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Uncertainties including the structured and unstructured, especially the nonlinear frictions, always exist in physical servo systems
and degrade their tracking accuracy. In this paper, a practical method named adaptive robust controller (ARC) is synthesized with a
continuous differentiable friction model for high accuracy motion control of a direct-drive dc motor, which results in a continuous
control input and thus is more suitable for application. To further reduce the noise sensitivity and improve the tracking accuracy,
a desired compensation version of the proposed adaptive robust controller is also developed and its stability is guaranteed by a
proper robust law. The proposed controllers not only account for the structured uncertainties (e.g., parametric uncertainties) but
also for the unstructured uncertainties (e.g., unconsidered nonlinear frictions). Furthermore, the controllers theoretically guarantee
a prescribed output tracking transient performance and final tracking accuracy in both structured and unstructured uncertainties
while achieving asymptotic output tracking in the absence of unstructured uncertainties, which is very important for high accuracy
control of motion systems. Extensive comparative experimental results are obtained to verify the high-performance nature of the
proposed control strategies.

1. Introduction

Recently, there are many requirements for high-performance
tracking control in industries [1–3], like robots [4], gantry
systems [5], active suspension systems [6], micromechanisms
[7], motion platforms [8], and so on. In these applications,
direct-drive dc motor is widely employed since it is free from
backlash and easy to realize for precise, high-speed, and high-
acceleration motion. However, designing high-performance
tracking controllers for direct-driven motion systems are still
not easy since designers are likely to encounter lots of non-
linearities and modeling uncertainties, including structured
uncertainties (e.g., unknown payloads [9]) and unstructured
uncertainties (e.g., unmodeled nonlinear frictions [10], cut-
ting forces, unmodeled dynamics [11], and so on).These non-
linearities and uncertainties could severely deteriorate the
achievable control performance, leading to undesirable con-
trol accuracy, limit cycles, and even instability [12].Therefore,
more effective approaches to achieve highermotion precision
against nonlinearities and uncertainties are still pursued in
industrial applications.

For the known nonlinearities existing in electrical drive
systems,model-based controllers (e.g., feedback linearization
control) are generally suitable for high-performance control
purpose. But nomatter how accurate the mathematical mod-
els of dynamic nonlinearities and parameter identification
are, there always exist many hard-to-model terms in physical
control systems. A typical hard-to-model example is the fric-
tion, and developing an accurate model for friction has been
historically challenging [13].

When the nonlinearity can be linearly parameterized,
adaptive control is useful in controlling this type of system
if only parameters contain uncertainties (i.e., structured
uncertainties). However, these controllers do nothing about
unstructured uncertainties whichmight be the main obstacle
of developing high accuracy tracking control of motion sys-
tems in some cases and thus exist essential performance deg-
radation, even instability since even a small disturbance may
cause the adaptive process instability [14]. As an alternative
approach, robust design has also been investigated by some
researchers [15, 16] to attenuate various uncertainties in phys-
ical systems. But parametric uncertainties are not considered
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explicitly in those robust designs, and this will make the
robust control too conservative. Sliding mode control in [17]
can deal with both parameters uncertainties and unstruc-
tured uncertainties. The main drawback is that it utilizes a
discontinuous function, that is, sign function, thus causing
severe chattering across the sliding surface and even caus-
ing instability. Another problem with discontinuous control
effort is that no electrical motor can produce discontinuous
driving force for compensation in practice.

To handle various uncertainties in one controller, adap-
tive robust control (ARC) was applied for motion systems
driven by linear motors [5, 11]. Though the ARC controllers
proposed in [5, 11] can achieve excellent tracking perfor-
mance in normal working conditions, accurate friction com-
pensation is not considered in these controllers. But for high
precision motion performance, the friction problem is one of
the significant limitations since friction is a very complicated
phenomenon that relies on the physical properties of the
contact surfaces such as material property, relative velocity,
and lubrication condition in practical applications. A unique
tracking error known as quadrant glitch is the result of com-
plex nonlinear friction behavior at motion reversal or near-
zero velocity, which will reduce the product quality greatly in
manufacture process. In addition, in the low velocity range
and during velocity reversal, the nonlinear effects of the
friction on the performance of a servo system are known to
dominate, compared with those in moderate or steady state
velocity range [18]. Failure to compensate nonlinear frictions
in applications may lead to large tracking errors, undesired
stick-slip motion, and limit cycles when slow velocity is
required. Thus the nonlinear frictions encountered in servo
systems act often on the main obstacle for high positioning
and tracking control performance. From this perspective,
when desired trajectory is slow, the performance degradation
is inevitable with ARC controllers in [5, 11].

In this paper, we will take the friction problem as an
important issue which cannot be ignored for high precision
motion control, together with other modeling uncertainties.
In order to predict and compensate for the underlying fric-
tion, many frictionmodels are proposed. Among them, static
friction model [19] including stiction, Coulomb friction,
viscous friction, and Stribeck effect has been widely accepted.
In order to describe the dynamic phenomenon in frictions,
many dynamic friction models are proposed. Among these
dynamic friction models, in [20], Canudas de Wit et al. pro-
posed the LuGre model, which includes the Stribeck effect,
hysteresis, and spring-like characteristics of the stiction, as
well as variant break-away force.Owing to its simple structure
and capability to capture most of the observed frictional
behaviors, LuGre friction model has been widely employed
in the literatures [9, 17, 21, 22].

Although LuGre-model-based friction compensation has
achieved many successful applications, many researchers still
paid lots of attention to static friction model-based control
strategies [10, 23, 24]. In fact, there are some practical issues
when using LuGre model. Firstly, when the LuGre friction
model is used, the state variable representing bristle defor-
mations of the LuGre friction model must be estimated by
introducing an estimation process since bristle deformations

cannot be measured directly; meanwhile, the uncertainties
such as parameter variations and unstructured uncertainties
must also be considered to obtain a precise tracking perfor-
mance. But the nonuniform friction force parameters and
normal force parameters cannot be adapted together in one
controller [25], and this greatly limits the high precision in
servo tracking. Secondly, the LuGre model could become
very stiff when the velocity is large, and this may lead to some
unavoidable digital implementation problems. For example,
it has been reported in [26] that the observer dynamics to
recover the unmeasurable internal state of the LuGre model
could become unstable at high speedmotions, and thus some
modifications have to be made [27] which result in a compli-
cated nonlinear controller.Thirdly, a discontinuous function,
that is, sign function, was utilized in almost all model based
friction compensation techniques [9, 10, 17–27], certainly also
including LuGre-model-based approaches, which may result
in high-gain controllers and limit applicability due to the
amplification of sensor noise and the occurrence of limit
cycles. In addition, as stated above, there is no electricalmotor
that can produce discontinuous driving force for compen-
sation in practice either. Thus, from practical viewpoints,
application engineers and scientists prefer to continuous con-
trol efforts to reduce the risk of potential instability.

It is worth to note that experimental measurements have
proved that a good static friction model can approximate the
real friction forcewith a degree of 90%fidelity [28]. It was also
shown in [10] that the static friction model and the dynamic
friction model predict almost the same friction phenom-
ena induced limit cycles in controlled positioning systems.
Hence, static friction model based compensation techniques
still have a great significance for practical applications [23].

Based on the limitation analysis of LuGre-model-based
friction compensation and meanwhile note the fact that it
is more popular when the controller is continuous, simple,
less noise-sensitive, and can also achieve high precise per-
formance. With these concerns, a new continuously differ-
entiable friction model proposed in [13] is utilized in this
paper to develop a continuous friction compensation law that
cancels the majority of friction in the systems in conjunction
with adaptive robust control [29] to handle other structured
uncertainties and unstructured uncertainties for a motion
system directly driven by a dc motor. This new static friction
model captures the major effects of friction [13] without
involving discontinuous or piecewise continuous functions.

In addition, it is well known that friction models can be
applied in either a feedback or a feedforward configuration. A
careful design strategy is necessary in a feedback approach to
avoid instability.The effectiveness of feedforward depends on
the accuracy of the applied friction model. Heuristically, the
addition of the model-based desired compensation adaptive
robust controller (DCARC) is also developed in this paper
following the general procedure outlined in [30] to reduce
the overall control effort/chattering and the noise sensitivity
problem in application, and thus the tracking accuracy can
be further improved. The overall stability is guaranteed by a
proper robust feedback control action.

The proposed approaches in this paper present a pre-
scribed output tracking performance in the presence of both
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structured uncertainties and unstructured uncertainties with
adequate friction compensation. Moreover, the proposed
desired compensation adaptive robust controller has the
unique feature that the adaptivemodel compensation and the
regressor depend on the reference output trajectory and
online parameter estimates only. Such a structure has several
implementation advantages [30]: first, the adaptive model
compensation is always bounded when projection type adap-
tion law is used and thus does not affect the closed-loop sys-
tem stability, as a result, the interaction between the param-
eter adaptation and the robust control law is reduced, which
may facilitate the controller gain tuning process considerably;
second, the effect of measurement noise on the adaptive
model compensation and on the parameter adaptation law
is minimized; consequently, a faster adaptation rate can be
chosen in implementation to speed up the transient response
and to improve overall tracking performance. To verify the
high performance of the proposed controllers, especially in
slow tracking conditions, extensive comparative experimen-
tal results are obtained for the motion control of a dc motor.

This paper is organized as follows. Section 2 gives the
problem formulation and establishes the system dynamic
models. Section 3 presents the proposed controller design
procedure and its theoretical results. Section 4 carries out the
comparative experimental certification. And some conclu-
sions can be found in Section 5.

2. Problem Formulation and System Models

Themotor considered here is a current-controlled permanent
magnet dc motor with a commercial servo electrical driver
directly driving an inertia load [8]. The system is depicted
in Figure 1. The goal is to have the inertia load to track any
specified smooth motion trajectory as closely as possible.

In general, a drive’s dynamics can be divided into inner
electrical and outer mechanical subsystems. Due to the phys-
ical properties, the outer mechanical subsystem has much
slower dynamic response speed in comparison with the inner
electrical subsystem. Therefore, the overall performance of
the motion control system is determined mostly by the outer
mechanical subsystem.

Thus, in the derivation of the model, the current dynamic
is neglected in comparison to our interest frequency range
due to the much faster electric response.The dynamics of the
inertia load can be described by [8, 11]

𝑚 ̈𝑦 = 𝐾
𝑖
𝑢 − 𝐵 ̇𝑦 − 𝐹 (𝑡, 𝑦, ̇𝑦) ,

𝐹 (𝑡, 𝑦, ̇𝑦) ≜ 𝐹
𝑓
( ̇𝑦) + 𝑓 (𝑡, 𝑦, ̇𝑦) ,

(1)

where𝑚 and 𝑦 represent the inertial mass of the load and the
angular displacement, respectively; 𝐾

𝑖
is the torque constant

with respect to the unit of input voltage; 𝑢 is the control
input; 𝐵 represents the combined coefficient of the modeled
damping and viscous friction on the load and the actua-
tor rotor; and 𝐹(𝑡, 𝑦, ̇𝑦) represents other disturbances such
as static friction effect 𝐹

𝑓
( ̇𝑦) and uncertain nonlinearities

𝑓(𝑦, ̇𝑦, 𝑡) which cannot be modeled precisely (e.g., external

Inertia load

Encoder position feedback

Power line Commercial
electrical driver

Power supply
DC motor

Trajectory
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Figure 1: The architecture of the positioning motion system driven
by DC motor.

cutting forces in machining, unconsidered dynamic friction
effects and so on). While there have been many static friction
models proposed [19], they are all discontinuous, and thus a
continuous static frictionmodel proposed in [13] is employed
in this paper to produce continuous compensation effort,
which is given by

𝐹
𝑓
( ̇𝑦) = 𝑙

1
tanh (𝑠

1
𝜔) + 𝑙

2
[tanh (𝑠

2
𝜔) − tanh (𝑠

3
𝜔)] , (2)

where 𝜔 is the velocity; 𝑙
1
and 𝑙
2
represent different friction

levels; and 𝑠
1
, 𝑠
2
, 𝑠
3
denote various shape coefficients to

approximate various friction effects.

Remark 1. The frictionmodel in (2) has the following proper-
ties [13, 31]: (i) the friction model is continuous differentiable
and symmetric about the origin; (ii) the Coulomb friction
coefficient is present in the absence of viscous dissipation and
is modeled by the term 𝑙

1
tanh(𝑠

1
𝜔); (iii) the static coefficient

of friction can be approximated by the term 𝑙
1
+ 𝑙
2
; (iii) the

term tanh(𝑠
2
𝜔) − tanh(𝑠

3
𝜔) captures the Stribeck effectwhere

the friction coefficient decreases from the static coefficient of
friction with increasing slip velocity near the origin.

It is worth to note that the new friction model (2) utilizes
the continuous differentiable tanh(V) function which has the
following differential feature with respect to its argument V:

0 <

𝜕 tanh (V)
𝜕V

< 1. (3)

The above nice property will be invoked later in our
robust controller design to ensure the overall stability of the
controlled system.

Based on (1) and (2), we can rewrite the system model (1)
in a state-space form as follows:

𝑥̇
1
= 𝑥
2

𝜃
1
𝑥̇
2
= 𝑢 − 𝜃

2
𝑆
𝑓
(𝑥
2
) − 𝜃
3
𝑥
2

− 𝜃
4
− 𝜃
5
𝑃
𝑓
(𝑥
2
) − 𝑑 (𝑥, 𝑡) ,

𝑦 = 𝑥
1
,

(4)
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where 𝑥 = [𝑥
1
, 𝑥
2
]
𝑇 represents the state vector of the position

and velocity, parameter set 𝜃 = [𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
]
𝑇 in which

𝜃
1
= 𝑚/𝐾

𝑖
, 𝜃
2
= 𝑙
1
/𝐾
𝑖
, 𝜃
3
= 𝐵/𝐾

𝑖
, 𝜃
4
= 𝑑
𝑛
/𝐾
𝑖
, 𝜃
5
= 𝑙
2
/𝐾
𝑖
; and

𝑑(𝑥, 𝑡) = 𝑓(𝑥, 𝑡)/𝐾
𝑖
− 𝑑
𝑛
/𝐾
𝑖
; 𝑆
𝑓
(𝑥
2
) = tanh(𝑠

1
𝑥
2
), 𝑃
𝑓
(𝑥
2
) =

tanh(𝑠
2
𝑥
2
) − tanh(𝑠

3
𝑥
2
). In (4), a constant 𝑑

𝑛
is employed to

denote the nominal value of the lumpeddisturbance, and thus
an adaptive law can be designed for it to learn the slowly
changing part of𝑓(𝑥, 𝑡) to improve the tracking performance
[32].

In general, the system is subjected to structured uncer-
tainties due to large variations in the system parameters, like
the variations of𝑚,𝐾

𝑖
, 𝑙
1
, 𝑙
2
, 𝐵, and 𝑑

𝑛
; that is, parameter set 𝜃

which appears linearly can be unknown due to different sys-
tem components, working conditions and environments and
thus is considered as the structured uncertainty. In addition,
𝑑(𝑥, 𝑡) is clearly the system unstructured uncertainty.

Formost applications, the extents of the structured uncer-
tainty and unstructured uncertainty are known.Thus the fol-
lowing practical assumption is made.

Assumption 2. Theextent of the parametric uncertainties and
uncertain nonlinearities are known [8, 11]; that is,

𝜃 ∈ Ω
𝜃
≜ {𝜃 : 𝜃min ≤ 𝜃 ≤ 𝜃max} , (5)

|𝑑 (𝑥, 𝑡)| ≤ 𝛿
𝑑
, (6)

where 𝜃min = [𝜃
1min, . . . , 𝜃5min]

𝑇, 𝜃max = [𝜃
1max, . . . , 𝜃5max]

𝑇,
and 𝛿

𝑑
are known. In (5), the operation ≤ for two vectors

is performed in terms of the corresponding elements of the
vectors.

Given the desired smooth motion trajectory 𝑦
𝑑
= 𝑥
1𝑑
(𝑡),

the objective is to synthesize a continuous bounded control
input 𝑢 with Assumption 2 such that the output 𝑦 = 𝑥

1

tracks𝑥
1𝑑
(𝑡) as closely as possible in spite of variousmodeling

uncertainties.

3. Controller Design

3.1. Discontinuous Projection Mapping and Parameter Adap-
tation. Let ̂𝜃 denote the estimate of 𝜃 and ̃

𝜃 the estimation
error (i.e., ̃𝜃 =

̂
𝜃 − 𝜃). Viewing (5), a discontinuous mapping

can be defined as [11, 33]

Proj
𝜃
(∙
𝑖
) =

{
{

{
{

{

0 if ̂𝜃
𝑖
= 𝜃
𝑖max, ∙

𝑖
> 0,

0 if ̂𝜃
𝑖
= 𝜃
𝑖min, ∙

𝑖
< 0,

∙
𝑖

otherwise,
(7)

where 𝑖 = 1, . . . , 5, by using an adaptation law given by

̇
̂
𝜃 = Proj

𝜃
(Γ𝜏) , 𝜃min ≤

̂
𝜃 (0) ≤ 𝜃max, (8)

where Γ > 0 is a diagonal adaptation rate matrix and 𝜏 an
adaptation function to be synthesized later. For any adaption

function 𝜏, the projectionmapping used in (8) guarantees [11,
34]

(P1) ̂
𝜃 ∈ Ω

𝜃
≜ {

̂
𝜃 : 𝜃min ≤

̂
𝜃 ≤ 𝜃max} ,

(P2) ̃
𝜃
𝑇
(Γ
−1Proj

𝜃
(Γ𝜏) − 𝜏) ≤ 0, ∀𝜏.

(9)

3.2. Adaptive Robust Controller (ARC) Design. Define a set of
switching functions like quantities as

𝑧
2
= 𝑧̇
1
+ 𝑘
1
𝑧
1
= 𝑥
2
− 𝑥
2eq, 𝑥

2eq ≜ 𝑥̇
1𝑑

− 𝑘
1
𝑧
1
, (10)

where 𝑧
1
= 𝑥
1
− 𝑥
1𝑑
(𝑡) is the output tracking error; 𝑘

1
is a

positive feedback gain. Since 𝐺(𝑠) = 𝑧
1
(𝑠)/𝑧
2
(𝑠) = 1/(𝑠 + 𝑘

1
)

is a stable transfer function, making 𝑧
1
small or converging to

zero is equivalent to making 𝑧
2
small or converging to zero.

So the rest of the design is to make 𝑧
2
as small as possible.

Differentiating (10) and noting (4), we have

𝜃
1
𝑧̇
2
= 𝑢 − 𝜃

1
𝑥̇
2eq − 𝜃

2
𝑆
𝑓
(𝑥
2
) − 𝜃
3
𝑥
2

− 𝜃
4
− 𝜃
5
𝑃
𝑓
(𝑥
2
) − 𝑑 (𝑥, 𝑡) .

(11)

Noting the structure of (11), and based on the adaptive
robust design procedure [29], the resulting ARC controller
can be given by

𝑢 = 𝑢
𝑎
+ 𝑢
𝑠
,

𝑢
𝑎
=

̂
𝜃
1
𝑥̇
2eq +

̂
𝜃
2
𝑆
𝑓
(𝑥
2
) +

̂
𝜃
3
𝑥
2
+
̂
𝜃
4
+
̂
𝜃
5
𝑃
𝑓
(𝑥
2
) ,

𝑢
𝑠
= 𝑢
𝑠1
+ 𝑢
𝑠2
, 𝑢
𝑠1
= −𝑘
2
𝑧
2
,

(12)

where 𝑘
2
is a positive feedback gain.

In (12), 𝑢
𝑎
functions as adjustable feedforward control

law used to achieve an improved model compensation by
parameter adaptation (8), and 𝑢

𝑠
functions as a robust control

law in which 𝑢
𝑠1
is a linear robust feedback law to stabilize the

nominalmodel of motion systems and 𝑢
𝑠2
is nonlinear robust

term used to attenuate the effect of model uncertainties as
follows. Substituting (12) into (11), we have

𝜃
1
𝑧̇
2
= −𝑘
2
𝑧
2
+ 𝑢
𝑠2
−
̃
𝜃
𝑇
𝜑 − 𝑑 (𝑥, 𝑡) , (13)

where

𝜑 = [−𝑥̇
2eq, −𝑆𝑓 (𝑥2) , −𝑥2, −1, −𝑃𝑓 (𝑥2)]

𝑇 (14)

is the regressor for parameter estimation.
For the robust design, wemake the robust term 𝑢

𝑠2
be any

continuous function satisfying the following conditions:

𝑧
2
𝑢
𝑠2
≤ 0, (15)

𝑧
2
[𝑢
𝑠2
−
̃
𝜃
𝑇
𝜑 − 𝑑 (𝑥, 𝑡)] ≤ 𝜀

1
, (16)

where 𝜀
1
is a positive design parameter which can be arbitrar-

ily small.
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Remark 3. Let ℎ
1
be any smooth function satisfying

ℎ
1
≥
󵄩
󵄩
󵄩
󵄩
𝜃
𝑀

󵄩
󵄩
󵄩
󵄩

2󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2
+ 𝛿
2

𝑑
, (17)

where 𝜃
𝑀

= 𝜃max − 𝜃min. Then one smooth example of 𝑢
𝑠2

satisfying (15) and (16) is given by [29, 34]

𝑢
𝑠2
= −𝑘
𝑠1
𝑧
2
≜ −

ℎ
1

2𝜀
1

𝑧
2
, (18)

where 𝑘
𝑠1
is a nonlinear feedback gain.

Other smooth or continuous examples of 𝑢
𝑠2

can be
worked out in the same way as in [29].

Theorem 4. If the adaptation function in (8) is chosen as

𝜏 = 𝜑𝑧
2 (19)

and choosing feedback gains 𝑘
1
and 𝑘

2
large enough such that

the matrix Λ
1
defined below is positive definite (p.d.),

Λ
1
=
[

[

[

𝜃
1
𝑘
1

−

1

2

𝜃
1

−

1

2

𝜃
1

𝑘
2

]

]

]

(20)

then the proposed ARC control law (12) guarantees the follow-
ing.

(A) In general, all signals are bounded. Furthermore, the
positive definite function 𝑉 defined by

𝑉 =

1

2

𝜃
1
(𝑧
2

1
+ 𝑧
2

2
) (21)

is bounded by

𝑉 (𝑡) ≤ exp (−𝜆
1
𝑡) 𝑉 (0) +

𝜀
1

𝜆
1

[1 − exp (−𝜆
1
𝑡)] , (22)

where 𝜆
1
= 2𝜎min(Λ 1)/𝜃1max is the exponentially con-

verging rate, and 𝜎min(⋅) denotes the minimum eigen-
value of a matrix.

(B) If, after a finite time 𝑡
0
, there exist parametric uncer-

tainties only (i.e., 𝑑(𝑥, 𝑡) = 0, for any 𝑡 ≥ 𝑡
0
), in

addition to results in (A), asymptotic output tracking
is also achieved; that is, 𝑧 → 0 as 𝑡 → ∞, where 𝑧 is
defined by 𝑧 = [𝑧

1
, 𝑧
2
]
𝑇.

Proof. See Appendix A.

Remark 5. Results of Theorem 4 indicate that the proposed
ARC controller has an exponentially convergence transient
performance with the exponentially converging rate 𝜆

1
and

the final tracking error (i.e.,𝑉(∞) is bounded by 𝜀
1
/𝜆
1
) being

able to be adjusted via certain controller parameters freely in
a known form. Additionally, condition (20) possesses a great
practical advantage that one can use large 𝑘

1
(related to the

position measurement) rather than 𝑘
2
(related to the velocity

measurement) to retain the overall stability of the controlled
system and thus the noise sensitivity can be alleviated.

3.3. Desired Compensation ARC Controller Design. It seems
that the control problem with uncertainties has been solved
theoretically by ARC controller (12). However, this might
have some limitations in practice. Checking the components
in the proposed ARC law (12) carefully, it can be seen that the
regressor 𝜑 in the model compensation and the adaptation
function 𝜏 (19) depend on state 𝑥. Such an adaptation struc-
ture may have several potential implementation problems
[11, 30]. First, the effect of measurement noisemay pollute the
regressor 𝜑, and a slow adaptation rate may have to be used,
which in turn reduces the effect of parameter adaptation.
Second, themodel-based compensation term 𝑢

𝑎
still depends

on the actual feedback of the state. Although theoretically
the effect of this added implicit feedback loop has been
considered in the robust control law design as seen from con-
dition (16), practically, there still exists certain interactions
between the model compensation 𝑢

𝑎
and the robust control

𝑢
𝑠
. This may complicate the controller gain tuning process

in implementation. In [30], a desired compensation adaptive
robust control framework is developed by Yao, in which the
regressor is calculated by desired trajectory information only.
In the following, the desired compensation ARC (DCARC)
is applied on our system with the new friction model (2), and
some modifications and particular structures of the friction
model are utilized to obtain less restrictive conditions on
the selection of robust feedback gains to achieve the overall
stability.

In order to develop the DCARC law, some modifications
of the dynamic of 𝑧

2
in (11) are firstly made as follows:

𝜃
1
𝑧̇
2
= 𝑢 − 𝜃

1
𝑥̈
1𝑑

− 𝜃
2
𝑆
𝑓
(𝑥̇
1𝑑
) − 𝜃
3
𝑥̇
1𝑑

− 𝜃
4

− 𝜃
5
𝑃
𝑓
(𝑥̇
1𝑑
) − 𝑑 (𝑥, 𝑡) − 𝑁

1
− 𝑁
2

+ (𝜃
1
𝑘
1
− 𝜃
3
) 𝑧
2
− 𝑘
1
(𝜃
1
𝑘
1
− 𝜃
3
) 𝑧
1
,

(23)

where

𝑁
1
≜ 𝜃
2
𝑆
𝑓
(𝑥
2
) − 𝜃
2
𝑆
𝑓
(𝑥̇
1𝑑
) ,

𝑁
2
≜ 𝜃
5
𝑃
𝑓
(𝑥
2
) − 𝜃
5
𝑃
𝑓
(𝑥̇
1𝑑
)

(24)

represents the nonlinear approximate errors of the friction.
Noting the property of tanh function (3) and by exploiting

the mean value theorem, the following inequalities can be
developed for (24):

󵄨
󵄨
󵄨
󵄨
𝑁
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜃
2
𝑠
1

󵄨
󵄨
󵄨
󵄨
𝑥
2
− 𝑥̇
1𝑑

󵄨
󵄨
󵄨
󵄨
≤ 𝜃
2
𝑠
1

󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+ 𝜃
2
𝑠
1
𝑘
1

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝑁
2

󵄨
󵄨
󵄨
󵄨
≤ 𝜃
5
(𝑠
2
+ 𝑠
3
)
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
+ 𝜃
5
(𝑠
2
+ 𝑠
3
) 𝑘
1

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
.

(25)

The proposed desired compensation ARC law and the
adaptation function have the same form as (12), but with
𝑢
𝑎
determined by the desired trajectory and parameter

adaptation only; that is,

𝑢 = 𝑢
𝑎
+ 𝑢
𝑠
,

𝑢
𝑎
=

̂
𝜃
1
𝑥̈
1𝑑

+
̂
𝜃
2
𝑆
𝑓
(𝑥̇
1𝑑
) +

̂
𝜃
3
𝑥̇
1𝑑

+
̂
𝜃
4
+
̂
𝜃
5
𝑃
𝑓
(𝑥̇
1𝑑
) ,

𝑢
𝑠
= 𝑢
𝑠1
+ 𝑢
𝑠2
, 𝑢
𝑠1
= −𝑘
2
𝑧
2
.

(26)
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Substituting (26) into (23), one obtains

𝜃
1
𝑧̇
2
= − (𝑘

2
− 𝜃
1
𝑘
1
+ 𝜃
3
) 𝑧
2
+ 𝑢
𝑠2
−
̃
𝜃
𝑇
𝜑
𝑑

− 𝑑 (𝑥, 𝑡) − 𝑁
1
− 𝑁
2
− 𝑘
1
(𝜃
1
𝑘
1
− 𝜃
3
) 𝑧
1
,

(27)

where 𝜑
𝑑
is desired regressor given by

𝜑
𝑑
≜ [−𝑥̈

1𝑑
, −𝑆
𝑓
(𝑥̇
1𝑑
) , −𝑥̇
1𝑑
, −1, −𝑃

𝑓
(𝑥̇
1𝑑
)]

𝑇

. (28)

From (27), the robust term𝑢
𝑠2
should satisfy the following

two conditions:

𝑧
2
𝑢
𝑠2
≤ 0, (29)

𝑧
2
[𝑢
𝑠2
−
̃
𝜃
𝑇
𝜑
𝑑
− 𝑑 (𝑥, 𝑡)] ≤ 𝜀

2
, (30)

where 𝜀
2
is a positive design parameter which can be

arbitrarily small.
An example of 𝑢

𝑠2
satisfying (29) and (30) is given as fol-

lows:

𝑢
𝑠2
= −𝑘
𝑠2
𝑧
2
≜ −

ℎ
2

2𝜀
2

𝑧
2
, (31)

where 𝑘
𝑠2
is a nonlinear feedback gain and ℎ

2
satisfies

ℎ
2
≥
󵄩
󵄩
󵄩
󵄩
𝜃
𝑀

󵄩
󵄩
󵄩
󵄩

2󵄩
󵄩
󵄩
󵄩
𝜑
𝑑

󵄩
󵄩
󵄩
󵄩

2
+ 𝛿
2

𝑑
. (32)

Theorem 6. With the projection type adaptation law (8) in
which adaptation function is given as 𝜏 = 𝜑

𝑑
𝑧
2
and choosing

suitable feedback gains 𝑘
1
and 𝑘

2
such that the matrix Λ

2

defined below is positive definite,

Λ
2
=
[

[

[

𝜃
1
𝑘
1

−

1

2

𝜂

−

1

2

𝜂 𝑘
2
− 𝜃
1
𝑘
1
+ 𝜃
3
− 𝜃
2
𝑠
1
− 𝜃
5
(𝑠
2
+ 𝑠
3
)

]

]

]

, (33)

where 𝜂 = |𝜃
1
− 𝑘
1
(𝜃
1
𝑘
1
− 𝜃
3
)| + 𝜃
2
𝑘
1
𝑠
1
+ 𝜃
5
𝑘
1
(𝑠
2
+ 𝑠
3
), then

the proposed desired compensation ARC law (26) guarantees
the following.

(A) In general, all signals are bounded. Furthermore, the
positive definite 𝑉 is bounded by

𝑉 (𝑡) ≤ exp (−𝜆
2
𝑡) 𝑉 (0) +

𝜀
2

𝜆
2

[1 − exp (−𝜆
2
𝑡)] , (34)

where 𝜆
2
= 2𝜎min(Λ 2)/𝜃1max is the exponentially con-

verging rate.
(B) If, after a finite time 𝑡

0
,𝑑(𝑥, 𝑡) = 0, in addition to results

in (A), asymptotic output tracking is also achieved; that
is, 𝑧 → 0 as 𝑡 → ∞.

Proof. See Appendix B.

Remark 7. Results of Theorem 6 indicate that the proposed
desired compensation ARC controller (26) has the same per-
formance properties as the previous ARC controller (12)
stated in Remark 5. Furthermore, the DCARC law (26) also

Power
line

DC
motor

Inertia
load

Encoder Shift

Figure 2: Experimental platform of DC motor driven system.

has the following advantages [30]. (i) Since the regressor 𝜑
𝑑

depends on the reference trajectory only, it is bounded and
can be calculated offline to save online computation time if
needed. (ii) Due to the use of projection mapping in (8), the
parameter estimation is bounded as shown by P1 of (9).Thus
the model compensation 𝑢

𝑎
in (26) is bounded no matter

what type of adaptation law is going to be used. This implies
that 𝑢

𝑎
does not affect the closed-loop system stability at all

and the robust control function 𝑢
𝑠
can be synthesized totally

independent of the design of parameter adaptation law for
robust stability. (iii) Gain tuning process becomes simpler
since some of the bounds like the bound of the first term
inside the bracket of the lefthand side of (30) can be estimated
offline. (iv) The effect of measurement noise is reduced.

Remark 8. It is worth to note that the condition on the selec-
tion of robust feedback gain 𝑘

2
is much less restrictive than

those in [30], which can further alleviate the effect of noisy
velocity feedback. This is achieved by judiciously selecting a
p.d. function given by (21) instead of the general formulations
in [30].

4. Comparative Experimental Results

4.1. Experiment Setup. To illustrate the above designs and
study fundamental problems associated with the high accu-
racy control of dc motor motion systems, a verification plat-
formhas been set up shown in Figure 2.Thedetail description
of the hardware components used in the platform can be
found in [8] and the measurement and control system con-
sists of monitoring software and real time control software
(more details can be found in [35]). The sampling time is
0.5ms.

4.2. System Identification. Due to shape coefficients 𝑠
1
, 𝑠
2
,

and 𝑠
3
existing in our friction models and our proposed con-

trollers, the static friction effects have to be identified.The fol-
lowing experimental friction model identification procedure
is taken: first, a series of control constant velocity trajectory is
applied to the servo system. Steady signals are finally recorded
to obtain the static mapping relationship between the control
input 𝑢 and the output velocity signal. From (4), when the
steady output velocity is constant (i.e., the inertial force is
zero), the control input 𝑢 is equal to the normalized friction
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(c) The obtained static friction described in (2) with 𝑠1 = 700, 𝑠2 = 15,
and 𝑠3 = 1.5; the normalized friction level 𝑙1/𝐾𝑖 = 0.02, 𝑙2/𝐾𝑖 = 0.01

Figure 3: Experimental results and curve fitting of nonlinear
friction.

level. The result of static mapping relationship identified by
experiments is shown in Figure 3, and the structure model of
the friction is obtained by polynomial curve-fitting method.
The corresponding coefficients 𝑠

1
= 700, 𝑠

2
= 15, and 𝑠

3
=

1.5 are used to fit the experimental curve in Figure 3, and
these coefficients will be utilized in our proposed controllers.
Though the normalized friction level parameters are also
obtained, they are not used since they may vary in practice,
and will be adapted by the designed adaptive law.

4.3. Comparative Experimental Results. The following five
controllers are compared to verify the effectiveness of the
proposed control schemes in the next experiments.

(1) ARCF: this is the adaptive robust controller (12) with
static friction model (2) proposed in this paper and
described in previous sections. As in [11], for simplic-
ity, the control function 𝑢

𝑠
= 𝑢
𝑠1
+𝑢
𝑠2
is implemented

as 𝑢
𝑠
= −𝑘
󸀠
𝑧
2
by choosing a sufficiently large non-

linear feedback gain 𝑘
󸀠 to satisfy (16). The control

gains are chosen as 𝑘
1
= 240, 𝑘󸀠 = 5, which are tuned

via online try-and-error method, and some state-
ments about gain choosing can be found in [11, 36].
The bounds of parametric ranges are given by 𝜃min =

[0, 0, 0, −0.01, 0]
𝑇, 𝜃max = [5 × 10

−3
, 0.1, 0.4, 0.01,

0.5]
𝑇. The initial estimate of 𝜃 is chosen as [1.9 ×

10
−3
, 1 × 10

−3
, 0.0353, 0, 0.02]

𝑇. Adaptation rates are
set at Γ = diag{0.1, 0.5, 2, 0.3, 0.5}.

(2) DCARCF: this is the desired compensation adaptive
robust controller (26) with static friction model (2),
proposed in this paper and described in previous
sections. For fair comparison, all gains used are cho-
sen same as corresponding gains of the ARCF con-
troller but with large adaptation rates Γ = diag{0.3,
1, 3, 0.5, 1} according to Remark 7.

(3) ARC: this is the adaptive robust controller only with
approximate continuous Coulomb friction model.
The controller can be outlined from [11, 29]. In our
experiments, the ARC controller is implemented
same as ARCF but without 𝜃

5
adaptation (i.e., no Stri-

beck effect), and thus, the gains are chosen same as
corresponding gains of the ARCF controller but with
Γ = diag{0.1, 0.5, 2, 0.3, 0}.

(4) DCARC: this is the desired compensation adaptive
robust controller only with approximate continuous
Coulomb friction model. The controller can be out-
lined from [11, 30]. In our experiments, the DCARC
controller is implemented same as DCARCF but
without 𝜃

5
adaptation, and thus, the gains are chosen

same as corresponding gains of the DCARCF con-
troller but with Γ = diag{0.3, 1, 3, 0.5, 0}.

(5) PID: the proportional-integral-derivative controller,
which is commonly used in industrials which can be
treated as a reference controller for comparison. The
controller parameters are 𝑘

𝑃
= 120, 𝑘

𝐼
= 60, and 𝑘

𝐷
=

0, which represent the 𝑃-gain, 𝐼-gain and 𝐷-gain,
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respectively.These controller gains are tuned carefully
via error-and-try method. One may argue that the
larger parameters can make better tracking perfor-
mance. But these parameters are achieved ultimately
and larger parameters will lead the system to unsta-
ble due to measurement noise and/or unmodeled
dynamics. Thus using the PID controller with these
parameters to compare with the proposed controllers
is fair.

The following five performance indexes will be used to
measure the quality of each control algorithm, that is, the
maximum, average, and standard deviation of the tracking
error, average control input, and normalized control varia-
tions. Their definitions are made as follows.

(1) Maximal absolute value of the tracking errors is
defined as

𝑀
𝑒
= max
𝑖=1,...,𝑁

{
󵄨
󵄨
󵄨
󵄨
𝑧
1 (
𝑖)
󵄨
󵄨
󵄨
󵄨
} , (35)

where𝑁 is the number of the recorded digital signals
and is used as an index of measure of tracking accu-
racy.

(2) Average tracking error is defined as

𝜇 =

1

𝑁

𝑁

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑧
1 (
𝑖)
󵄨
󵄨
󵄨
󵄨

(36)

and is used as an objective numericalmeasure of aver-
age tracking performance.

(3) Standard deviation performance index is defined as

𝜎 = √
1

𝑁

𝑁

∑

𝑖=1

[
󵄨
󵄨
󵄨
󵄨
𝑧
1 (
𝑖)
󵄨
󵄨
󵄨
󵄨
− 𝜇]
2 (37)

to measure the deviation level of tracking errors.
(4) Average control input index is defined as

𝐿
𝑢
= √

1

𝑁

𝑁

∑

𝑖=1

|𝑢 (𝑖)|
2 (38)

and is used to evaluate the amount of control effort.
(5) Normalized control variations is defined as

𝐿
𝑐
=

𝐿
Δ𝑢

𝐿
𝑢

(39)

and is used to measure the degree of control chatter-
ing, where

𝐿
Δ𝑢

= √
1

𝑁

𝑁

∑

𝑖=1

|𝑢 (𝑖Δ𝑇) − 𝑢 ((𝑖 − 1) Δ𝑇)|
2
, (40)

where Δ𝑇 is the time interval.
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Figure 4: The desired trajectory (normal case).
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Figure 5: Tracking errors of five controllers in normal case, PID,
ARC, ARCF, DCARC, and DCARCF, from top to bottom, respec-
tively.

To verify the performance of the proposed controllers, the
five controllers are first tested for a sinusoidal-like motion
trajectory 𝑥

1𝑑
= 10[1 − cos(3.14𝑡)][1 − exp(−0.5𝑡)]∘ which

ensures the desired trajectory smooth enough. The desired
motion trajectory is shown in Figure 4. The corresponding
tracking errors under five controllers are shown in Figure 5,
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Figure 6: Parameter estimations of five controllers in normal case.
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Table 1: Performance indexes during the last two seconds.

Indexes 𝑀
𝑒

𝜇 𝜎 𝐿
𝑢

𝐿
𝑐

PID 0.0581 0.0132 0.0106 0.1101 0.0154
ARC 0.0283 0.0125 0.0076 0.1061 0.0138
ARCF 0.0260 0.0122 0.0073 0.1060 0.0141
DCARC 0.0234 0.0091 0.0046 0.1064 0.0117
DCARCF 0.0152 0.0059 0.0034 0.1059 0.0117
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Figure 7: Control inputs of five controllers in normal case (the ordi-
nate unit is V).

respectively. As seen, the proposed DCARCF controller has a
better performance than those of the other four controllers
in terms of both transient and final tracking errors since
the DCARCF controller both employed the new continuous
friction model to achieve accurate friction compensation
and large adaptation rate, and then the resulting learning
capability is enhanced; while ARCF also employed the
explicit friction model and thus obtained better performance
than ARC and PID, the tracking process is chattering since
its regressor depends on the noisy actual states, and that is
the reason it is worse than the DCARC controller. The PID
controller just has some robustness with respect to uncertain-
ties and their tracking errors are relatively large. Moreover,
by using the parameter adaptation as shown in Figure 6, the
final tracking error of DCARCF is reduced almost down to
0.015∘ while PID has large quadrant glitch (about 0.06∘) due
to the large friction disturbance during velocity reversal.This
illustrates the effectiveness of using the adjustable desired
compensation technique and the new friction model which
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Figure 8: Tracking errors of five controllers during the last two
cycles.
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Figure 9: Tracking errors of three controllers during the last two
cycles.

can effectively overcome the nonlinear friction disturbance
in practice. The control inputs of five controllers are shown
in Figure 7, which is continuous, regular, and bounded. To
investigate the final tracking accuracy, the last two cycles’
tracking errors are present in Figure 8, and a more clear
comparison is given in Figure 9, in which only PID, ARC, and
DCARCF are compared. The experimental results in terms
of performance indexes are given in Table 1 during the last
two seconds. As seen from the table, DCARCF performs
best performance in all indexes, compared with the other
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Table 2: Performance indexes during the last two seconds in slow
tracking case.
Indexes 𝑀

𝑒
𝜇 𝜎 𝐿

𝑢
𝐿
𝑐

PID 0.0247 0.0032 0.0050 0.0392 0.0196
ARC 0.0111 0.0032 0.0022 0.0389 0.0170
ARCF 0.0099 0.0024 0.0021 0.0389 0.0188
DCARC 0.0101 0.0016 0.0023 0.0382 0.0172
DCARCF 0.0077 0.0012 0.0014 0.0371 0.0171

four controllers. It is worth to note that the PID controller
exhibits worst tracking performance but consumes maximal
control efforts and chattering, which can indicate that PID
has reached its limitations in this tracking task.

To further test the performance of the proposed
algorithms, a slow motion trajectory 𝑥

1𝑑
= [1 −

cos(3.14𝑡)][1 − exp(−0.5𝑡)]∘ shown in Figure 10 is used.
In this test stage, the desired velocity is reduced to only
a tenth of the previous one, and thus the effects of the
nonlinear friction are exaggerated and may be the dominate
factor effecting the tracking performance.The tracking errors
of the five controllers are shown in Figure 11, respectively.
As seen, even for such a slow tracking experiment under
strong nonlinear friction, the proposed DCARCF controller
is able to compensate the modeled nonlinear friction and
attenuate unmodeled effects and an improved performance
is achieved in comparison to the other four controllers.
The parameter estimation and control inputs are omitted
with space limitations since they are regular and bounded.
More clear comparison is presented in Figures 12 and 13. The
performance indexes with this case are collected in Table 2.
From these results, again, it can be seen that the proposed
DCARCF controller has the best tracking performance.

5. Conclusion

In this paper, with a new static friction model capable of
capturing major nonlinear friction effects, a continuous ARC
controller and a continuous desired compensation ARC
controller have been developed for high-performance robust
motion systems directly driven by dc motors. The proposed
controllers take into account the effect of model uncertainties
coming from the inertia load, modeled friction force, and
unmodeled disturbances. In addition, by using the nice dif-
ferential property of the new friction model and integrating
the mean value theorem, a proper robust feedback term
is synthesized in our proposed desired compensation ARC
controller, which ensures the overall stability while reduces
restrictive conditions. Theoretically, the resulting controllers
guarantee a prescribed transient performance and final track-
ing accuracy in general while achieving asymptotic tracking
in the presence of parametric uncertainties. Furthermore,
the desired compensation ARC scheme offers several imple-
mentation advantages such as reduced effect of measure-
ment noise and a faster adaptation rate in implementation.
Comparative experiments are carried out for the motion
control of a dc motor to illustrate the high performance of

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

∘
D

es
ire

d 
tr

aj
ec

to
ry

 (
)

Figure 10: The desired trajectory (slow case).

0

0.05

−0.05
0 20 40 60 80 100

Time (s)

PI
D

 er
ro

r(
∘
)

0

0.05

−0.05
0 20 40 60 80 100

Time (s)

A
RC

 er
ro

r(
∘
)

0

0.05

−0.05
0 20 40 60 80 100

Time (s)

A
RC

F 
er

ro
r(

∘
)

0

0.05

−0.05
0 20 40 60 80 100

Time (s)

D
CA

RC
 er

ro
r(

∘
)

0

0.05

−0.05
0 20 40 60 80 100

Time (s)D
CA

RC
F 

er
ro

r(
∘
)

Figure 11: Tracking errors of five controllers in slow tracking case.

the proposed ARC strategies. Comparative experimental
results show that smaller tracking error and smoother control
effort are obtained using the ARC algorithms with the
continuous friction model than with approximate Coulomb
friction only, demonstrating the effectiveness of the proposed
algorithms in practical applications. As future works, it is
interesting to consider other applications of the proposed
scheme, such as the control of transport problem [37].
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Figure 12: Tracking errors of five controllers during the last cycle in
slow tracking case.
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Figure 13: Tracking errors of three controllers during the last cycle
in slow tracking case.

Appendices

A. Proof of Theorem 4

From (13) and noting (10), the time derivative of 𝑉 can be
given by

𝑉̇ = 𝜃
1
𝑧
1
𝑧̇
1
+ 𝜃
1
𝑧
2
𝑧̇
2

= 𝜃
1
𝑧
1
(𝑧
2
− 𝑘
1
𝑧
1
) − 𝑘
2
𝑧
2

2
+ 𝑧
2
[𝑢
𝑠2
−
̃
𝜃
𝑇
𝜑 − 𝑑 (𝑥, 𝑡)] .

(A.1)

Using the condition in (16), we have

𝑉̇ ≤ −𝑧
𝑇
Λ
1
𝑧 + 𝜀
1
. (A.2)

Noting that the matrix Λ
1
defined in (20) is positive

definite and based on the definition of 𝜆
1
, we can infer

𝑉̇ ≤ −𝜆
1
𝑉 + 𝜀
1

(A.3)

which leads to (22) by using comparison lemma [38]. Thus,
𝑧
1
and 𝑧

2
are bounded which means the state 𝑥 is bounded.

𝑆
𝑓
(𝑥
2
) and 𝑃

𝑓
(𝑥
2
) are bounded from their definition. From

property P1 in (9), all estimated parameters are bounded,
and thus the control input 𝑢 is bounded. This proves that all
signals in the closed loop systems are bounded and the results
in (A) of Theorem 4 are proved.

Now for part (B), when 𝑑(𝑥, 𝑡) = 0, choose a p.d. function
𝑉
𝑠
as

𝑉
𝑠
= 𝑉 +

1

2

̃
𝜃
𝑇
Γ
−1̃
𝜃. (A.4)

From (13) with 𝑑(𝑥, 𝑡) = 0, the condition in (15), and the
definition of 𝜏 in (19), the derivative of 𝑉

𝑠
satisfies

𝑉̇
𝑠
= 𝜃
1
𝑧
1
(𝑧
2
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1
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1
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2
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2
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2
[𝑢
𝑠2
−
̃
𝜃
𝑇
𝜑] +

̃
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−1 ̇̂
𝜃

≤ − 𝑧
𝑇
Λ
1
𝑧 +

̃
𝜃
𝑇
(Γ
−1 ̇̂
𝜃 − 𝜏) .

(A.5)

Noting the property P2 of (9), we have [36]

𝑉̇
𝑠
≤ −𝜎min (Λ 1) (𝑧

2

1
+ 𝑧
2

2
) ≜ 𝑊. (A.6)

Therefore, 𝑊 ∈ 𝐿
2
and 𝑉

𝑠
∈ 𝐿
∞
. Since all signals are

bounded, from (10) and (13), it is easy to check that 𝑊̇ is
bounded and thus uniformly continuous. By Barbalat’s
lemma, 𝑊 → 0 as 𝑡 → ∞ [36], which leads to (B) of
Theorem 4.

B. Proof of Theorem 6

The proof is similar to that ofTheorem 4. From (27), the time
derivative of 𝑉 can be given by

𝑉̇ = 𝜃
1
𝑧
1
𝑧̇
1
+ 𝜃
1
𝑧
2
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2
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Using the condition in (30) and noting (25), we have
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Noting (33), sinceΛ
2
is positive-definite, thus the follow-

ing inequation is true:

𝑉̇ ≤ − 𝜎min (Λ 2) (𝑧
2

1
+ 𝑧
2

2
) + 𝜀
2

≤ − 𝜆
2
𝑉 + 𝜀
2

(B.3)

which leads to (34) and the results in (A) of Theorem 6 can
be inferred, according to the deductive method in the proof
of Theorem 4.

Now for part (B), when 𝑑(𝑥, 𝑡) = 0, from (27), similar
to the derivation progress of part (A), the derivative of 𝑉

𝑠

satisfies

𝑉̇
𝑠
≤ −𝜎min (Λ 2) (𝑧

2

1
+ 𝑧
2

2
) +

̃
𝜃
𝑇
(Γ
−1 ̇̂
𝜃 − 𝜏) . (B.4)

Noting the property P2 of (9), we have

𝑉̇
𝑠
≤ −𝜎min (Λ 2) (𝑧

2

1
+ 𝑧
2

2
) . (B.5)

Therefore, similar to the proof of part (B) ofTheorem 4 in
Appendix A, the results in (B) of Theorem 6 can be proved,
by applying Barbalat’s lemma and the fact that all signals are
bounded from part (A).
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“A newmodel for control of systems with friction,” IEEE Trans-
actions on Automatic Control, vol. 40, no. 3, pp. 419–425, 1995.

[21] W.-F. Xie, “Sliding-mode-observer-based adaptive control for
servo actuator with friction,” IEEE Transactions on Industrial
Electronics, vol. 54, no. 3, pp. 1517–1527, 2007.

[22] J. Yao, Z. Jiao, and B. Yao, “Robust control for static loading of
electro-hydraulic load simulator with friction compensation,”
Chinese Journal of Aeronautics, vol. 25, no. 6, pp. 954–962, 2012.

[23] L. Márton and B. Lantos, “Control of mechanical systems with
Stribeck friction and backlash,” Systems & Control Letters, vol.
58, no. 2, pp. 141–147, 2009.



14 Abstract and Applied Analysis

[24] L. Xu and B. Yao, “Output feedback adaptive robust precision
motion control of linear motors,” Automatica, vol. 37, no. 7, pp.
1029–1039, 2001.

[25] Y. Tan and I. Kanellakopoulos, “Adaptive nonlinear friction
compensation with parametric uncertainties,” in Proceedings of
the American Control Conference (ACC ’99), pp. 2511–2515, June
1999.

[26] L. Freidovich, A. Robertsson, A. Shiriaev, and R. Johansson,
“LuGre-model-based friction compensation,” IEEE Transac-
tions on Control Systems Technology, vol. 18, no. 1, pp. 194–200,
2010.

[27] L. Lu, B. Yao, Q.Wang, and Z. Chen, “Adaptive robust control of
linear motors with dynamic friction compensation using mod-
ified LuGre model,” Automatica, vol. 45, no. 12, pp. 2890–2896,
2009.

[28] H. Armstrong and B. louvry, Control of Machines with Friction,
Kluwer Academic Publishers, Boston, Mass, USA, 1991.

[29] B. Yao and M. Tomizuka, “Adaptive robust control of SISO
nonlinear systems in a semi-strict feedback form,” Automatica,
vol. 33, no. 5, pp. 893–900, 1997.

[30] B. Yao, “Desired compensation adaptive robust control,” Journal
of Dynamic Systems, Measurement and Control, vol. 131, no. 6,
article 61001, pp. 1–7, 2009.

[31] C. Makkar, G. Hu, W. G. Sawyer, and W. E. Dixon, “Lyapunov-
based tracking control in the presence of uncertain nonlinear
parameterizable friction,” IEEE Transactions on Automatic Con-
trol, vol. 52, no. 10, pp. 1988–1994, 2007.

[32] J. Yao, Z. Jiao, and S. Han, “Friction compensation for low
velocity control of hydraulic flight motion simulator: a simple
adaptive robust approach,” Chinese Journal of Aeronautics, vol.
26, no. 3, pp. 814–822, 2013.

[33] S. Sastry and M. Bodson, Adaptive Control: Stability, Conver-
gence andRobustness, Prentice-Hall, EnglewoodCliffs,NJ,USA,
1989.

[34] J. Yao, Z. Jiao, B. Yao, Y. Shang, andW. Dong, “Nonlinear adap-
tive robust control of electro-hydraulic load simulator,” Chinese
Journal of Aeronautics, vol. 25, no. 5, pp. 766–775, 2012.

[35] J. Yao, Z. Jiao, Y. Shang, andC.Huang, “Adaptive nonlinear opti-
mal compensation control for electro-hydraulic load simulator,”
Chinese Journal of Aeronautics, vol. 23, no. 6, pp. 720–733, 2010.

[36] J. Yao, Z. Jiao, D. Ma, and L. Yan, “High accuracy tracking con-
trol of hydraulic rotary actuators with modelling uncertainties,”
IEEE/ASME Transactions on Mechatronics, 2013.

[37] O. G. Jepps, C. Bianca, and L. Rondoni, “Onset of diffusive
behavior in confined transport systems,” Chaos, vol. 18, no. 1,
Article ID 013127, p. 13, 2008.

[38] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear
andAdaptive Control Design, JohnWiley& Sons, NewYork, NY,
USA, 1995.


