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We investigate the Shilnikov sense homoclinicity in a 3D system and consider the dynamical behaviors in vicinity of the principal
homoclinic orbit emerging from a third order simplified system. It depends on the application of the simplest normal form theory
and further evolution of the Hopf-zero singularity unfolding. For the Shilnikov sense homoclinic orbit, the complex form analytic
expression is accomplished by using the power series of the manifolds surrounding the saddle-focus equilibrium.Then, the second
order Poincaré map in a generally analytical style helps to portrait the double pulse dynamics existing in the tubular neighborhood
of the principal homoclinic orbit.

1. Introduction

In recent years, there has been a great deal interest in
understanding the dynamics and bifurcations in problems
governed by 3D autonomous differential systems [1–3].These
problems include sequences of periodic doubling, existence
of strange attractors, and bifurcations of themultipulse orbits.
The common adapted tool for analyzingmultipulse behaviors
of the 3D nonlinear dynamical system is the well-known
Poincaré map [4]. It starts by a standard analysis of the local
and global cross-sections to the principal homoclinic orbit
of the equilibrium, where the stable and unstable manifolds
can intersect along the tubular neighborhood of the prin-
cipal homoclinic loop, giving rise to Poincaré homoclinic
structure. Among the literature, Glendinning and Sparrow
[5] studied the local behavior of systems’ near homoclinic
orbits to the stationary equilibrium of saddle-focus type.
They described the process of periodic orbit approached
homoclinicity and discussed the resulting global patterns of
bifurcations, such as the emergency of subsidiary homoclinic
manifolds. More explicit work is offered by Gonchenko et
al. [6]. They reported the research of multipulse homoclinic
loops in two-parameter families of vector fields surrounding
the principal homoclinic tangency and then proved the high

structural instability in the neighborhood of a Shilnikov type
saddle-focus.

The prosperities of the Poincaré map reflect the topo-
logical and stability of the actual flow and are basically
adapted in this paper to concern the dynamics of double-
pulse orbit at the tubular field. Besides that we complexly
quantify the principal orbit before the analysis of the return
map with the expectation to generalize the expression and
obtain higher computational precise. Actually, the so-called
principal homoclinicity has been frequently mentioned [7–
9], but the orbit itself and its usage for the return map
have not been broadly detected. Li and Zhu constructed the
𝑠 dimensional series expression of the stable and unstable
manifolds [10], which formed the homoclinic orbit near the
hyperbolic singular point of the Lorenz system.

With a further extension of the methodology, the
Shilnikov sense principal homoclinic loop will be analytically
obtained from the composition of series expression of the
invariant manifolds surrounding the saddle-focus equilib-
rium.These quantified manifolds intersect the cross-sections
locally and globally producemore explicit coordinates up to a
desired order and also characterize the Poincaré homoclinic
map of the system.
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When talking about the complex dynamics, we acknowl-
edge the relevance of the splitting homoclinic connection
with the unfolding of the Hopf-zero singularity [11]. Mean-
while, the local dynamics presented by a normal form
approach (NF) [12–15], a standard result of Birkhoff NF
theory, is also applied in the initial simplification.

So, in this paper, we try to construct a second order
Poincaré map based on the Hopf-zero unfolding in a com-
mon 3D system. In Section 2, it is supposed that the system
exhibit the Hopf-zero singularity at the fixed parameter value
𝜇 = 0 of the linear part of the vector field. In Section 3,
the explicit expression of the principal homoclinic loop H is
given by using the invariant manifold method. In Section 4,
analytical series expressions motivate our interest in chasing
a more general and higher order Poincaré map from its
quantified stable and unstablemanifolds.Thenewmap can be
easily degenerated to the original result presented byWiggins
[16]. And it gives further facility of studying the complex
dynamics, such as subsidiary or multipulse homoclinicity
surrounding the principal homoclinic orbit.

2. The Shilnikov Unfolding Based on the Hopf-
Zero Normal Form

Consider the following 3D system:

�̇� = 𝑦 + 𝑓 (𝑥, 𝑦, 𝑧; 𝜇) ,

̇𝑦 = 𝑧 + 𝑔 (𝑥, 𝑦, 𝑧; 𝜇) ,

�̇� = 𝜀
1
𝑥 + 𝜀
2
𝑦 + 𝜀
3
𝑧 + ℎ (𝑥, 𝑦, 𝑧; 𝜇)

(𝑥, 𝑦, 𝑧, 𝜇) ∈ R
1
×R
1
×R
1
×R
1
,

(1)

where 𝜇 is regarded as the orbit splitting parameter and
𝑓
1
, 𝑓
2
, 𝑓
3
are 𝐶𝑟, 𝑟 ≥ 2 and vanish along with their

derivates at (𝑥, 𝑦, 𝑧, 𝜇) = (0, 0, 0, 0). As mentioned in [11],
the unfolding of the Hopf-zero local bifurcation contains
the global Shilnikov sense homoclinicity emerging from the
saddle-focus equilibrium. Given that (1) enjoys Hopf-zero
singularity near the origin, the normal form (NF) can be
written as
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+
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(2)

in which |𝑢
1
|
2
= 𝑢
1
𝑢
1
, an over-bar denotes complex conjug-

ate; for example, 𝑢
1
denotes the complex conjugate of 𝑢

1
; 𝑎
1,𝜅

and 𝑎
2,𝜅

are the NF coefficients, given in the complex and real
forms, respectively.The final expressions have different forms
depending on whether the total order n of the NF is an odd
or even number; that is,

(i) 𝑚
1
= 𝑚
2
+ 1 = 𝑚

3
= (1/2)(𝑛 − 1), if n is odd;

(ii) 𝑚
1
= 𝑚
2
= 𝑚
3
− 1 = (𝑛/2) − 1, if n is even.

Here we only use the third order NF in (2) because the
system is terminated in the third order [11]:

�̇�
1
= (𝛾 + 𝜔𝑖) 𝑢

1
+ 𝑎
1101
𝑢
1
𝑢
2
+ 𝑎
1102
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1
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1210
𝑢
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1
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1
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2
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2
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2110
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+ 𝑎
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2
.

(3)

The dynamics of bifurcation near the structurally unsta-
ble homoclinic orbits in the Shilnikov sense requires the
description on a two-parameter group (𝜇, 𝜌). It takes the
function as the distance between the point of the intersection
of principal homoclinic H with some surface of the cross-
section and the line of intersection of stablemanifold𝑊𝑠 with
the same surface of section. On the other hand, 𝜌 = 𝛾+𝜔𝑖/𝜆,
defined in its complex form. Further discussion is restricted
to the condition |𝜌

𝑟
= 𝛾/𝜆| < 1.

Firstly, it is needed to quantify the analytical structure of
the principal homoclinic orbit in the complex form at 𝜇 =
0. And then constructing a second order Poincaré map to
prohibit a clear insight of the complex dynamics surrounding
the principal orbit𝐻 is carried out.

3. Analytical Expression of the Principal
Homoclinic Orbit

The analytical expression of the principal homoclinic orbit
is the combination of the 1D manifold associated with the
eigenvalue 𝜆

1
= 𝜆 and the 2D manifold associated with

𝜆
2,3
= 𝛾 ± 𝜔𝑖. So, the 1D manifold for (3) is

𝑢
1
=
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,

𝑢
2
=

𝑘

∑

𝑚=0

Δ
𝑚
𝑒
𝑚𝜆𝑡
,

(4)
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where Γ
𝑚
, Γ
𝑚
, and Δ

𝑚
are the coefficients to be determined.

Γ
𝑚

is in the complex form and Γ
𝑚

denotes its complex
conjugate. The Δ

𝑚
is a real number. Differentiate (4) with

respect to time t and substitute it into (3) and then balance
the same order terms of 𝑒𝑚𝜆𝑡 on both sides of the resulting
equations. That yields

Γ
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(5)

The 2Dmanifolds subject to the complex enginvalues 𝜆
2,3

are

𝑢
1
= 𝜂 + ℎ

1,2
(𝜂, 𝜂) + ℎ

1,3
(𝜂, 𝜂) + ⋅ ⋅ ⋅ + ℎ

1,𝑘
(𝜂, 𝜂) ,

𝑢
1
= 𝜂 + ℎ

1,2
(𝜂, 𝜂) + ℎ

1,3
(𝜂, 𝜂) + ⋅ ⋅ ⋅ + ℎ

1,𝑘
(𝜂, 𝜂) ,

𝑢
2
= Δ
1,0
𝜂 + Δ
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𝜂 + ℎ
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2,3
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(6)

where ℎ
1,𝑗
(𝜂,𝜂)=∑
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𝑗 = 2, . . . , 𝑘, and Γ
𝑚,𝑛
, Γ
𝑚,𝑛
, Δ
𝑚,𝑛

are the coefficients to be
determined, 𝑛 = 𝑘−𝑚. 𝜂, 𝜂 can be expressed in the following
complex form: 𝜂 = (Γ

𝑟,1,0
+ 𝑖Γ
𝑖,1,0
)𝑒
𝜆
2
𝑡
, 𝜂 = (Γ
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− 𝑖Γ
𝑖,1,0
)𝑒
𝜆
3
𝑡.

Differentiate (6) with respect to time 𝑡 and substitute it into
(3) and then balance the same order terms of 𝑒(𝑚𝜆2𝑡+𝑛𝜆3𝑡) on
both sides of the resulting equation. It gives the coefficients of
the 2D manifold:

Γ
𝑚,𝑛
=
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𝑚
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∑
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∑

𝑛
1
=0

𝑛−𝑛
1

∑

𝑛
2
=0

Γ
𝑚
1
,𝑛
1

Γ
𝑚
2
,𝑛
2

Γ
𝑛−𝑛
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Δ
𝑚,𝑛
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(7)

These foregoing 1D and 2D invariant manifolds finally
form the Shilnikov type principal homoclinic orbit H in its
analytical form. It benefits the construction of the second
order Poincaré map shown in the Section 4.

4. The Second Order Poincaré Map

The Poincaré map is one of the most commonly used
approach to study the dynamics surrounding the Shilnikov
homoclinic loop including double or multipulse (circuit)
orbits. In a general process, the first step to construct a
return map is built from the composition of the first hit
maps between the surfaces of section [4, 17]. The first hit
maps are locally defined since at 𝜇 = 0 the surfaces of the
section intersect the homoclinic cycle transversally. So, with
the obtained analytical manifolds, the local linear stable and
unstable manifolds are given by

𝑢
1
= (Γ
𝑟,1,0
+ 𝑖Γ
𝑖,1,0
) 𝑒
𝜆
2
𝑡
+ 𝑜 (𝑒

𝜆
2
𝑡
, 𝑒
𝜆
3
𝑡
) ,

𝑢
1
= (Γ
𝑟,1,0
− 𝑖Γ
𝑖,1,0
) 𝑒
𝜆
3
𝑡
+ 𝑜 (𝑒

𝜆
2
𝑡
, 𝑒
𝜆
3
𝑡
) ,

𝑢
2
= Δ
1
𝑒
𝜆𝑡
+ 𝑜 (𝑒

𝜆𝑡
) .

(8)

The orbit 𝐻 intersects the complex plane (Γ
𝑟,𝑚,𝑛
, Γ
𝑖,𝑚,𝑛
)

at a countable set of points at 𝜇 = 0. So, we select
(Γ
𝑟,1,0
+ 𝑖Γ
𝑖,1,0
, Δ
1
) as the starting point of (8) in its coordinates

and construct a two-dimensional cross-section Π
0
as shown

in Figure 2. Following the orbit, there emerges another point
𝑢
Π
1

1
belonging to the second auxiliary cross-section Π

1
. Let

Π
0
be a rectangle lying in the plane (Γ

𝑟,𝑚,𝑛
, Γ
𝑖,𝑚,𝑛
) and Π

1
a

rectangle parallel to the plane at 𝑢Π1
2
= Δ
1
𝑒
𝜆𝑇
0
= 𝜀. So,

the Poincaré map 𝑃 = 𝑃
0
∘ 𝑃
1
along the orbit should be

constructed by dividing the flow close to the stationary point
of its unstable manifold into two parts: a small neighborhood
of the stationary point where the flow is essentially linear and
a global flow which takes trajectories close to the unstable
manifold away from and then back to the linear region, as
shown in Figure 1.

Starting from the point (Γ
𝑟,1,0
+ 𝑖Γ
𝑖,1,0
, 0) on Π

0
to reach

(0, 𝜀) on Π
1
, it produces the first local map 𝑃

0
: Π
0
→ Π

1
.

According to (8), this local map can be written as

𝑃
0
: Π
0
→ Π

1
: 𝑢
Π
1

1
= (Γ
𝑟,1,0
+ 𝑖Γ
𝑖,1,0
) 𝑒
𝜆
2
𝑇
0
+ 𝑜 (𝑒

𝜆
2
𝑇
0
, 𝑒
𝜆
3
𝑇
0
) .

(9)

Π1

Π0

W
s

loc

𝜀
W

u

loc

Figure 1: Cross-sections Π
0
and Π

1
near the origin.

Figure 2: Subsidiary homoclinic orbit.

From the equation of 𝑢
2
, the time 𝑇

0
of flight for points

starting on Π
0
to reach Π

1
can be calculated from

𝑇
0
= −

1

𝜆

Log(Δ 1
𝜀

) . (10)

Substituting the flight time into map 𝑃
0
, it is found that

the expression for the first hit map can be expressed as

𝑃
0
: Π
0
→ Π

1
: 𝑢
Π
1

1
= (Γ
𝑟,1,0
+ 𝑖Γ
𝑖,1,0
) 𝑢
𝜌
+ 𝑜 (𝑒

𝜆
2
𝑇
0
, 𝑒
𝜆
3
𝑇
0
) ,

(11)

where 𝑢 = Δ
1
/𝜀, 𝜌 = −𝜆

2
/𝜆 = 𝜌

𝑟
+ 𝑖𝜌
𝑖
. Since the time of

flight 𝑡
0
is bounded in this progress, which generates another

global map according to (6),

𝑃
1
: Π
1
→ Π

0
:

{
{
{
{
{
{

{
{
{
{
{
{

{

Γ
𝑟,1,0
+ 𝑖Γ
𝑖,1,0
− (𝑥 + 𝑦𝑖)

= 𝑢
Π
1

1
𝑒
𝜆
2
𝑡
0
+ 𝑓
1
(𝑒
𝜆
2
𝑡
0
, 𝑒
𝜆
3
𝑡
0
) ,

Δ
1
− 𝜇

= Δ
1,0
𝑢
Π
1

1
𝑒
𝜆
2
𝑡
0
+ Δ
0,1
𝑢
Π
1

1
𝑒
𝜆
3
𝑡
0

+𝑓
2
(𝑒
𝜆
2
𝑡
0
, 𝑒
𝜆
3
𝑡
0
) ,

(12)
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where 𝑓
1
, 𝑓
2

include the remaining components of
𝑒
𝜆
2
𝑡
0
, 𝑒
𝜆
3
𝑡
0 , and these equations portrait the global behavior

outside the equilibrium. So, the combination of the local and
global map finally forms the second order Poincaré map:

𝑃 : Π
0
→ Π

0
:

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

Γ


𝑟,1,0
+ 𝑖Γ


𝑖,1,0
= (𝑥 + 𝑦𝑖) + Δ

𝜌
𝑟

1
𝜀
−𝜌
𝑟
𝑒
𝑟𝑡
0
(Γ
𝑟,1,0
+ 𝑖Γ
𝑖,1,0
)

× {cos [ln (Δ𝜌𝑖
1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
] + 𝑖 sin [ln (Δ𝜌𝑖

1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
]} + Γ
2,0
(Γ
2

𝑟,1,0
+ 2𝑖Γ
𝑟,1,0
Γ
𝑖,1,0
− Γ
2

𝑖,1,0
)

×(Δ
𝜌
𝑟

1
𝜀
−𝜌
𝑟
𝑒
𝑟𝑡
0
)

2

{cos 2 [ln (Δ𝜌𝑖
1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
] + 𝑖 sin 2 [ln (Δ𝜌𝑖

1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
]}

+Γ
1,1
(Γ
2

𝑟,1,0
+ Γ
2

𝑖,1,0
) (Δ
𝜌
𝑟

1
𝜀
−𝜌
𝑟
𝑒
𝑟𝑡
0
)

2

,

Δ


1
= 𝜇 − 2Δ

𝜌
𝑟

1
𝜀
−𝜌
𝑟
𝑒
𝑟𝑡
0

× {(Γ
𝑟,1,0
Δ
𝑟,1,0
− Γ
𝑖,1,0
Δ
𝑖,1,0
) cos [ln (Δ𝜌𝑖

1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
]

+ (Γ
𝑟,1,0
Δ
𝑖,1,0
+ Γ
𝑖,1,0
Δ
𝑟,1,0
) sin [ln (Δ𝜌𝑖

1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
]} − 2(Δ

𝜌
𝑟

1
𝜀
−𝜌
𝑟
𝑒
𝑟𝑡
0
)

2

× {[2Γ
𝑖,1,0
Γ
𝑟,1,0
Δ
𝑖,2,0
+ (Γ
2

𝑖,1,0
− Γ
2

𝑟,1,0
) Δ
𝑟,2,0
] cos 2 [ln (Δ𝜌𝑖

1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
]

− [(Γ
2

𝑖,1,0
− Γ
2

𝑟,1,0
) Δ
𝑖,2,0
− 2Γ
𝑖,1,0
Γ
𝑟,1,0
Δ
𝑟,2,0
] sin 2 [ln (Δ𝜌𝑖

1
𝜀
−𝜌
𝑖
) + 𝜔𝑡

0
]}

+Δ
1,1
(Γ
2

𝑖,1,0
+ Γ
2

𝑟,1,0
) (Δ
𝜌
𝑟

1
𝜀
−𝜌
𝑟
𝑒
𝑟𝑡
0
)

2

.

(13)

That is a more general expression of the return map because
the former results

𝑃 : Π
0
→ Π

0
:

{
{
{

{
{
{

{

Γ


𝑖,1,0
= 1 + Δ

𝜌
𝑟

1
Γ
𝑖,1,0

cos (lnΔ𝜌𝑖
1
+ 𝜃) ,

Δ


1
= 𝜇 + Δ

𝜌
𝑟

1
Γ
𝑖,1,0

× [Δ
𝑖,1,0

cos (lnΔ𝜌𝑖
1
+ 𝜃)

−Δ
𝑟,1,0

sin (lnΔ𝜌𝑖
1
+ 𝜃)] ,

(14)

as given by Gonchenko et al. and Zhou et al. [6, 7], can be
easily obtained by letting 𝜀 = 1, 𝑥 = 0, 𝑦 = 1, Γ

𝑟,1,0
=

0, 𝜔𝑡
0
= 𝜃, Δ

𝜌
𝑟

1
𝑒
𝑟𝑡
0
≈ Δ
𝜌
𝑟

1
, 2Δ
𝑖,1,0
= Δ
𝑖,1,0
, 2Δ
𝑟,1,0

= Δ
𝑟,1,0

,
and ignoring the second order components, while the new
map makes itself in a broader usage because of the general
expression and better computational precision.

5. Conclusions

In this paper, the second order Poincarémap in a common 3D
nonlinear system is constructed. Shilnikov sense subsidiary
homoclinic dynamics is also researched. Firstly, we find
the strategy to analytically construct the homoclinic orbit
surrounding the saddle-focus equilibrium point in terms of
the complex SNF and method of invariant manifolds. By
using these quantified manifolds, we can form the expression
of the first and the second order Poincaré map, making
their appearance in a more general style with the capacity to
enhance computational precise. The further possible appli-
cation of the subsidiary homoclinicity is shown in Figure 2
which is a diagram for subsidiary homoclinic orbit; the return
map can portrait the dynamics unfolding from the principal
orbit.

However, the analytical work lags behind the numerical
results in great extent. So, to employ the higher order Poincaré
map and then to unfold the successive bifurcation behaviors
more simply and exactly, in a narrow parameter interval, will
be the topics for further discussion.

Appendix

The SNF coefficients of the Hopf-zero bifurcation up to the
third order are as follows:

𝑏
1,1,0,1

= 𝑎
1,1,0,1

; 𝑏
2,0,0,2

= 𝑎
2,0,0,2

;

𝑏
2,1,1,0

= 𝑎
2,1,1,0

; 𝑏
2,0,0,3

= 𝑎
2,0,0,3

;

𝑏
1,2,1,0

= −

𝑎
2,1,1,1

𝑎
1,1,1,0,1

2 (𝑎
2,0,0,2

− 𝑎
1,1,1,0,1

)

−

𝑎
2,1,1,0

𝑎
1,1,1,0,2

𝑎
2,0,0,2

− 𝑎
1,1,1,0,1

+ 𝑎
1,1,2,1,0

+ 𝑖 (−

𝑎
2,1,1,1

𝑎
2,1,1,0,1

2 (𝑎
2,0,0,2

− 𝑎
1,1,1,0,1

)

+

𝑎
2,1,1,0

𝑎
1,1,1,0,2

𝑎
2,1,1,0,1

𝑎
2,0,0,2

𝑎
1,1,1,0,1

−

𝑎
2,1,1,0

𝑎
1,1,1,0,2

𝑎
2,1,1,0,1

(𝑎
2,0,0,2

− 𝑎
1,1,1,0,1

) 𝑎
1,1,1,0,1

−

𝑎
2,1,1,0

𝑎
2,1,1,0,2

𝑎
2,0,0,2

+ 𝑎
2,1,2,1,0

) .

(A.1)

The second order coefficients of the two-dimensional
manifold are as follows

Γ
2,0
=

𝑏
1101
Δ
1,0

𝛾 + 𝑖𝜔

, Γ
2,0
=

𝑏
1101
Δ
0,1

𝛾 − 𝑖𝜔

, Γ
1,1
=

𝑏
1101
Δ
0,1

𝛾 − 𝑖𝜔

,

Γ
1,1
=

𝑏
1101
Δ
1,0

𝛾 + 𝑖𝜔

, Γ
0,2
= 0, Γ

0,2
= 0,

Δ
2,0
=

𝑏
2002
Δ
2

1,0

2𝛾 − 𝜆 + 2𝑖𝜔

, Δ
0,2
=

𝑏
2002
Δ
2

0,1

2𝛾 − 𝜆 − 2𝑖𝜔

,

Δ
1,1
=

𝑏
2110
+ 2𝑏
2002
Δ
0,1
Δ
1,0

2𝛾 − 𝜆

.

(A.2)
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“Controllability of a nonholonomic macroeconomic system,”
Journal of Optimization Theory and Applications, vol. 154, no.
3, pp. 1036–1054, 2012.

[3] M. Ferrara and C. Udrişte, “Multitime models of optimal
growth,”WSEAS Transactions on Mathematics, vol. 7, no. 1, pp.
51–55, 2008.

[4] Y. A. Kuznetsov, Elements of Applied BifurcationTheory, vol. 112
ofAppliedMathematical Sciences, Springer,NewYork,NY,USA,
2nd edition, 1998.

[5] P. Glendinning andC. Sparrow, “Local and global behavior near
homoclinic orbits,” Journal of Statistical Physics, vol. 35, no. 5-6,
pp. 645–696, 1984.

[6] S. V. Gonchenko, D. V. Turaev, P. Gaspard, and G. Nicolis,
“Complexity in the bifurcation structure of homoclinic loops to
a saddle-focus,” Nonlinearity, vol. 10, no. 2, pp. 409–423, 1997.

[7] T. S. Zhou, G. R. Chen, and Q. G. Yang, “Constructing a new
chaotic system based on the S̆ilnikov criterion,” Chaos, Solitons
and Fractals, vol. 19, no. 4, pp. 985–993, 2004.

[8] Z. Li, G. R. Chen, and W. A. Halang, “Homoclinic and
heteroclinic orbits in a modified Lorenz system,” Information
Sciences, vol. 165, no. 3-4, pp. 235–245, 2004.

[9] Q. C. Zhang, R. L. Tian, and W. Wang, “Chaotic properties
of mechanically and electrically coupled nonlinear dynamical
systems,”Acta Physica Sinica, vol. 57, no. 5, pp. 2799–2804, 2008.

[10] Y.H. Li and S.M. Zhu, “𝑁-dimensional stable and unstable
manifolds of hyperbolic singular point,” Chaos, Solitons and
Fractals, vol. 29, no. 5, pp. 1155–1164, 2006.

[11] I. Baldomá and T. M. Seara, “Breakdown of heteroclinic orbits
for some analytic unfoldings of the Hopf-zero singularity,”
Journal of Nonlinear Science, vol. 16, no. 6, pp. 543–582, 2006.

[12] P. Yu andA. Y. T. Leung, “A perturbationmethod for computing
the simplest normal forms of dynamical systems,” Journal of
Sound and Vibration, vol. 261, no. 1, pp. 123–151, 2003.

[13] Q. C. Zhang and W. Wang, “Simplest normal form for the
singularity of a pair of pure imaginary and a zero eigenvalue
system,” Tianjin Daxue Xuebao, vol. 40, pp. 971–975, 2007.

[14] W.Wang andQ.C. Zhang, “Computation of the simplest normal
form of a resonant double Hopf bifurcation system with the
complex normal formmethod,”NonlinearDynamics, vol. 57, no.
1-2, pp. 219–229, 2009.

[15] A. H. Nayfeh, Method of Normal Forms, Wiley Series in
Nonlinear Science, John Wiley & Sons, New York, NY, USA,
1993.

[16] S. Wiggins, Global Bifurcations and Chaos, vol. 73 of Applied
Mathematical Sciences, Springer, New York, NY, USA, 1988.

[17] F. S. Cui, C. H. Chew, J. X. Xu, and Y. L. Cai, “Bifurcation and
chaos in the Duffing oscillator with a PID controller,”Nonlinear
Dynamics, vol. 12, no. 3, pp. 251–262, 1997.


