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The problem discussed is the stability of two input-output feedforward and feedback relations, under an integral-type constraint
defining an admissible class of feedback controllers. Sufficiency-type conditions are given for the positive, bounded and of
closed range feed-forward operator to be strictly positive and then boundedly invertible, with its existing inverse being also a
strictly positive operator. The general formalism is first established and the linked to properties of some typical contractive and
pseudocontractive mappings while some real-world applications and links of the above formalism to asymptotic hyperstability of
dynamic systems are discussed later on.

1. Introduction

The properties of absolute stability and hyperstability and
asymptotic hyperstability of dynamic systems are very impor-
tant tools in dynamic systems since they are associated with
the positivity and boundedness of the energy for all feedback
controllers within a wide class characterized by a Popov-
type integral inequality, then implying global Lyapunov’s
stability [1–8]. The fact that such properties hold for a class
of controllers defined by the Popov inequality, rather than
for just some individual one, makes the related theory to be
very useful against potential parametrical dispersion of com-
ponents. The main objective of this paper is the investigation
of the strict positivity and stability of bounded positive one-
to-one operators with closed range on Hilbert spaces linked
to contractive, pseudocontractive, asymptotically pseudo-
contractive, and asymptotically pseudocontractive in the
intermediate sensemappings. See [9–21] and exhaustive list of
references therein. Fixed point theory has also been proven to
be useful to describe the asymptotic behaviour, stability and
equilibrium points of differential, functional, and difference
equations and systems of equations, and continuous-time,

discrete-time, and hybrid dynamic systems. See, for instance,
[22–27] and references therein. Further links with technical
results and some real-world examples are established through
the paper related to the relevant problems of absolute sta-
bility and asymptotic hyperstability of continuous-time and
discrete-time dynamic systems [1–8]. Such dynamic systems
possess the significant physical property that their associate
input-output energy is non-negative and finite for all time.
Thus, they are purely dissipative systems, for a wide class
of feedback nonlinear time-varying controllers satisfying an
integral input-output inequality what leads to the global
Lyapunov’s stability for all controllers within such a class.
Several operators are characterized but the most important
one in the analysis is the one which maps the input space to
the output space. Both such spaces are subspaces of a Hilbert
space resulting to be, typically in real-world examples, either
the space of square-integrable real or complex functions (or,
in general, vector functions) or its corresponding square-
summable counterparts. The relevant property needed for
a positive operator to be strictly positive is seen to be that
its minimum modulus be nonzero so as to ensure that it is
invertible if it is of a closed range. Note, on the other hand,
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that the crucial property for the boundedness and stability of
the operator restricted to the Hilbert space of interest is that
it will be stable on its whole definition domain.

2. Problem Statement and Main Results

Through this paper, one considers the complex Hilbert space
𝐻 on C and operators 𝐺 : 𝐻 → 𝐻 and 𝐾 : 𝐻 → 𝐻 which
define the following associated relations:

𝑦 = 𝐺𝑢 + 𝑦ℎ,

𝑢 = 𝐾𝑟 − 𝜑Γ (𝑦) ,

(1)

where 𝑦ℎ = 𝑦ℎ(𝑝) and 𝑝 ∈ C𝑞 is some given complex
parameterizing vector, and 𝑟 : Γ → 𝐻 | dom𝐾, 𝜑Γ : Γ ×
𝐻 → ran 𝜑Γ(⊂ 𝐻), 𝑢 : Γ → (𝐻 | ran 𝐾)+ ran 𝜑Γ(⊂ 𝐻);
and 𝑦 = 𝑦ℎ + 𝑦𝑓, with 𝑦ℎ : Γ × C𝑞 → 𝐻 and 𝑦𝑓 : Γ → 𝐻 |

ran 𝐺. The set Γ is some appropriate domain to define the
previous functions of interest. Examples which adjust to the
previous structure are very common in the real world as, for
instance, linear continuous-time dynamic systems (with Γ =
R0+ being the nonnegative real set for picking up values 𝑡 ∈
Γ of the continuous-time argument) and linear discrete-time
dynamic systems (with Γ = Z0+ being the nonnegative integer
set for values 𝑡 ∈ Γ of the discrete-time argument) where 𝑟 is
an exogenous, or reference, signal, 𝑢 is a feedback control, 𝑦ℎ
is the parameterized response to initial conditions, versus𝐺𝑢
which is the forced response, 𝑦 is the measurable output to
be controlled, and 𝜑Γ(𝑦) is a nonlinear (and, eventually, time-
varying) controller device.

The inner products on the previous variousHilbert spaces
are all denoted with the standard notation ⟨⋅, ⋅⟩ and mutually
distinguished easily depending on context without explicit
notational subscripts referred to each concrete space. Assume
that Γ is an indicator set defining truncated elements of the
Hilbert space as, for instance, a real interval or a subset of
the nonnegative integers and 𝑃𝑡 is a projection operator being
a truncation operator so that 𝑥𝑡 = 𝑃𝑡𝑥 and for each 𝑡 ∈ Γ,
and we define the seminorm on 𝐻 by ‖𝑥‖𝑡 = ‖𝑥𝑡‖ = ‖𝑃𝑡𝑥‖;
∀𝑡 ∈ Γ with 𝑃𝑡 ̸= 𝐼 and the family {‖‖𝑡 : 𝑡 ∈ Γ} of seminorms
defines the resolution topology on 𝐻 since {𝑃𝑡 : 𝑡 ∈ 𝐻} is
a resolution of the identity [28]. Note that ‖𝑥‖𝑡

1

≥ ‖𝑥𝑡
2

‖ if
𝑡1 ≥ 𝑡2. For instance, if Γ = R0+ then 𝑥(𝑡) denotes a point
value of 𝑥 : R0+ → R0+, for 𝑡 ∈ Γ while 𝑥𝑡 denotes the strip
𝑥 : [0, t] ∩ R0+ → R0+. Through the paper the notation “∗”
stands for adjoint operators and also for complex conjugates
of scalars or vectors depending on the context.

The problem to be discussed in the paper is the stability
of (1) under an integral-type constraint for the controller
specified later on, which characterizes a whole admissible
class of controllers rather than an individual controller.
Conditions are given for the positive feed-forward operator
𝐺 which is assumed to be bounded and of closed range is
ensured to be also strictly positive, then boundedly invertible,
with its existing inverse being also a strictly positive operator.
If such an operator is bounded and strictly positive, then
the inner products ⟨𝐺𝑢, 𝑢⟩ and ⟨𝐺

−1
𝑢, 𝑢⟩ are both strictly

positive and finitely upper-bounded for all nonzero input 𝑢.

The general formalism is given in Section 2 together with
some links to contractive and pseudocontractive mappings
while some real-world applications to asymptotic hypersta-
bility of dynamic systems are then given in Section 3. The
following preliminary result holds.

Proposition 1. Assume that 𝐺 : 𝐻 → 𝐻 is a one-to-one
linear operator with closed range.Then, the following properties
hold

(i) 𝐺 : 𝐻 → 𝐻 is invertible with nonzero minimum
modulus,

(ii) if, in addition, 𝐺 : 𝐻 → 𝐻 is positive (abbreviated
notation being 𝐺 ⪰ 0), then⟨𝐺𝑢, 𝑢⟩ > 0 for any
nonzero 𝑢 : Γ → 𝐻,

(iii) there is 𝑡 ∈ Γ such that ⟨𝐺𝑃𝑡𝑢, 𝑃𝑡𝑢⟩ > 0 for any nonzero
𝑢 ∈ dom(𝐺).

Proof. Since𝐺 on𝐻 is one-to-one with closed range, it is also
invertible from the openmapping theoremand then bounded
below, so that there is 𝑐 ∈ R+ such that

‖𝐺𝑢‖ = ⟨𝐺𝑢, 𝐺𝑢⟩
1/2

≥ 𝑐 ‖𝑢‖ = 𝑐⟨𝑢, 𝑢⟩
1/2
; ∀𝑢 ∈ dom𝐺.

(2)

Then, the minimummodulus 𝜇(𝐺) of 𝐺 satisfies

𝜇 (𝐺) = inf {‖𝐺𝑢‖
‖𝑢‖

: 𝑢 (∈ dom𝐺) ̸= 0} ≥ 𝑐 > 0 (3)

and Property (i) has been proven. Now, if 𝐺 ⪰ 0, then there
is a self-adjoint operator 𝐺 = 𝐺

∗
⪰ 0 on 𝑋 such that 𝐺 =

𝐺
∗
𝐺 = 𝐺𝐺

∗
= 𝐺
2 so that, since 𝜇(𝐺) > 0 from Property (i),

⟨𝐺𝑢, 𝑢⟩
1/2

= ⟨𝐺
2
𝑢, 𝑢⟩
1/2

= ⟨𝐺𝑢, 𝐺𝑢⟩
1/2

=

𝐺𝑢


=


𝐺𝑢



‖𝑢‖
‖𝑢‖

≥ inf {

𝐺𝑢



‖𝑢‖
: 𝑢 (∈ dom𝐺) ̸= 0} ‖𝑢‖

≥ 𝜇 (𝐺) ‖𝑢‖ > 0; ∀𝑢 ( ̸= 0) : Γ → 𝐻

(4)

and Property (ii) is proven.
(iii) Note that if, 𝑢 ̸= 0, then there is 𝑡 ∈ Γ such that 𝑃𝑡𝑢 ̸= 0

and ⟨𝐺𝑃𝑡𝑢, 𝑃𝑡𝑢⟩ > 0 since one gets by Property (ii) that

⟨𝐺𝑢, 𝑢⟩
1/2

= sup
𝑡∈Γ

⟨𝐺𝑃𝑡𝑢, 𝑃𝑡𝑢⟩
1/2

≥ ⟨𝐺𝑃𝑡𝑢, 𝑃𝑡𝑢⟩
1/2

= ⟨𝐺
2
𝑃𝑡𝑢, 𝑃𝑡𝑢⟩

1/2
=

𝐺 (𝑃𝑡𝑢)


=


𝐺 (𝑃𝑡𝑢)


𝑃𝑡𝑢



𝑃𝑡𝑢


≥ inf {

𝐺 (𝑃𝑡𝑢)


𝑃𝑡𝑢



: 𝑢 (∈ dom𝐺) ̸= 0}
𝑃𝑡𝑢



≥ 𝜇 (𝐺)
𝑃𝑡𝑢

 > 0; ∀𝑢 ( ̸= 0) : Γ → 𝐻.

(5)
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Thus, ⟨𝐺𝑃𝑡𝑢, 𝑃𝑡𝑢⟩ > 0 for some 𝑡 ∈ Γ if 𝑢 ̸= 0. Hence, Property
(iii) follows.

Definition 2. The operator 𝐺 : 𝐻 → 𝐻 is said to be strictly
positive (denoted as 𝐺 ≻ 0) if it is positive (i.e., 𝐺 ⪰ 0) and
𝜇(𝐺) > 0.

Note from Proposition 1 that if 𝐺 ⪰ 0 is a one-to-one
operator on 𝐻 with closed range, then it is invertible and
𝐺 ≻ 0.

It is also direct to prove that Property (i) of Proposition 1
is equivalent to its given assumption so that one has [28].

Proposition 3. 𝐺 : 𝐻 → 𝐻 is a one-to-one linear bounded
operator with closed range if and only if it is invertible with
nonzero minimum modulus.

Proposition 4. If 𝐺 : 𝐻 → H is a one-to-one linear bounded
strictly positive operator with closed range, then it is invertible
and 𝐺−1 : 𝐻 → 𝐻 is also strictly positive with closed range
and bounded and 𝜇(𝐺−1) > 0 so that ⟨𝐺−1𝑢, 𝑢⟩ > 0 for any
nonzero 𝑢 : Γ → 𝐻.

Proof. Note that 1/‖𝐺−1‖ = 𝜇(𝐺) > 0 from Proposition 1.
Thus, ‖𝐺−1‖ < ∞ so that𝐺−1 is bounded. Since𝐺 is bounded,
then ‖𝐺‖ < ∞ and 1/‖𝐺‖ = 𝜇(𝐺

−1
) > 0. Thus, 𝐺−1 : 𝐻 →

𝐻 is also one-to-one with closed range from Proposition 3.
Then, 𝐺−1 = 𝐺

−1
𝐺
∗−1

= 𝐺
−2 is self-adjoint, and since

𝜇 (𝐺
−1
) > 0, one has from Property (i) of Proposition 1 and

Definition 2 that 𝐺−1 ≻ 0 since

⟨𝐺
−1
𝑢, 𝑢⟩
1/2

= ⟨𝐺
−2
𝑢, 𝑢⟩
1/2

= ⟨𝐺
−1
𝑢, 𝐺
−1
𝑢⟩
1/2

=

𝐺
−1
𝑢

= 𝜇 (𝐺

−1
) ‖𝑢‖ > 0,

∀𝑢 ( ̸= 0) : Γ → 𝐻.

(6)

Note that, if 𝐺 ⪰ 0, then ⟨𝐺𝑢, 𝑢⟩ can be zero for some
nonzero 𝑢 : Γ → 𝐻. The following result refers to the
fulfilment of relationships (1) for all 𝑡 ∈ Γ, that is, on the space
𝐻𝑒 = {𝑓𝑡 = 𝑃𝑡𝑓 : (𝑓 : Γ → 𝑃𝐶(Γ)); ∀𝑡 ∈ Γ} provided
that 𝐺 ≻ 0 and bounded. Under some additional weak
boundedness conditions, it is proven the stability of (1) with
𝑢 and 𝑦 belonging to 𝐻. Note that 𝐻𝑒 is not a Hilbert space
(even though𝐻 is a Hilbert space) since it is not ensured that,
for any 𝑓 : Γ → 𝑃𝐶(Γ), 𝑓𝑡 : Γ → 𝐻 as (Γ ∋)𝑡 → ∞.

An important result follows.

Theorem 5. Assume that (1) holds for all 𝑡 ∈ Γ, that is, 𝐺 :

𝐻𝑒 → 𝐻𝑒 and 𝐾 : 𝐻𝑒 → 𝐻𝑒, where 𝐻𝑒 = {𝑓𝑡 = 𝑃𝑡𝑓 :

(𝑓 : Γ → 𝑃𝐶(Γ)); ∀𝑡 ∈ Γ}, 𝑦ℎ = 𝑦ℎ(𝑝) and 𝑝 ∈ C𝑞 is some
given complex parameterizing vector, 𝑟 : Γ → 𝐻𝑒 | dom𝐾,
𝜑Γ : Γ × 𝐻𝑒 → ran 𝜑Γ, 𝑢 : Γ → (𝐻𝑒 | ran 𝐾) + ran 𝜑Γ;
and 𝑦 = 𝑦ℎ + 𝑦𝑓, with 𝑦ℎ : Γ × Cq

→ 𝐻 and 𝑦𝑓 : Γ → 𝐻𝑒 |

ran 𝐺. Assume also that

(1) 𝑦ℎ = 𝑦ℎ(𝑝) is bounded and 𝑃𝑡𝑦ℎ → 0 as (Γ ∋) 𝑡 →
∞,

(2) 𝐺 : 𝐻𝑒 → 𝐻𝑒 is stable (or, equivalently,𝐺 : 𝐻𝑒 | 𝐻 →

𝐻 is bounded and causal), one-to-one, and with closed
range,

(3) 𝐺 ≻ 0,
(4) 𝐾 : 𝐻 → 𝐻 is bounded,
(5) 𝑟 : Γ → 𝐻 is bounded,
(6) ⟨𝑃𝑡𝑦, 𝑃𝑡(𝜑Γ(𝑦))⟩ ≥ −𝛾𝑡 ≥ −𝛾 > −∞; ∀𝑡 ∈ Γ.

Then, 𝑢, 𝑦𝑓, 𝑦 : Γ → 𝐻, and they are bounded. Also, if 𝑟 ≡ 0,
then 𝑢(𝑡) → 0, 𝑦𝑓(𝑡) → 0, 𝑦(𝑡) → 0 as (Γ ∋) 𝑡 → ∞.

Proof. Direct calculations yield

⟨𝑦, 𝑢⟩ = ⟨𝐺𝑢 + 𝑦ℎ, 𝐾𝑟 − 𝜑Γ (𝑦)⟩

= ⟨𝐺𝑢,𝐾𝑟⟩ + ⟨𝑦ℎ, 𝐾𝑟⟩

− (⟨𝐺𝑢, 𝜑 (𝑦)⟩ + ⟨𝑦ℎ, 𝜑Γ (𝑦)⟩)

= ⟨𝐺𝑢,𝐾𝑟⟩ + ⟨𝑦ℎ, 𝐾𝑟⟩ + ⟨𝐺𝑢, 𝑢⟩

− ⟨𝑦ℎ, 𝜑Γ (𝑦)⟩ − ⟨𝐺𝑢,𝐾𝑟⟩

= ⟨𝐺𝑢, 𝑢⟩ + ⟨𝑦ℎ, 𝐾𝑟 − 𝜑Γ (𝑦)⟩

≥ 𝜇
2
(𝐺) ‖𝑢‖

2
+ ⟨𝑦ℎ, 𝐾𝑟 − 𝜑Γ (𝑦)⟩

= 𝜇
2
(𝐺) sup
𝑡∈Γ

𝑃𝑡𝑢


2
+ ⟨𝑦ℎ, 𝐾𝑟 − 𝜑Γ (𝑦)⟩

≥ 𝜇
2
(𝐺)

𝑃𝑡𝑢


2
+ ⟨𝑦ℎ, 𝐾𝑟 − 𝜑Γ (𝑦)⟩; ∀𝑡 ∈ Γ

(7)

since 𝑢 = 𝐾𝑟 − 𝜑Γ(𝑡, 𝑦) and ⟨𝐺𝑢, 𝑢⟩ ≥ 𝜇
2
(𝐺)‖𝑢‖

2
≥

𝜇
2
(𝐺)‖𝑃𝑡𝑢‖

2
> 0 for any nonzero control from Proposition 1.

One gets in the same way that

⟨𝑃𝑡𝑦, 𝑃𝑡𝑢⟩ ≥ 𝜇
2
(𝐺)

𝑃𝑡𝑢


2
+ ⟨𝑃𝑡 (𝑦ℎ) , 𝑃𝑡 (𝐾𝑟 − 𝜑Γ (𝑦))⟩ ,

∀𝑡 ∈ Γ.

(8)

Since ⟨𝑃𝑡𝑦, 𝑃𝑡(𝜑Γ(𝑦))⟩ ≥ −𝛾𝑡 > −∞; ∀𝑡 ∈ Γ, one gets also that

⟨𝑦, 𝑢⟩ = ⟨𝑦,𝐾𝑟 − 𝜑Γ (𝑦)⟩ = ⟨𝑦,𝐾𝑟⟩ − ⟨𝑦, 𝜑Γ (𝑦)⟩

≤ ⟨𝑦,𝐾𝑟⟩ + sup
𝑡∈Γ

𝛾𝑡; ∀𝑡 ∈ Γ,
(9)

⟨𝑃𝑡𝑦, 𝑃𝑡𝑢⟩ ≤ ⟨𝑃𝑡𝑦, 𝑃𝑡 (𝐾𝑟)⟩ + 𝛾𝑡; ∀𝑡 ∈ Γ. (10)

One gets from (7), (9), (8), and (10) that

⟨𝑦,𝐾𝑟⟩ + 𝛾 ≥ 𝜇
2
(𝐺) ‖𝑢‖

2

+ ⟨𝑦ℎ, 𝐾𝑟 − 𝜑Γ (𝑦)⟩

≥ 𝜇
2
(𝐺)

𝑃𝑡𝑢


2
+ ⟨𝑦ℎ, 𝐾𝑟 − 𝜑Γ (𝑦)⟩ ,

∀𝑡 ∈ Γ,

(11)

⟨𝑃𝑡𝑦, 𝑃𝑡 (𝐾𝑟)⟩ 𝛾𝑡 ≥ 𝜇
2
(𝐺)

𝑃𝑡𝑢


2
⟨𝑃𝑡 (𝑦ℎ) , 𝑃𝑡 (𝐾𝑟 − 𝜑Γ (𝑦))⟩;

∀𝑡 ∈ Γ,

(12)
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where 0 < 𝛾 = sup
𝑡∈Γ

𝛾𝑡 < ∞. Now, since 𝐾 is a bounded
operator, 𝑟 is a bounded function, 𝑃𝑡 𝑦ℎ → 0 as 𝑡 → ∞,
and 𝐺 ≻ 0 is bounded and one-to-one with closed range so
that 𝐺 ≻ 0 is also bounded and one-to-one with closed range
implying from Proposition 1 that 𝜇(𝐺) = 𝜇2(𝐺) > 0, and one
gets from (12) that

lim inf
Γ∋𝑡→∞

[𝛾𝑡 +
⟨𝑃𝑡 (𝐺𝑃𝑡𝑢)⟩, 𝑃𝑡 (𝐾𝑟) >



−𝜇
2
(𝐺)

𝑃𝑡𝑢


2
]

≥ lim inf
Γ∋𝑡→∞

[𝛾𝑡 + ⟨𝑃𝑡 (𝐺𝑃𝑡𝑢)⟩, 𝑃𝑡 (𝐾𝑟)

> −𝜇
2
(𝐺)

𝑃𝑡𝑢


2
] ≥ 0.

(13)

Assume that there is some unbounded 𝑢 : Γ → 𝐻. Then, the
subsequent contradiction

0 ≤ lim inf
Γ∋𝑡→∞

[𝛾𝑡 + 𝜇
2
(𝐺) (𝜆 −

𝑃𝑡𝑢
)
𝑃𝑡𝑢

] = −∞ (14)

follows from (13) for some 𝜆 ∈ R0+ since 𝜇(𝐺) > 0. Then
any 𝑢 : Γ → 𝐻 is bounded. Since the operator 𝐺 on 𝐻𝑒 is
bounded, it is stable, and then 𝐺 : 𝐻𝑒 | 𝐻 → 𝐻 is also
bounded and causal, and, since the function 𝑢 : Γ → 𝐻 is
bounded, then 𝑦𝑓 : Γ → 𝐻 is also bounded with ‖𝑦𝑓‖ ≤
‖𝐺‖‖𝑢‖ and ‖𝑃𝑡𝑦𝑓‖ ≤ ‖𝑃𝑡𝐺𝑃𝑡‖‖𝑢‖ ≤ ‖𝐺‖‖𝑢‖; ∀𝑡 ∈ Γ, and
𝑦 : Γ → 𝐻 is also bounded since 𝑦 = 𝑦ℎ + 𝑦𝑓. On the other
hand, if 𝑟 : Γ → 𝐻 is identically zero, then one gets from (13)
0 ≤ 𝜇(𝐺) lim sup

Γ∋𝑡→∞
‖𝑃𝑡𝑢‖ ≤ 𝛾 < ∞, and, since 𝜇(𝐺) > 0,

then ∃limΓ∋𝑡→∞ 𝑢(𝑡) = 0.
Also, it is clear that, since 𝑢 : Γ → 𝐻𝑒, and since 𝑢 :

Γ → 𝐻 is bounded and converges asymptotically to zero and
‖𝑦𝑓‖ ≤ ‖𝐺‖‖𝑢‖, then 𝑢 : Γ → 𝐻, 𝑦𝑓 is bounded, 𝑦𝑓 : Γ →

𝐻, and then ∃ limΓ∋𝑡→∞ 𝑦(𝑡) = limΓ∋𝑡→∞ 𝑦𝑓(𝑡) = 0 since
𝑦ℎ : Γ → 𝐻 is bounded and asymptotically vanishing.

The assumption 6 ofTheorem 5 can be relaxed leading to
the following stronger result.

Corollary 6. Theorem 5 holds if its assumption 6 is relaxed to
lim inf 𝑡→∞⟨𝑃𝑡𝑦, 𝑃𝑡(𝜑Γ(𝑦))⟩ ≥ −𝛾 > −∞.

Proof. Note that (7) still holds since it is independent of
assumption 6. The constraint (12) is modified as follows:

lim inf
Γ∋𝑡→∞

⟨𝑃𝑡𝑦, 𝑃𝑡 (𝐾𝑟)⟩ + 𝛾𝑡 − 𝜇
2
(𝐺)

𝑃𝑡𝑢


2

− ⟨𝑃𝑡 (𝑦ℎ) , 𝑃𝑡 (𝐾𝑟 − 𝜑Γ (𝑦))⟩ ≥ 0

(15)

which makes (13) to remain valid, and Theorem 5 still holds.

In a physical context,𝐸 = ⟨𝑦, 𝑢⟩ is thewhole input-output
energy of (1), 𝐸(𝑡) = ⟨𝑃𝑡𝑦, 𝑃𝑡𝑢⟩ is the input-output energy
dissipated on [0, 𝑡] ∩ Γ, and (𝑢 ∗ 𝑦)(𝑡) is the instantaneous
input-output power at 𝑡 ∈ Γ while ⟨𝐺𝑢 + 𝑦ℎ, 𝐾𝑟⟩ is the
energy supplied by the external source. Particular cases of
interest in control engineering are (a) if the reference input

𝑟 ≡ 0, then the feedback control system is a regulator
evolving only from its initial conditions, (b) if such reference
is a constant real level, then the control system is a position
servomechanism, (c) if the reference 𝑟(𝑡) = 𝐾𝑡 for 𝑡 ∈ Γ, then
the control system is a velocity servomechanism and so forth.

On the other hand, the extended Popov-type control
inequality of the controller ⟨𝑃𝑡𝑦, 𝑃𝑡(𝜑Γ(𝑦))⟩ ≥ −𝛾 > −∞ and
𝐺 ≻ 0 implies that 0 ≤ 𝐸(𝑡) ≤ 𝛾 < ∞, (0 < 𝐸 ≤ 𝛾 < ∞ for
any nonzero control input with compact support); ∀𝑡 ∈ Γ and
all 𝜑Γ(𝑦) satisfying the assumption 6 ofTheorem 5; that is the
input-output energy is nonnegative and bounded;∀𝑡 ∈ Γ.The
use of such a constraint allows the simultaneous investigation
of the maintenance of the positivity and stability properties
of (1) under a class of nonlinear time-varying controllers
(defined by such a Popov constraint itself) rather than for a
particular controller device belonging to such a class.

Note that 𝐺 on 𝐻𝑒 is stable since ‖𝐺𝑢‖𝑡 ≤ 𝑀‖𝑢‖𝑡 for
some finite ∈ R+; ∀𝑡 ∈ Γ and, equivalently, 𝐺 : 𝐻𝑒 | 𝐻 →

𝐻 is bounded. Now, one concludes from Proposition 4 for
the system defined by the inverse operator 𝐺−1 that 0 ≤

⟨𝑃𝑡(𝐺
−1
𝑢), 𝑃𝑡𝑢⟩ < ∞ for any admissible control input 𝑢 since

𝐺
−1
≻ 0, bounded and causal.
The following result basically reformulates Theorem 5 if

𝐺 | 𝐻 is a strictly positive pseudocontraction. Since the
contribution of initial conditions and a bounded exogenous
reference do not modify the stability properties, as seen from
Theorem 5, they are assumed to be null in the sequel.

Theorem 7. Assume that the relationships of (1) hold for all
𝑡 ∈ Γwith 𝑟 ≡ 0,𝑦ℎ ≡ 0,𝐺 : 𝐻𝑒 → 𝐻𝑒,𝜑Γ : Γ×𝐻𝑒 → ran 𝜑Γ

and, furthermore,

(1) 𝐺 : 𝐻𝑒 | 𝐻 → 𝐻 is bounded and causal, one-to-one,
and with closed range.

(2) 𝐺 ≻ 0.

(3) ⟨𝑃𝑡𝑦, 𝑃𝑡(𝜑Γ(𝑦))⟩ ≥ −𝛾𝑡 ≥ −𝛾 > −∞; ∀𝑡 ∈ Γ.

Then, 𝑢, 𝑦𝑓, 𝑦 : Γ → 𝐻 and are bounded, and 𝑢(𝑡) → 0,
𝑦(𝑡) → 0 as (Γ ∋) 𝑡 → ∞. Furthermore, one gets for any,
𝑢1, 𝑢2 : Γ → ran 𝜑Γ that

⟨𝑢1, 𝑢2⟩ + ⟨𝑢1, 𝑢2⟩
∗
≤

2𝛾

𝜇2 (𝐺)

. (16)

If, in addition, 𝐺 | 𝐻 is a pseudocontraction, then

0 ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ ≤ 𝛾 min(1, 4

𝜇2 (𝐺)

) (17)

with the lower-bound equating zero if and only if 𝑢1 = 𝑢2.

Proof. Take the relation proved inTheorem 5 ⟨𝑦, 𝑢⟩ = ⟨𝐺𝑢 +
𝑦ℎ, 𝐾𝑟 − 𝜑Γ(𝑦)⟩ under zero exogenous reference and initial
conditions in (1) to yield

0 < 𝜇
2
(𝐺) ⟨𝑢, 𝑢⟩ ≤ ⟨𝐺𝑢, 𝑢⟩ = ⟨𝐺𝑢, 𝐺𝑢⟩ ≤ 𝛾 < ∞. (18)
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Since 𝐺 ≻ 0 then 𝐺 = 𝐺
∗, and one gets for 𝑢 = 𝑢1 − 𝑢2

0 ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ = ⟨𝐺𝑢1 − 𝐺𝑢2, 𝐺𝑢1 − 𝐺𝑢2⟩

= ⟨𝐺𝑢1, 𝐺𝑢1⟩ + ⟨𝐺𝑢2, 𝐺𝑢2⟩ − ⟨𝐺𝑢1, 𝐺𝑢2⟩ − ⟨𝐺𝑢2, 𝐺𝑢1⟩

= ⟨𝐺𝑢1, 𝑢1⟩ + ⟨𝐺𝑢2, 𝑢2⟩ − ⟨𝐺𝑢1, 𝑢2⟩ − ⟨𝐺𝑢2, 𝑢1⟩

≤ 2𝛾 − ⟨𝐺𝑢1, 𝑢2⟩ − ⟨𝑢2, 𝐺𝑢1⟩

= 2𝛾 − ⟨𝐺𝑢1, 𝑢2⟩ − ⟨𝐺𝑢1, 𝑢2⟩
∗

⇒

0 ≤ max (0, ⟨𝐺𝑢1, 𝑢2⟩ + ⟨𝐺𝑢1, 𝑢2⟩
∗
)

≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ − ⟨𝐺𝑢1, 𝑢2⟩ − ⟨𝐺𝑢1, 𝑢2⟩
∗

≤ 2𝛾 < ∞

0 ≤
𝑢1 − 𝑢2



2
= ⟨𝑢1 − 𝑢2, 𝑢1 − 𝑢2⟩

=
𝑢1



2
+
𝑢2



2
− ⟨𝑢1, 𝑢2⟩ − ⟨𝑢1, 𝑢2⟩

∗

≤
2𝛾

𝜇2(𝐺)

− ⟨𝑢1, 𝑢2⟩ − ⟨𝑢1, 𝑢2⟩
∗

(19)

and ⟨𝑢1, 𝑢2⟩ + ⟨𝑢1, 𝑢2⟩
∗
≤ 2𝛾/𝜇

2
(𝐺). Assume that 𝐺 ≻ 0 is,

furthermore, a pseucontraction on𝐻. Then,

0 ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩

= ⟨𝐺𝑢1 − 𝐺𝑢2, 𝐺𝑢1 − 𝐺𝑢2⟩ ≤
𝑢1 − 𝑢2



2
(20)

and, equivalently,

𝐺𝑢1 − 𝐺𝑢2


2
≤
𝑢1 − 𝑢2



2
+
(𝐼 − 𝐺) 𝑢1 − (𝐼 − 𝐺) 𝑢2



2

0 ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝐺𝑢1 − 𝐺𝑢2⟩

≤
𝑢1 − 𝑢2



2
≤

2 𝛾

𝜇2 (𝐺)

− ⟨𝑢1, 𝑢2⟩ − ⟨𝑢1, 𝑢2⟩
∗

(21)

implies that

⟨𝑢1, 𝑢2⟩ + ⟨𝑢1, 𝑢2⟩
∗

< ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩

+ ⟨𝑢1, 𝑢2⟩ + ⟨𝑢1, 𝑢2⟩
∗
≤

2 𝛾

𝜇2 (𝐺)

,

(22)

and the following cases can occur.

(a) 0 ≤ ⟨𝐺𝑢1−𝐺𝑢2, 𝑢1−𝑢2⟩ ≤ min(𝛾, 2𝛾/𝜇2(𝐺)−⟨𝑢1, 𝑢2⟩−
⟨𝑢1, 𝑢2⟩

∗
) if the controls 𝑢1 and 𝑢2 fulfil 0 < ⟨𝑢1, 𝑢2⟩+

⟨𝑢1, 𝑢2⟩
∗
< 2𝛾/𝜇

2
(𝐺).

(b) 0 ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ ≤ min(𝛾, 2𝛾/𝜇2(𝐺) −
|⟨𝑢1, 𝑢2⟩ + ⟨𝑢1, 𝑢2⟩

∗
|) if the controls 𝑢1 and 𝑢2 fulfil

⟨𝑢1, 𝑢2⟩ + ⟨𝑢1, 𝑢2⟩
∗
< 0.

(c) 0 < 2𝛾/𝜇
2
(𝐺) ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2 ⟩ ≤ 𝛾 if

the controls 𝑢1 and 𝑢2 fulfil ⟨𝑢1, 𝑢2 ⟩ + ⟨𝑢1, 𝑢2 ⟩
∗
≥

2𝛾/𝜇
2
(𝐺). This case is only feasible with equality.

Combining the three cases one gets that

0 ≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ ≤ 𝛾 min(1, 4

𝜇2(𝐺)

) (23)

with the lower-bound equating zero if and only if 𝑢1 = 𝑢2;
that is 𝑢 = 𝑢1 − 𝑢2 = 0.

Basically, Theorem 7 states that a strictly positive opera-
tor, which is also a pseudocontraction, subject to a feedback
control law satisfying a Popov-type inequality keeps the
boundedness of the input-output energy with a modified
upper-bound which improves that associated to the Popov
inequality if the minimum modulus of 𝐺 satisfies 𝜇(𝐺) > 4.
The following result guarantees the fulfilment of Theorem 5
if 𝐺 : 𝐻 → 𝐻 is strictly positive and asymptotically pseu-
docontractive in the intermediate sense under a modified
Popov-type inequality.

Theorem 8. Assume that
(1) 𝐺 ≻ 0 is one-to-one, bounded, causal, and of closed

range with minimum modulus 𝜇(𝐺) > 𝛼,
(2) 𝐺 : 𝐻 → 𝐻 is asymptotically pseudocontractive in the

intermediate sense satisfying the constraint,

0 ≤ ⟨𝑃𝑡𝑦1 − 𝑃𝑡𝑦2, 𝑃𝑡𝑢1 − 𝑃𝑡𝑢2⟩ ≤ 𝛼𝑡
𝑃𝑡𝑢1 − 𝑃𝑡𝑢2



2
;

∀𝑡 ∈ Γ

(24)

for some real convergent sequence {𝛼𝑡}𝑡∈Γ in [𝛼,∞)

such that 𝛼𝑡 → 𝛼 ∈ (0, 1] as 𝑡(∈ Γ) → ∞ and zero
initial conditions and exogenous reference in (1), where

𝑦
𝑡
= 𝑦𝑡+𝑇 − 𝑦𝑡 = 𝑃𝑡+𝑇𝑦 − 𝑃𝑡𝑦,

𝑢𝑡 = 𝑢𝑡+𝑇 − 𝑢𝑡 = 𝑃𝑡+𝑇𝑢 − 𝑃𝑡𝑢

(25)

are incremental values of 𝑦 and 𝑢 with 𝑡, 𝑡 +𝑇(≻ 𝑡) ∈ Γ
being adjacent elements in the strict ordering on Γ if
such an indexing set is discrete and [𝑡, 𝑡 + 𝑇] being a
closed interval of nonzero constant Lebesgue measure
𝑇 in Γ if such an indexing set is real,

(3) the following inequality holds:

lim inf
Γ∋𝑡→∞

(⟨𝑃𝑡𝑦, 𝑃𝑡 (𝜑Γ (𝑦))⟩ + 𝛼𝑡‖𝑢‖
2

𝑡
) ≥ 0. (26)

Then, 𝑢, 𝑦 : Γ → 𝐻, and they are bounded, and,
furthermore, 𝑢(𝑡) → 0, 𝑦(𝑡) → 0 as (Γ ∋) 𝑡 → ∞

under a zero exogenous input and initial conditions.

Proof. Since 𝐺 : 𝐻 → 𝐻 is asymptotically pseudocontrac-
tive in the intermediate sense

0 ≤ ⟨𝑃𝑡𝑦1 − 𝑃𝑡𝑦2, 𝑃𝑡𝑢1 − 𝑃𝑡𝑢2⟩

= ⟨𝑃𝑡𝐺𝑃𝑡𝑢1 − 𝑃𝑡𝐺𝑃𝑡𝑢2, 𝑃𝑡𝑢1 − 𝑃𝑡𝑢2⟩

≤ 𝛼𝑡
𝑃𝑡𝑢1 − 𝑃𝑡𝑢2



2
; ∀𝑡 ∈ Γ

(27)
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for zero initial conditions and exogenous reference in (1).
Note that these particular conditions do not modify the
boundedness-type stability properties related to the injection
of any bounded exogenous reference under bounded initial
conditions and some real convergent sequence {𝛼𝑡}𝑡∈Γ in
[𝛼,∞) such that 𝛼𝑡 → 𝛼 ∈ (0, 1) as 𝑡(∈ Γ) → ∞. Since

lim inf
Γ∋𝑡→∞

(⟨𝑃𝑡𝑦, 𝑃𝑡 (𝜑Γ (𝑦))⟩ + 𝛼𝑡 ‖𝑢‖
2

𝑡
)

= lim inf
Γ∋𝑡→∞

(𝛼𝑡
𝑃𝑡𝑢



2
− ⟨𝑃𝑡𝑦, 𝑃𝑡𝑢⟩) ≥ 0,

(28)

then one has

0 ≤ 𝜇
2
(𝐺)

𝑢𝑡


2
= 𝜇
2
(𝐺) ‖𝑢‖

2

𝑡
≤ 𝛼𝑡‖𝑢‖

2

𝑡

⇒ (−𝛼𝑡‖𝑢‖
2

𝑡
≤ (𝜇
2
(𝐺) − 𝛼𝑡) ‖𝑢‖

2

𝑡
≤ 0) ,

∀𝑡 ∈ Γ

(29)

so that, if 𝛼 = limΓ∋𝑡→∞ 𝛼𝑡 < 𝜇
2
(𝐺), then

lim sup
Γ∋𝑡→∞

(𝜇
2
(𝐺) −𝛼𝑡)‖𝑢‖

2

𝑡
≤ 0 and 𝑢(𝑡) → 0 as Γ ∈ 𝑡 →

∞. 𝑢 : Γ → 𝐻 is bounded since it is piecewise continuous
with eventual bounded discontinuities, and 𝑇 > 0 and finite.
Since 𝐺 on𝐻𝑒 and 𝐺 restricted to𝐻 are stable, 𝑦 : Γ → 𝐻

is also bounded and converges to zero.

A particular case of Theorem 8 of interest is as follows.

Corollary 9. Theorem 8 holds if the assumption 2 is replaced
by 𝐺 : 𝐻 → 𝐻 being a pseudocontraction.

Proof. It follows since Theorem 8 holds, in particular, under
the condition 𝛼𝑡 = 𝛼 = 1; ∀𝑡 ∈ Γ.

If 𝐺 : 𝐻 → 𝐻 is strictly positive and contractive, we
obtain the subsequent result.

Theorem 10. Assume that
(1) 𝐺 ≻ 0 is one-to-one, bounded, causal, and of closed

range.
(2) 𝐺 : 𝐻 → 𝐻 satisfies the following positive-bounded

and contractive constraints for some given 𝛽 ∈ Γ and
𝑢 = 𝑢1 − 𝑢2:

0 ≤ ⟨𝑃𝛽𝐺𝑃𝛽𝑢1 − 𝑃𝛽𝐺𝑃𝛽𝑢2, 𝑃𝛽𝑢1 − 𝑃𝛽𝑢2⟩

− ⟨𝑃0GP0u1 − P0GP0u2, P0u1 − P0u2⟩ ≤ M < ∞

(30)

0 ≤ ⟨𝑃𝑡+2𝛽𝐺𝑃𝑡+2𝛽𝑢1 − 𝑃𝑡+2𝛽𝐺𝑃𝑡+2𝛽𝑢2, 𝑃𝑡+2𝛽𝑢1 − 𝑃𝑡+2𝛽𝑢2⟩

− ⟨𝑃𝑡+𝛽𝐺𝑃𝑡+𝑇𝑢1 − 𝑃𝑡+𝛽𝐺𝑃𝑡+𝛽𝑢2, 𝑃𝑡+𝛼𝑢1 − 𝑃𝑡+𝛽𝑢2⟩

≤ 𝜒𝑡⟨𝑃𝑡+𝛽𝐺𝑃𝑡+𝜙𝑢1 − 𝑃𝑡+𝛽𝐺𝑃𝑡+𝛽𝑢2, 𝑃𝑡+𝛽𝑢1 − 𝑃𝑡+𝛽𝑢2⟩

− 𝜒𝑡 ⟨𝑃𝑡𝐺𝑃𝑡𝑢1 − 𝑃𝑡𝐺𝑃𝑡𝑢2, 𝑃𝑡𝑢1 − 𝑃𝑡𝑢2⟩ ; ∀𝑡 ∈ Γ

(31)

with {𝜒𝑡}𝑡∈Γ being a real sequence subject to 0 ≤ 𝜒𝑡 ≤

𝜎 < ∞ and ∏𝑡+𝛽
Γ∋𝑡
[𝜒𝑡] = 𝜒 < 1 with 𝛽, (𝑡 + 𝑛𝛽) ∈

Γ; ∀𝑛 ∈ Z+, ∀𝑡 ∈ Γ provided that 0 ∈ Γ is the first
element of Γ, and

(3) ⟨𝑃𝑡𝑦, 𝑃𝑡(𝜑Γ(𝑦))⟩ ≥ −𝛾𝑡 ≥ −𝛾 = 𝑀/(𝜒 − 1) > −∞;
∀𝑡 ∈ Γ.

Then, 𝑢, 𝑦 : Γ → 𝐻, and they are bounded, and, furthermore,
𝑢(𝑡) → 0, 𝑦(𝑡) → 0 as (Γ ∋)𝑡 → ∞ under a zero exogenous
input and initial conditions.

Proof. Note from (30) that

0 ≤ ⟨𝑃𝑛𝛽𝐺𝑃𝑛𝛽𝑢1 − 𝑃𝑛𝛽𝐺𝑃𝑛𝛽𝑢2, 𝑃(𝑛−1)𝛽𝑢1 − 𝑃(𝑛−1)𝛽𝑢2⟩

≤ 𝜒
𝑛−1

(⟨𝑃𝛽𝐺𝑃𝛽𝑢1 − 𝑃𝛽𝐺𝑃𝛽𝑢2, 𝑃𝛽𝑢1 − 𝑃𝛽𝑢2⟩

− ⟨𝑃0𝐺𝑃0𝑢1 − 𝑃0𝐺𝑃0𝑢2, 𝑃0𝑢1 − 𝑃0𝑢2⟩ )

= 𝑀𝜒
𝑛−1

≤ 𝑀 < ∞

(32)

since 𝑛𝛽 ∈ Γ; ∀𝑛 ∈ Z+, and 0 ∈ Γ is the first element of Γ.
Thus, since 0 ≤ 𝜒 < 1, one gets

0 ≤ ∑

𝑛∈Z
+

⟨𝑃𝑛𝛽𝐺𝑃𝑛𝛽𝑢1 − 𝑃𝑛𝛽𝐺𝑃𝑛𝛽𝑢2, 𝑃(𝑛−1)𝛽𝑢1 − 𝑃(𝑛−1)𝛽𝑢2⟩

≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ ≤ 𝛾 =
𝑀

1 − 𝜒
< ∞

(33)

and also

0 ≤

𝑁

∑

𝑛=1

⟨𝑃𝑛𝛽𝐺𝑃𝑛𝛽𝑢1 − 𝑃𝑛𝛽𝐺𝑃𝑛𝛽𝑢2, 𝑃(𝑛−1)𝛽𝑢1 − 𝑃(𝑛−1)𝛽𝑢2⟩

≤ ⟨𝐺𝑢1 − 𝐺𝑢2, 𝑢1 − 𝑢2⟩ ≤ 𝛾 =
𝑀

1 − 𝜒
< ∞, ∀𝑁 ∈ Z+.

(34)

Thus, 𝑢(𝑡) = 𝑢1(𝑡) − 𝑢2(𝑡) → 0 as Γ ∈ 𝑡 → ∞. Since 𝑢 ≡ 0

is an admissible control, one concludes that any admissible
control is bounded and it converges asymptotically to zero.
The output 𝑦(𝑡) has a similar property.

3. Application Examples

Example 1. Define the truncated function within the time
interval [0, 𝑡]; ∀𝑡 ∈ R0+ of 𝑓 : R → R as follows:

𝑓𝑡 (𝜏) = 𝑃𝑡𝑓 = {
𝑓 (𝜏) for 𝜏 ∈ [0, 𝑡]

0 otherwise.
(35)

Thus, the output of a single-input single-output linear time-
invariant continuous-time dynamic system of 𝑛th order and
initial state 𝑥(0) = 𝑥0 ∈ R𝑛 under a piecewise continuous
control with eventual isolated bounded discontinuities 𝑢 :

R → R ∩ 𝐻, where 𝐻 = 𝐿
2
(R0+) ≡ 𝐿

2
[0,∞) the Hilbert

space of the square-integrable functions on R0+ is

𝑦 (𝑡) = ∫

𝑡

0

𝑔 (𝑡, 𝜏) 𝑢 (𝜏) 𝑑𝜏 + 𝑐 (𝑡, 𝑥0)

= ∫

∞

−∞

𝑔 (𝑡, 𝜏) 𝑢𝑡 (𝜏) 𝑑𝜏 + 𝑐 (𝑡, 𝑥0)

= (𝑔 ∗ 𝑢) (𝑡) + 𝑐 (𝑡, 𝑥0) , ∀𝑡 ∈ R0+,

(36)
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where Γ = R0+ = {𝑧 ∈ R : 𝑧 ≥ 0}, 𝑔 : R × R → R
is the impulse response, 𝑐(𝑡, 𝑥0) is the zero-input response
(i.e., the response contribution due to initial conditions) for
initial sate 𝑥0, and “∗” stands for the convolution integral
operator. Since the dynamic system is realizable, 𝑔(𝑡, 𝜏) = 0

for 𝜏 > 𝑡. The complex function 𝐺 : C → C defined as
𝐺(𝑠) = L(𝑔(𝑡)) is the transfer function, where L stands for
the Laplace transform of the impulse response where it exists.
After defining 𝑦(𝑡) = 0 for 𝑡 < 0, the input-output energy
obeys the following relations by using twice Parseval theorem:

𝐸 (𝑡) = ∫

𝑡

0

𝑦 (𝜏) 𝑢 (𝜏) 𝑑𝜏 = ∫

∞

−∞

𝑦 (𝜏) 𝑢𝑡 (𝜏) 𝑑𝜏

=
1

2𝜋
∫

∞

−∞

𝑌 (i𝜔)𝑈𝑡 (−i𝜔) 𝑑𝜔 = ⟨𝑦, 𝑢⟩𝑡 = ⟨𝑦, 𝑢𝑡⟩

= ⟨𝑦𝑡, 𝑢𝑡⟩ = ⟨𝑦𝑡, 𝑢⟩ =
1

2𝜋
⟨𝑌,𝑈𝑡⟩

=
1

2𝜋
∫

∞

−∞

𝐺 (i𝜔)𝑈𝑡 (i𝜔)𝑈𝑡 (−i𝜔) 𝑑𝜔

+ ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

=
1

2𝜋
∫

∞

−∞

𝐺 (i𝜔) 𝑈𝑡 (i𝜔)


2
𝑑𝜔

+ ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

=
1

2𝜋
⟨𝐺𝑈𝑡, 𝑈𝑡⟩ + ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

=
1

2𝜋
⟨𝐺,

𝑈𝑡


2
⟩ + ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

≥
1

2𝜋
( min
𝜔∈R
0+

Re𝐺 (i𝜔))∫
∞

−∞

𝑈𝑡 (i𝜔)


2
𝑑𝜔

= ( min
𝜔∈R
0+

Re𝐺 (i𝜔))∫
∞

−∞

𝑢𝑡 (𝜏)


2
𝑑𝜏

+ ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

= ( min
𝜔∈R
0+

Re𝐺 (i𝜔))∫
𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏

+ ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

= ( min
𝜔∈R
0+

Re𝐺 (i𝜔)) ⟨𝑢𝑡, 𝑢𝑡⟩ + ∫
𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

= ( min
𝜔∈R
0+

Re𝐺 (i𝜔)) ⟨𝑢, 𝑢⟩𝑡

+ ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏; ∀𝑡 ∈ R0+,

(37)

where 𝐹(i𝜔) is the pointwise value at frequency 𝜔 of 𝐹 :

C → C, the Fourier transform of 𝑓 : R → R provided
that it exists with i = √−1 being the complex unit. Note
that, in the previous expressions, the integral expressions
have been also denoted by inner products ⟨⋅, ⋅⟩𝑡 ≡ ⟨⋅𝑡, ⋅⟩ ≡

⟨⋅, ⋅𝑡⟩ on the time interval [0, 𝑡] for the given 𝑡 ∈ R0+,
all of them being equivalent to inner products of truncated
functions for the given 𝑡 ∈ R0+on the Hilbert space 𝐿2[0,∞).
Equivalently, integrals of complex Fourier transforms on the
whole imaginary axis are got through Parseval’s theorem and
denoted by ⟨𝐺𝑈𝑡, 𝑈𝑡⟩ involving the impulse response (i.e., the
transfer function evaluated on the imaginary complex axis) of
the system and the Fourier transform of the truncated input.
Now, assume that the controller is

𝑢 (𝑡) = 𝑘 (𝑡) 𝑟 (𝑡) − 𝜑 (𝑡, 𝑦 (𝑡)) ; ∀𝑡 ∈ R0+. (38)

𝑟 : R → R is an exogenous reference signal which is
piecewise continuous on R0+, and 𝜑 : [0, 𝑡] × R → R is any
piecewise continuous nonlinear time-varying functionwhich
satisfies the following integral-type constraint:

∫

𝑡

0

𝜑 (𝜏, 𝑦 (𝜏)) 𝑦 (𝜏) 𝑑𝜏 ≥ −𝛾 (𝑡, 𝑥0) , ∀𝑡 ∈ R0+, (39)

then

𝐸 (𝑡) = ∫

𝑡

0

𝑦 (𝜏) 𝑢 (𝜏) 𝑑𝜏

= ∫

𝑡

0

𝑦 (𝜏) 𝑘 (𝜏) 𝑟 (𝜏) 𝑑𝜏 − ∫

𝑡

0

𝑦 (𝜏) 𝜑 (𝜏, 𝑦 (𝜏)) 𝑑𝜏

≤ 𝛾 (𝑡, 𝑥0) + ∫

𝑡

0

𝑦 (𝜏) 𝑘 (𝜏) 𝑟 (𝜏) 𝑑𝜏.

(40)

Note that any hodograph 𝐺(i𝜔) has the symmetry rules
Re𝐺(i𝜔) = Re𝐺(−i𝜔) and Im 𝐺(i𝜔) = − Im 𝐺(−i𝜔). Also,
𝜇(𝐺) ≥ min𝜔∈R

0+

Re𝐺(i𝜔) > 0. Thus, one gets by combining
(37) and (40)

( min
𝜔∈R
0+

Re𝐺 (i𝜔))∫
𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏 + ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

≤ 𝛾 (𝑡, 𝑥0) + ∫

𝑡

0

𝑦 (𝜏) 𝑘 (𝜏) 𝑟 (𝜏) 𝑑𝜏; ∀𝑡 ∈ R0+.
(41)

Decompose [0, 𝑡] = 𝐼1𝜀(𝑡) ∪ 𝐼2𝜀(𝑡) for each 𝑡 ∈ R0+, where

𝐼1𝜀 (𝑡) = {𝜏 ∈ [0, 𝑡] : |𝑢 (𝜏)| ≤ 𝜀} ,

𝐼2𝜀 (𝑡) = {𝜏 ∈ [0, 𝑡] : |𝑢 (𝜏)| > 𝜀} ,

(42)
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for some given prefixed 𝜀 ∈ R+. Note that one (but not both)
of the disjoint sets 𝐼𝑖𝜀(𝑡) for 𝑖 = 1, 2 can be empty. Then, by
direct calculations one gets the following:

(min
𝜔∈R
0+

Re𝐺 (i𝜔))∫
𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏 + ∫

𝑡

0

𝑐 (𝜏, 𝑥0) 𝑢 (𝜏) 𝑑𝜏

≥ (min
𝜔∈R
0+

Re𝐺 (i𝜔))∫
𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏 − 𝜀∫

𝐼
1(𝑡)

𝑐 (𝜏, 𝑥0)
 𝑑𝜏

+ ∫
𝐼
2(𝑡)

𝑐 (𝜏, 𝑥0)

𝑢 (𝜏)
|𝑢 (𝜏)|

2
𝑑𝜏

≥ (min
𝜔∈R
0+

Re𝐺 (i𝜔))∫
𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏 − 𝜀∫

𝐼
1(𝑡)

𝑐 (𝜏, 𝑥0)
 𝑑𝜏

− ∫
𝐼
2(𝑡)



𝑐 (𝜏, 𝑥0)

𝑢 (𝜏)



|𝑢 (𝜏)|
2
𝑑𝜏

≥ ( min
𝜔∈R
0+

Re𝐺 (i𝜔) − 𝜀−1max
𝑡∈R
0+

𝑐 (𝑡, 𝑥0)
)

× ∫

𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏 − 𝜀∫

𝐼
1(𝑡)

𝑐 (𝜏, 𝑥0)
 𝑑𝜏; ∀𝑡 ∈ R0+.

(43)

Assume that sup
𝑡∈R
0+

|𝑘(𝑡)| ≤ 𝑘 and sup
𝑡∈R
0+

|𝑟(𝑡)| ≤ 𝑟. Then,
one gets from (41) and (43) that

∫

𝑡

0

(|𝑢 (𝜏)| − 𝑘𝑟 max
𝜔∈R
0+

|𝐺 (i𝜔)|) |𝑢 (𝜏)| 𝑑𝜏

≤
1

min𝜔∈R
0+

Re𝐺 (i𝜔) − 𝜀−1max𝑡∈R
0+

𝑐 (𝑡, 𝑥0)


× (𝛾 (𝑡, 𝑥0) + 𝜀∫
𝐼
1(𝑡)

𝑐 (𝜏, 𝑥0)
 𝑑𝜏) ,

∀𝑡 ∈ R0+.

(44)

This relation leads to the following result.

Proposition 11. Assume that

(1) 𝑘, 𝑟 ∈ 𝐿∞(R0+) so that sup
𝑡∈R
0+

|𝑘(𝑡)| ≤ 𝑘 < ∞ and
sup
𝑡∈R
0+

|𝑟(𝑡)| ≤ 𝑟 < ∞,
(2) the transfer function 𝐺(𝑠) is strongly strictly positive

real; that is,Re𝐺(𝑠) > 0 for all complex 𝑠withRe 𝑠 ≥ 0,
(3) +∞ > lim sup

𝑡→∞
(𝛾(𝑡, 𝑥0)) ≥ lim inf 𝑡→∞(𝛾(𝑡,

𝑥0)) > 0; ∀𝑥0 ∈ R𝑛.

Then, one gets the following properties for any given initial state
x0 ∈ R𝑛.

(i) 𝑢, 𝑦 ∈ 𝐿∞(R0+).

(ii) lim inf 𝑡→∞ ∫
𝑡

0
𝑦(𝜏)𝑘(𝜏)𝑟(𝜏)𝑑𝜏 > −∞; lim inf 𝑡→∞

(𝑢2(𝑡) − 𝑦(𝑡)𝑘(𝑡)𝑟(𝑡)) ≤ 0.
(iii) If |u(t)|2 ≥ 𝑦(𝑡)𝑘(𝑡)𝑟(𝑡); ∀𝑡 ∈ R0+, then

∃lim𝑡→∞(|𝑢(𝑡)|
2
− 𝑦(𝑡)𝑘(𝑡)𝑟(𝑡)) = 0. If, in addition,

𝑘(𝑡) = 𝑘 and 𝑟(𝑡) = 𝑟 are nonzero constants; ∀𝑡 ∈
R0+, then ∃lim𝑡→∞𝑦(𝑡) = 𝑦∞ and ∃lim𝑡→∞𝑢(𝑡) =
𝑢∞ = 𝑘𝑟 ∫

∞

0
𝑔(𝜏)𝑑𝜏 and ∃lim𝑡→∞𝑦(𝑡) = 𝑦∞ =

𝑘𝑟(∫
∞

0
𝑔(𝜏)𝑑𝜏)

2

.
(iv) if 𝑟 ≡ 0, then 𝑢(𝑡) → 0 and 𝑦(𝑡) → 0 as 𝑡 → ∞

and are both square-integrable on R0+; ∀𝑥0 ∈ R𝑛.
Thus, the closed-loop dynamic system (36), (38) is
asymptotically hyperstable (i.e., globally asymptotically
Lyapunov’s stable, [1–3]) since the state of any minimal
state-space realization is also square-integrable onR0+,
and it converges asymptotically to zero as time tends to
infinity for any controller device 𝜑 : [0, 𝑡] × R → R
satisfying (39).

Proof. Since the transfer function 𝐺(𝑠) is strictly positive real
then it is strictly stable (i.e. all its poles are in Re 𝑠 ≤ −𝜌 < 0

for some 𝜌 ∈ R+) and Re𝐺(𝑠) > 0 for all complex 𝑠 with
Re 𝑠 ≥ 0. Since it is, furthermore, strongly positive real (i.e., a
strictly positive operator on 𝐿2(R0+)), and it is associated to a
dynamic system, so that it is realizable, then it is rational with
pole-zero excess is zero (otherwise, if the pole-zero excess was
+1, then it could not be strongly strictly positive real since
lim𝜔→±∞ Re𝐺(i𝜔) = 0, and if the pole-zero excess was −1
then it would not be realizable.) Since it has the same number
of zeros and poles, and it is strongly strictly positive real, then
its modulus is everywhere bounded in its definition domain,
invertible, and of bounded inverse, so that one has

0 < min
𝜔∈R
0+

Re𝐺 (i𝜔) ≤ max
𝜔∈R
0+

|𝐺 (i𝜔)| < +∞. (45)

Note that ∫
𝐼
1
(𝑡)
|𝑐(𝜏, 𝑥0)|𝑑𝜏 ≤ ∫

∞

0
|𝑐(𝜏, 𝑥0)|𝑑𝜏 = V(𝑥0) <

+∞ since lim𝑡→∞|𝑐(𝑡, 𝑥0)| = 0 at exponential rate since
the dynamic system is strictly stable. Since 𝜀 ∈ R+ can
be chosen arbitrarily to build the disjoint union 𝐼1𝜀(𝑡) ∪

𝐼2𝜀(𝑡) equalizing [0, 𝑡]; ∀𝑡 ∈ R0+, then choose 𝜀 >

|𝑐(𝑡, 𝑥0)|/(min𝜔∈R
0+

Re𝐺(i𝜔)). Now, assume that 𝑢 : R → R
is unbounded. Since, it is piecewise continuous with eventual
bounded discontinuities, then lim𝑡→∞ ∫

𝑡

0
|𝑢(𝜏)|𝑑𝜏 = ∞

which implies that ∫𝑡
0
(|𝑢(𝜏)| − 𝑘𝑟max𝜔∈R

0+

|𝐺(i𝜔)|)|𝑢(𝜏)|𝑑𝜏
is strictly increasing so that the subsequent contradiction
follows

+∞ = lim
𝑡→∞

∫

𝑡

0

(|𝑢 (𝜏)| − 𝑘𝑟max
𝜔∈R
0+

|𝐺 (i𝜔)|) |𝑢 (𝜏)| 𝑑𝜏

≤ lim
𝑡→∞

∫

𝑡

0

(|𝑢 (𝜏)|
2
− 𝑘 (𝜏) 𝑟 (𝑡) 𝑦 (𝜏)) 𝑑𝜏

≤
1

min𝜔∈R
0+

Re𝐺 (i𝜔) − 𝜀−1max𝑡∈R
0+

𝑐 (𝑡, 𝑥0)


× (𝛾 (𝑡, 𝑥0) + 𝜀∫
𝐼
1(𝑡)

𝑐 (𝜏, 𝑥0)
 𝑑𝜏) < +∞,

∀𝑡 ∈ R0+.

(46)

Thus, 𝑢 ∈ 𝐿∞(R0+). Since 𝐺(𝑠) is strictly stable and
𝑢 ∈ 𝐿∞(R0+), then 𝑦 ∈ 𝐿∞(R0+). Property (i) has
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been proved. On the other hand, if lim inf 𝑡→∞(|𝑢(𝑡)|
2
−

𝑦(𝑡)𝑘(𝑡)𝑟(𝑡)) > 0, then lim𝑡→∞ ∫
𝑡

0
(|𝑢(𝜏)|

2
−𝑘(𝜏)𝑟(𝑡)𝑦(𝜏))𝑑𝜏 =

+∞, and the above contradiction holds. Then,
lim inf 𝑡→∞(|𝑢(𝑡)|

2
− 𝑦(𝑡)𝑘(𝑡)𝑟(𝑡)) ≤ 0. Note also that if

lim𝑡→∞ ∫
𝑡

0
𝑦(𝜏)𝑘(𝜏)𝑟(𝜏)𝑑𝜏 = −∞, then the subsequent

contradiction follows

0 ≤ lim
𝑡→∞

∫

𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏

≤
1

min𝜔∈R
0+

Re𝐺 (i𝜔) − 𝜀−1max𝑡∈R
0+

𝑐 (𝑡, 𝑥0)


× (𝛾 (𝑡, 𝑥0) + ∫

𝑡

0

[𝜀
𝑐 (𝜏, 𝑥0)

 + 𝑘 (𝜏) 𝑟 (𝑡) 𝑦 (𝜏)] 𝑑𝜏)

= −∞, ∀𝑡 ∈ R0+.
(47)

Then, lim inf 𝑡→∞ ∫
𝑡

0
𝑦(𝜏)𝑘(𝜏)𝑟(𝜏)𝑑𝜏 > −∞. Property (ii) has

been proven.
Note that ∃lim𝑡→∞(|𝑢(𝑡)|

2
− 𝑦(𝑡)𝑘(𝑡)𝑟(𝑡)) = 0 if

|𝑢(𝑡)|
2
≥ 𝑦(𝑡)𝑘(𝑡)𝑟(𝑡); ∀𝑡 ∈ R0+ is a direct consequence of

lim inf 𝑡→∞(|𝑢(𝑡)|
2
− 𝑦(𝑡)𝑘(𝑡)𝑟(𝑡)) ≤ 0 from Property (ii).

This proves the first part of Property (iii). Also, if 𝑘(𝑡) =

𝑘 and 𝑟(𝑡) = 𝑟 are nonzero constants; ∀𝑡 ∈ R0+, then
lim𝑡→∞(|𝑢(𝑡)|

2
− 𝑦(𝑡)𝑘𝑟) = 0.

Now, if 𝑟(𝑡) is identically zero in R0+, then

lim
𝑡→∞

∫

𝑡

0

|𝑢 (𝜏)|
2
𝑑𝜏

≤
1

min𝜔∈R
0+

Re𝐺 (i𝜔) − 𝜀−1max𝑡∈R
0+

𝑐 (𝑡, 𝑥0)


× (𝛾 (𝑡, 𝑥0) + 𝜀∫
𝐼
1(𝑡)

𝑐 (𝜏, 𝑥0)
 𝑑𝜏) < +∞,

∀𝑡 ∈ R0+

(48)

leads to lim𝑡→∞𝑢(𝑡) = 0 exponentially and the lim𝑡→∞
𝑦(𝑡) = 0; ∀𝑥0 ∈ R𝑛 since 𝐺(𝑠) is strongly strictly positive real
so that the internal state of any minimal state-space realiza-
tion is uniformly bounded, and it converges asymptotically to
zero as time tends to infinity. Thus, asymptotic hyperstability
follows for any 𝜑 : [0, 𝑡] ×R → R satisfying (38). As a result,
Property (iv) has been proven.

Note that the property of asymptotic hyperstability is
independent of each particular controller provided that it
belongs to a class that satisfies the integral relation (39)
for some positive finite real 𝛾. The particular case when
the nonlinear controller is nonlinear, but time-invariant,
while satisfying the corresponding integral constraint (39),
is said to be the Popov-type absolute stability problem
implying closed-loop global asymptotic Lyapunov’s stability.
If the input-output euclidean inner product (associated with
instantaneous power) under the integral symbol, rather than
the inner product on the Hilbert space (associated with the

energy), satisfies a parallel inequality, then the problem is said
to be that of the Lure’s absolute stability problem [4–8]. It is,
therefore, useful to describe the global asymptotic stability
of classes of closed-loop systems of the given form under
certain tolerated components dispersions. Proposition 11 also
implies directly that any nonminimal state-space realization
associated with strictly stable zero-pole cancellations of the
transfer function is globally asymptotically Lyapunov stable.
This follows since the transfer function remains invariant
under zero-pole cancellations, so it is identical to that of the
minimum state space realization, so that the operator is kept
strictly positive and invertible although either controllability
or observability (or both) becomes lost [29–31]. A general-
ization of the previous result to the study of hyperstability of
composite connections [32] as well to Ulman-type extended
stability [33, 34] of continuous-time dynamic systems can be
performed based on the study given in [32].

The subsequent example is a discrete version of the
previous one.

Example 2. Example 1 has a direct parallel discrete-time
counterpart as discussed in the sequel. Define the truncated
sequence on [0, 𝑘𝑇]; ∀𝑘 ∈ Γ = Z0+ of the real sequence
{𝑓𝑘 ≡ 𝑓(𝑘𝑇)}𝑘∈Z

0+

as follows:

𝑓𝑗 (𝑘) = 𝑃𝑗𝑓 (𝑘𝑇) = {
𝑓𝑗 ≡ 𝑓 (𝑗𝑇) for 𝑗 ∈ [0, 𝑘] ∩ Z
0 otherwise;

∀𝑘 ∈ Z0+,

(49)

where 𝑇 > 0 is the sampling period. Thus, the output of
a single-input single-output linear continuous-time dynamic
system of 𝑛th order and initial state 𝑥(0) = 𝑥0 ∈ R𝑛 under a
piecewise continuous control with eventual isolated bounded
discontinuities 𝑢 : R → R ∩ 𝐻, now the Hilbert space being
𝐻 = ℓ

2
(Z0+), is

𝑦𝑘 =

𝑘

∑

𝑗=0

𝑔
𝑑
(𝑘, 𝑗) 𝑢𝑗 + 𝑐 (𝑘, 𝑥0)

=

∞

∑

𝑗=−∞

𝑔
𝑑
(𝑘, 𝑗) 𝑢𝑘 (𝑗) + 𝑐𝑘 (𝑥0)

= (𝑔
𝑑
∘ 𝑢) (𝑘) + 𝑐𝑘 (𝑥0) , ∀𝑘 ∈ Z0+,

(50)

where Z0+ = { 𝑧 ∈ Z : 𝑧 ≥ 0}, “∘” stands for the
discrete convolution operator, 𝑐𝑘 = 𝑐𝑘(𝑥0) ≡ 𝑐𝑘(𝑘𝑇, 𝑥0) and
{𝑔
𝑑
(𝑘, 𝑗)}𝑘,𝑗∈Z

0+

is the impulse response sequence since the
dynamic system is realizable 𝑔𝑑(𝑘, 𝑗) = 0 for 𝑗 > 𝑘. If this
dynamic system is the same system as in the previous example
subject to a piecewise control sequence {𝑢𝑘}𝑘∈Z

0+

, with 𝑢𝑘 =
𝑢(𝑘𝑇); ∀𝑘 ∈ Z0+, then 𝑔𝑑(𝑘, 0) = (1 − 𝑞

−1
)L−1(𝐺(𝑠)/𝑠)𝑡=𝑘𝑇;

∀𝑘 ∈ Z0+ where 𝑞−1 is the one-step delay operator such that
𝑓𝑘 = 𝑞

−1
𝑓𝑘+1. In this case, the discrete controller is

𝑢𝑘 = 𝑘𝑘𝑟𝑘 − 𝜑𝑘 (𝑘, 𝑦𝑘) ; ∀𝑘 ∈ Z0+. (51)
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𝑟 : R → R is an exogenous reference sequence, and 𝜑 :

[0, 𝑘] × R → R are the elements of any nonlinear time-
varying real sequence {𝜑𝑘 = 𝜑𝑘(𝑘, 𝑦𝑘)}𝑘∈Z

0+

which satisfies the
following summation-type constraint:

𝑘

∑

𝑗=0

𝜑𝑗 (𝑗, 𝑦𝑗) 𝑦𝑗 ≥ −𝛾𝑘 (𝑥0) ; ∀𝑘 ∈ Z0+. (52)

A close discussion to that of the former example by using the
discrete Parseval theorem and inner products on the Hilbert
space of square-summable sequences ℓ2(Z0+) yields

𝐸𝑘 =

𝑘

∑

𝑗=0

𝑦𝑗𝑢𝑗 =

∞

∑

𝑗=−∞

𝑦𝑗𝑢𝑗 (𝑘)

=
1

2𝜋
∮

|𝑧|=1

𝑧
−1
𝑌 (𝑧)𝑈 (𝑘, 𝑧

−1
) 𝑑𝑧

=
1

2𝜋
∫

2𝜋

0

𝑌 (𝑒
i𝜑
)𝑈 (𝑘, 𝑒

−i𝜑
) 𝑒
−i𝜑
𝑑𝜑

= ⟨𝑦, 𝑢 (𝑘)⟩ =
1

2𝜋
⟨𝑌,𝑈 (𝑘)⟩

=
1

2𝜋
⟨𝐺
𝑑
𝑈 (𝑘) , 𝑈 (𝑘)⟩ +

𝑘

∑

𝑗=0

𝑐𝑗 (𝑥0) 𝑢𝑗

=
1

2𝜋
⟨𝐺
𝑑
, |𝑈 (𝑘)|

2
⟩ +

𝑘

∑

𝑗=0

𝑐𝑗 (𝑥0) 𝑢𝑗

≥
1

2𝜋
( min
𝜑∈[0,2𝜋]

Re 𝐺𝑑 (𝑒i𝜑))∫
2𝜋

0


𝑈 (𝑘, 𝑒

i𝜑
)


2

𝑑𝜑

= ( min
𝜑∈[0,2𝜋]

Re𝐺𝑑 (𝑒i𝜑))(
∞

∑

𝑗=−∞

𝑢
2

𝑗
(𝑘)) +

𝑘

∑

𝑗=0

𝑐𝑗 (𝑥0) 𝑢𝑗

= ( min
𝜑∈[0,2𝜋]

Re𝐺𝑑 (𝑒i𝜑))(
𝑘

∑

𝑗=0

𝑢
2

𝑗
(𝑘))

+

𝑘

∑

𝑗=0

𝑐𝑗 (𝑥0) 𝑢𝑗, ∀𝑘 ∈ Z0+.

(53)

By using (53), one gets a discrete counterpart of (44) as
follows:
𝑘

∑

𝑗=0

(

𝑢𝑗


− 𝑘𝑟 max
𝜑∈[0,2𝜋]


𝐺
𝑑
(𝑒

i𝜑
)

)

𝑢𝑗



≤
1

min𝜑∈[0,2𝜋] Re𝐺𝑑 (𝑒i𝜑) − 𝜀−1max𝑘∈Z
0+

𝑐𝑘 (𝑥0)


× (𝛾𝑘 (𝑥0) + 𝜀

𝑘

∑

𝑗=0

𝑐𝑘 (𝑥0)
) , ∀𝑘 ∈ Z0+

(54)

which leads to the subsequent result which is the discrete-
time counterpart of Proposition 11, whose proof is close to
that of Proposition 11, and it is then omitted.

Proposition 12. Assume that

(1) 𝑘, 𝑟 ∈ ℓ∞(Z0+) so that sup
𝑗∈Z
0+

|𝑘𝑗| ≤ 𝑘 < ∞ and
sup
𝑘∈Z
0+

|𝑟𝑘| ≤ 𝑟 < ∞,

(2) the discrete function 𝐺𝑑(𝑧) is strongly strictly positive
real; that is, Re𝐺(𝑧) > 0 for all complex 𝑧 with |𝑧| ≥ 1.

(3) +∞ > lim sup
𝑘→∞

(𝛾𝑘(𝑥0)) ≥ lim inf 𝑡→∞(𝛾𝑘(𝑥0)) >
0; ∀𝑥0 ∈ R𝑛.

Then, one gets the following properties for any given initial state
𝑥0 ∈ R𝑛.

(i) 𝑢, 𝑦 ∈ ℓ∞(Z0+).

(ii) lim inf𝑘→∞(∑
𝑘

𝑗=0
𝑦𝑗𝑘𝑗𝑟𝑗) > −∞; lim inf𝑗→∞(𝑢

2

𝑗
−

𝑦𝑗𝑘𝑗𝑟𝑗) ≤ 0.

(iii) If 𝑢2
𝑗
≥ 𝑦𝑗𝑘𝑗𝑟𝑗; ∀𝑗 ∈ Z0+, then∃lim𝑗→∞(𝑢2𝑗−𝑦𝑗𝑘𝑗𝑟𝑗) =

0. If, in addition, 𝑘𝑗 = 𝑘 and 𝑟𝑗 = 𝑟 are nonzero
constants; 𝑗 ∈ Z0+, then ∃lim𝑗→∞𝑦

𝑗

= 𝑦∞ and
∃lim𝑗→∞𝑢𝑗 = 𝑢∞ = 𝑘𝑟(∑

∞

𝑗=0
𝑔𝑗) and ∃lim𝑗→∞𝑦𝑗 =

𝑦∞ = 𝑘𝑟(∑
∞

𝑗=0
𝑔𝑗)
2.

(iv) If 𝑟 ≡ 0, then 𝑢𝑗 → 0 and 𝑦𝑗 → 0 as 𝑗 → ∞,
and they are both square-summable on Z0+; ∀𝑥0 ∈ R𝑛.
Thus, the closed-loop discrete dynamic system (50)-(51)
is asymptotically hyperstable for any controller device
of output sequence {𝜑𝑘 = 𝜑𝑘(𝑘, 𝑦𝑘)}𝑘∈Z

0+

satisfying the
discrete summation inequality ∑

𝑘

𝑗=0
𝜑𝑗(𝑗, 𝑦𝑗)𝑦𝑗 ≥

−𝛾𝑘(𝑥0); ∀𝑘 ∈ Z0+.

The following example links asymptotic hyperstability of
a discrete dynamic system with a unique equilibrium point
which is also a fixed point.

Example 3. Assume that, in Example 2, a feedback stabilizing
discrete control law 𝑢𝑡 = −𝜑𝑡(𝑡, 𝑦𝑡−1)𝑦𝑡−1 satisfying the
constraint ∑𝑡

𝑗=0
𝜑𝑗(𝑗, 𝑦𝑗)𝑦𝑗 ≥ −𝛾𝑡(𝑥0) ≥ −𝛾 > ∞; ∀𝑗, 𝑡 ∈ Z0+

is injected to the system (1), neglecting initial conditions, and
equivalently if the initial conditions are zero (this assumption
does not affect the stability study,) we get

𝑃𝑡𝑦 = 𝑦𝑡 = − (𝑃𝑡𝐺) 𝑢 = − (𝑃𝑡𝐺𝜑𝑡 (𝑡, 𝑦𝑡−1) 𝑃𝑡−1) 𝑦

= − (𝑃𝑡𝐺𝜑𝑡 (𝑡, 𝑃𝑡−1𝑦) 𝑃𝑡−1) 𝑦; ∀𝑡 ∈ Z0+
(55)

so that the closed-loop system can be described by the
operator 𝑄 : 𝐻𝑒|ℓ

2
(Z0+) → 𝐻𝑒|ℓ

2
(Z0+) represented as

𝑦𝑡 = 𝑃𝑡𝑄𝑃𝑡−1𝑦 = −𝑃𝑡𝐺𝜑𝑡 (𝑡, 𝑦𝑡−1) 𝑦𝑡−1; ∀𝑡 ∈ Z0+ (56)

or, equivalently, as

𝑃𝑡 (𝐼 + 𝐺𝜑𝑡 (𝑡, 𝑃𝑡−1𝑦) 𝑃𝑡−1) 𝑦 = 0; ∀𝑡 ∈ Z0+. (57)

Assume that 𝑄 : ℓ
2
[0, 𝑧) → ℓ

2
[0, 𝑧) for any 𝑧 ∈ Z+

is stable, positive, one-to-one, and of closed range. Then,
𝑄 : 𝐻𝑒|ℓ

2
(Z0+) → 𝐻𝑒|ℓ

2
(Z0+), where 𝐻𝑒 = ⋃

𝑧∈Z
+

ℓ
2
[0, 𝑧)
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is positive, bounded and of closed range, invertible and of
nonzero minimummodulus; and

0 ≤ 𝐸 (𝑡) = ⟨𝑃𝑡𝑄𝑃𝑡−1𝑦, 𝑃𝑡𝑦⟩ ≤ 𝛾 < ∞; ∀𝑡 ∈ Z0+. (58)

Since 𝐸(𝑡) is nonnegative, bounded, and nondecreasing,
𝑦𝑡 → 0 as 𝑡(∈ Z0+) → ∞, and then 𝑢𝑡 = −𝜑𝑡(𝑡, 𝑦𝑡−1)𝑦𝑡−1 →
0 as 𝑡(∈ Z0+) → ∞. One gets for any given finite integer 𝑇 >

0 that limΓ∋𝑡→∞(𝑃𝑡+𝑇𝑢 −𝑃𝑟𝑢) = limΓ∋𝑡→∞(𝑃𝑡+𝑇𝑦−𝑃𝑡𝑦) = 0.
Thus, 𝑦 (𝑇) ≡ 0(∈ ℓ

2
[𝑡, 𝑡 + 𝑇]) is the unique fixed point of

𝑄 : 𝐻𝑒|ℓ
2
[𝑡, 𝑡 + 𝑇] → 𝐻𝑒|ℓ

2
[𝑡 + 𝑇, 𝑡 + 2𝑇]; ∀𝑡 ∈ Γ.
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