
2

+

󵄩
󵄩
󵄩
󵄩
𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 14.1811𝑒
−2(0.1)𝑡

{
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

} , ∀𝑡 ∈ R
+

.

(42)

The maximum allowable convergence rate 𝑘 for different
values of 𝜏 = 𝜇 is given in Table 2. The trajectory of solutions
of BAM neural networks with time-varying delays is shown



12 Abstract and Applied Analysis

in Figure 1, where the initial conditions are chosen as 𝜙
1
=

cos(𝑠), 𝜙
2
= sin(𝑠),𝜙

3
= sin(𝑠) − 1, 𝜑

1
= cos(𝑠) + 1, 𝜑

2
=

sin(𝑠) − 2, 𝜑
3
= cos(𝑠) + 1, 𝑠 ∈ [−0.5, 0].

5. Conclusion

This paper has proposed a new sufficient condition guar-
anteeing the global exponential stability criteria for bidi-
rectional associative memory neural networks with time-
varying delays and generalized activation functions. The
developed stability condition is in terms of LMI, which can
be easily solved by some existing software packages. Further-
more, the proposed stability conditions are less conservative
than some works in the literature.
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