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Nonlinear dynamics can be used to identify relationships between different firing patterns, which play important roles in the
information processing.The present study provides novel biological experimental findings regarding complex bifurcation scenarios
from period-1 bursting to period-1 spiking with chaotic firing patterns. These bifurcations were found to be similar to those
simulated using the Hindmarsh-Rose model across two separated chaotic regions. One chaotic region lay between period-1 and
period-2 burstings. This region has not attracted much attention. The other region is a well-known comb-shaped chaotic region,
and it appears after period-2 bursting. After period-2 bursting, the chaotic firings lay in a period-adding bifurcation scenario or in
a period-doubling bifurcation cascade. The deterministic dynamics of the chaotic firing patterns were identified using a nonlinear
prediction method. These results provided details regarding the processes and dynamics of bifurcation containing the chaotic
bursting between period-1 and period-2 burstings and other chaotic firing patterns within the comb-shaped chaotic region. They
also provided details regarding the relationships between different firing patterns in parameter space.

1. Introduction

Nonlinear dynamics have been instrumental in the improve-
ment of human understanding of the dynamics of neural
firing patterns, which have been shown to play important
roles in information processing [1–3]. Chaotic neural firing
patterns have been observed in various nervous systems, and
the possible roles of chaotic firing patterns in nervous system
have been discussed in many studies [4–9]. Bifurcation
scenarios including chaotic and periodic firing patterns have
been simulated in many theoretical neuronal models, which
have provided details regarding the relationships between
different firing patterns in the parameter spaces [10–17].
The dynamics of physiological and pathological neural firing
patterns and the possible roles have been studied using this
knowledge of bifurcation structure of neural firing patterns
[2].

Three-dimensional differential equations containing fast
and slow variables have been used in investigations of
bifurcations and chaos of neural firing patterns [10–15]. The

HR model has often been used to assess the chaos and
bifurcations of both single neurons [11–13] and neuronal
networks [18, 19]. The HR model is composed of three non-
linear ordinary differential equations [11–13, 20], described as
follows:
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Here, the variable 𝑥 represents the membrane potential, and
𝑦 and 𝑧 are the recovery and the slow adaption current,
respectively. The model has eight parameters: 𝑎, 𝑏, 𝑐, 𝑑, 𝐼, 𝑟,
𝑠, and 𝑥

0
. More detailed descriptions of the HR model can

be found in previous studies [11–13, 20]. In the present study,
𝑎 = 1, 𝑏 = 3, 𝑐 = 1, 𝑑 = 5, 𝑠 = 4, and 𝑥

0
= −1.6.
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Figure 1: (Color online) the largest Lyapunov exponent in the 𝑟 × 𝐼 parameter space of the HR model (0.001 < 𝑟 < 0.035, 2.3 < 𝐼 < 3.42).

The largest Lyapunov exponent of firing patterns of the
HR model in the 𝑟 × 𝐼 parameter space is shown in Figure 1.
There exist two separate chaotic regions. The first is the well-
known comb-shaped chaotic region [16, 17, 21–24], shown
in the upper-left corner (𝑟 < 0.016 and 𝐼 > 2.6). The
other is shown in the lower-right corner (𝑟 > 0.016 and
𝐼 < 2.6) between the period-1 and period-2 burstings
[11]. Periodic firing patterns appear around the two chaotic
regions. Almost all chaos simulated in the HR model in
the previous investigations, like that induced by period-
doubling bifurcations and by intermittency, is located within
the comb-shaped region. The complex bifurcation scenario
from period-1 bursting to period-1 spiking was simulated as
parameter 𝑟 decreased or 𝐼 increased across the comb-shaped
chaotic region [11–13, 22]. The complex processes show three
components. First, a bifurcation of bursting patterns took
place. Next, a transition from chaotic bursting to chaotic
spiking was observed. Finally, an inverse period-doubling
bifurcation from period-2 spiking to period-1 spiking was
observed.

Theoretically, bursting and spiking patterns in the HR
model can be distinguished using dissection of the fast and
slow subsystems [25–29]. The first two equations, which
had fast time scales, served as the fast subsystem. The
third equation, which had a slow time scale, served as the
slow subsystem. A classification scheme suitable for defining
many kinds of bursting patterns and distinguishing bursting
patterns from spiking patterns was built based on the combi-
nations of bifurcations in the fast and slow subsystems [25–
29]. In appearance, bursting patterns are often characterized
by alternations between bursts of continuous spikes and
subsequent periods of quiescence, but spiking patterns have
fast spikes without a period of quiescence. For example,
the most obvious characteristic of the transition from the
chaotic bursting to chaotic spiking is a sharp decrease in
the interspike interval (ISI), which corresponds to the period
of quiescence [30–32]. Spiking patterns usually appear in
the region with small 𝑟 value or large 𝐼 value, and bursting
patterns appear at other regions in the 𝑟 × 𝐼 parameter space.
The number 1 in the upper-left corner of Figure 1 represents

period-1 spiking and the other numbers, 1, 2, 3, and 4 in the
lower-left corner, represent period-1, -2, -3, and -4 burstings.

As shown in Figure 1, bifurcation scenarios from period-1
bursting to period-1 spiking across the two separated chaotic
regions, like the behaviors along lines L1, L2, and L3, are
not simulated in the HR model or observed in biological
experiments. In previous biological experiments, which were
performed on neural pacemakers, the bifurcation scenarios
from period-1 bursting to period-1 spiking with chaotic
firings, which locate within the comb-shaped chaotic region,
were observed [32, 33]. These bifurcations did not contain
chaotic bursting between period-1 and period-2 burstings.
Two examples of the chaotic firing between period-1 and
period-2 firings were observed in previous experimental
investigations [34, 35]. One bifurcation scenario terminated
at the period-2 bursting [34]. The other scenario lasted from
period-1 bursting to chaotic bursting to period-2 firing to
period-1 spiking [35]. These two experimental examples did
not contain chaotic firing within the comb-shaped chaotic
region.

In the present study, the experimental neural pacemaker
employed in previous studies served as the experimental
model [32–41]. Biological experimental observations of bifur-
cation scenarios are provided across two separate chaotic
regions, which were similar to those reproduced using the
HR model along lines L1, L2, and L3. The deterministic
dynamics of the chaotic firing patterns were identified using
the nonlinear time series analysis method. The experimental
results demonstrated the existence of bifurcation scenarios
containing two chaotic regions and chaotic burstings between
period-1 and period-2 burstings in the real nervous system,
which established the relationship between the two chaotic
regions and between chaotic and periodic firing patterns in
parameter space.The possible physiological and pathological
roles of the bifurcations and chaos of the neural firing patterns
in the neural pacemaker are discussed.

The rest of this paper is organized as follows. Simula-
tion results of the HR model are reproduced in Section 2.
Section 3 presents the experimental model.The experimental
results are provided in Section 4. Section 5 presents discus-
sion and conclusion.
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Figure 2: Bifurcation processes of the ISI series of firing patterns simulated using the HR model along lines shown in Figure 1 (0.001 < 𝑟 <

0.03). (a) Line L3: 𝐼 = −36 × (𝑟 − 0.0265) + 2.53. (b) Line L2: 𝐼 = −44 × (𝑟 − 0.0265) + 2.53. (c) Line L1: 𝐼 = −50 × (𝑟 − 0.0265) + 2.53.

2. Simulation Results in the HR Model

2.1. Bifurcation Processes from Period-1 Bursting to Period-
1 Spiking. As shown in Figure 1, to explore a bifurcation
scenario from period-1 bursting to period-1 spiking across
two chaotic regions, the parameter 𝑟must be decreased from
a large value to a small one, and 𝐼 must be increased from
a small value to a large one. Three examples of bifurcation
scenarios resembling those along lines L1, L2, and L3 are
provided as representatives to simulate the experimental
results of Section 4. If 𝑟 and 𝐼 are chosen as different
values, bifurcation scenarios similar to or different from the
three examples can be simulated. We do not address other
bifurcation processes.

The bifurcation scenario of example 1 lasts from period-1
bursting to chaotic bursting to period-2 bursting to chaotic
bursting to period-3 bursting to chaotic bursting to period-
4 bursting to chaotic bursting to chaotic spiking to period-2
spiking to period-1 spiking as 𝑟 and 𝐼 change from the lower-
right to the upper-left of the figure along line L3 with the
following equation: 𝐼 = −36 × (𝑟 − 0.0265) + 2.53 (0.001 <

𝑟 < 0.03). The bifurcations of interspike intervals (ISIs)

are shown in Figure 2(a). The thin dashed vertical lines
separate the different chaotic and periodic patterns. The
numbers represent the periods of the periodic firing patterns.
The abbreviation CB represents chaotic bursting and CS
represents chaotic spiking. The bold dashed vertical line
approximately separates the chaotic bursting and chaotic
spiking. The longest ISIs manifest a drastic decrease when
chaotic bursting changed to chaotic spiking.

The bifurcation scenario shown in example 2 resembles
the behavior along line L2 with the following equation: 𝐼 =

−44 × (𝑟 − 0.0265) + 2.53 (0.001 < 𝑟 < 0.03). As 𝑟

and 𝐼 change from the lower-right to upper-left regions,
the detailed processes are from period-1 bursting to chaotic
bursting to period-2 bursting to chaotic bursting to period-
3 bursting to chaotic bursting to chaotic spiking to period-2
spiking to period-1 spiking, as shown in Figure 2(b).

The last example of bifurcation is similar to the behavior
observed along line L1 with the following equation: 𝐼 =

−50 × (𝑟 − 0.0265) + 2.53 (0.001 < 𝑟 < 0.03). As 𝑟

decreases, the processes are from period-1 bursting to chaotic
bursting to period-2 bursting to chaotic bursting to chaotic
spiking to period-2 spiking to period-1 spiking, as shown in
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Figure 2(c). The transition from chaotic bursting to chaotic
spiking manifested a less drastic decrease than L3 and L2. No
distinction was drawn between bursting and spiking patterns
only according to the ISI values, both of which were here
labeled as chaotic firing because the differences between
bursting and spiking pattern are not the focus of the present
study.

2.2. Chaotic Firing Lying between Period-1 Bursting and
Period-2 Bursting. The spike trains of the chaotic bursting
(𝐼 = 2.53 and 𝑟 = 0.0245) between period-1 bursting and
period-2 bursting manifested irregular characteristics, as
shown in Figure 3(a). The first return map of the ISI series
exhibited a deterministic structure, as depicted in Figure 3(b).
The deterministic chaotic firings within the comb-shaped
chaotic region were examined in previous studies [11–13]. In
the present study, no other chaotic firings were simulated in
the HR model.

3. Experimental Model

3.1. Experimental Model. Bennet and Xie developed an ani-
mal model of chronic constriction injury (CCI) of the rat
sciatic nerve [42]. The CCI model appears to reproduce
many features of neuropathic pain disorders and can generate
spontaneous neural firing [43]. This model has been adopted
as a pacemaker to investigate the bifurcation and chaos of
firing patterns [32–41].

An experimental neural pacemaker was formed at the site
of injury of a rat sciatic nerve [42]. Surgery was performed to
produce a pacemaker based on an injury induced by chronic
ligature in adult male Sprague-Dawley rats (150–300 g). After
a survival time of 6–14 days, the site of injurywas exposed and
perfused continuously with 34∘C Krebs solution, in which a
controlling extra-cellular calcium concentration ([Ca2+]o) is
1.2mmol/L (mM). The spike trains of the spontaneous firing
generated in themembrane at the site of injury were recorded
from the individual fibers ending at the site of injury using a
PowerLab system (ADInstruments, Australia) at a sampling
frequency of 10.0 kHz. The neural pacemaker was used to
investigate the bifurcations of firing patterns in a number of
studies by adjusting the solution with different extra-cellular
ionic concentration. A neural pacemaker often generates
period-1 bursting patterns under controlled conditions, and
previous studies have shown several bifurcations beginning
from period-1 bursting with decreasing [Ca2+]o [32–41].

In the present study, a neural pacemaker capable of
generating period-1 bursting under controlled conditions
was selected. The solution was replaced with 0mM [Ca2+]o.
Although the replacement is sudden, the changes in the ion
concentrations on the membrane of the neural pacemaker
are gradual and continuous. The membrane dynamics can
be changed slowly enough to facilitate evaluation of the
transition and fast enough to produce a firing pattern dif-
ferent from the initial pattern within a finite time span. The
protocol to adjust the bifurcation parameter is a practical
and feasible method that has already seen considerable use in

biological experimentation involving neural pacemakers and
in investigations of other nervous systems [44–46].

3.2. Parameter Correspondence between the HR and Exper-
imental Models. From a physiological perspective, multiple
ionic currents including sodium, potassium, and calcium
currents participate in the electrophysiology of nervous
system. Potassium current that can induce the decrease
or repolarization of the membrane potential participates
in the generation of action potential through cooperation
and competition with sodium current, which can induce
the increase or depolarization of the membrane potential.
Calcium current is a slow factor and can adjust the interval
of continuous action potentials, that is, the ISIs, through the
calcium-dependent potassium current which is related to the
calcium concentration and/or the conductance of calcium-
dependent potassium channel. The modulation in [Ca2+]o is
a common method used to adjust neural firing patterns.

To a certain extent, [Ca2+]o can adjust the ISIs of neural
pacemakers, corresponding to the parameter 𝑟 related to
the slow component of the HR model [47, 48]. Decreasing
[Ca2+]o induced decreases in calcium-dependent potassium
current, which increased the membrane potential [47, 48].
These effects were very similar to those of increasing 𝐼 in the
HRmodel. In this way, decreasing [Ca2+]o induced decreases
in 𝑟 and increases in 𝐼 in the HRmodel.Therefore, 𝑟 and 𝐼 are
changed dependently in Section 2 to simulate the decrease of
[Ca2+]o in the experiment.

4. Experimental Results

4.1. Overview of Experimental Bifurcations. In previous stud-
ies, most of experimental neural pacemakers exhibited
bifurcation processes not invovling from period-1 bursting
to period-1 spiking and only some pacemakers generated
bifurcations from period-1 bursting to period-1 spiking [32–
41]. In the present study, forty-nine neural pacemakers
generated bifurcations from period-1 bursting to period-1
spiking and 152 pacemakers manifested bifurcation processes
not involving spiking patterns but including period-doubling
to chaotic bursting, period-adding bifurcations with chaotic
bursting, and period-adding sequences with stochastic burst-
ing patterns. Some 23 out of 49 pacemakers manifested
complex bifurcations from period-1 bursting to period-1
spiking with chaotic bursting. Bifurcation processes from
period-1 bursting to period-1 spiking with chaotic bursting
between period-1 bursting and period-1 spiking and chaotic
firing patterns within the comb-shaped chaotic region were
observed in 5 out of these 23 pacemakers. Two, two, and one
out five neural pacemakers generated bifurcation processes
similar to those simulated in theHRmodel along lines L3, L2,
and L1, respectively. Another 14 out 152 pacemakers generated
the bifurcation processes involving chaotic bursting between
period-1 and period-2 burstings. The present study focused
on the 5 bifurcation processes from period-1 bursting to
period-1 spiking with chaotic bursting between period-1
bursting and period-1 spiking and chaotic firing patterns
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Figure 3: Chaotic firing pattern between period-1 bursting and period-2 bursting simulated in the HR model with 𝑟 = 0.0245 and 𝐼 = 2.53.
(a) Spike trains. (b) The first return map of the ISI series.

within the comb-shaped chaotic region, and 3 examples are
provided.

4.2. Three Examples of Bifurcation Scenarios. The bifurcation
process of example 1 was similar to that simulated in the
HR model along L3. The details involve period-1 bursting
to chaotic bursting to period-2 bursting to chaotic burst-
ing to period-3 bursting to chaotic bursting to period-4
bursting to chaotic bursting to chaotic spiking to period-
2 spiking to period-1 spiking, as shown in Figure 4(a). The
thin dashed vertical lines separate the different chaotic and
periodic patterns. The numbers represent the periods of
the periodic firing patterns. The abbreviation CB represents
chaotic bursting and CS represents chaotic spiking. The
process from period-2 bursting to chaotic bursting to period-
3 bursting to chaotic bursting to chaotic bursting is illustrated
in Figure 4(b), manifesting a period-adding sequence with
chaos.The transition from chaotic bursting to chaotic spiking
exhibited a drastic decrease in the longest ISIs, as shown
by the arrow and bold line in Figure 4(c). The first return
map of ISI series of chaotic bursting between period-1 and
period-2 burstings was similar to that of theHRmodel shown
in Figure 3(b), as illustrated in Figure 5(a). The first return
maps of ISI series of chaotic bursting between period-2 and
period-3 burstings, the chaotic bursting before the drastic
transition, and the chaotic spiking after the drastic transition
are given in Figures 5(b), 5(c), and 5(d), respectively. All of the
return maps manifested deterministic structures. The size of
the chaotic spiking is much smaller than that of the chaotic
bursting because of the drastic decrease in ISI values when
chaotic bursting changed to chaotic spiking.

Example 2 of bifurcation scenario from period-1 bursting
to period-1 spiking observed from a pacemaker with decreas-
ing [Ca2+]o was shown in Figure 6(a). In detail, the process
lasted from period-1 bursting to chaotic bursting to period-2
bursting to chaotic bursting to period-3 bursting to chaotic
bursting to chaotic spiking to period-2 spiking to period-1
spiking. The thin dashed vertical lines separate the different
chaotic and periodic patterns. The numbers represent the

periods of the periodic firing patterns. The abbreviation CB
represents chaotic bursting and CS represents chaotic spik-
ing. The bold dashed line distinguishes the chaotic bursting
and spiking patterns. The process from chaotic bursting
to chaotic spiking is shown in Figure 6(b). The bifurcation
scenario manifested process similar to those simulated in
the HR model as 𝑟 decreased along line L2, as shown in
Figure 2(b). The first return map of ISI series of chaotic
bursting between period-1 bursting and period-2 bursting is
shown in Figure 7(a), similar to that simulated using the HR
model. The first return map of ISI series of chaotic bursting
after period-2 bursting manifested a deterministic structure,
as shown in Figure 7(b). The first return map of ISI series
of chaotic spiking also exhibited a deterministic structure, as
depicted in Figure 7(c).

The bifurcation process shown in example 3 lasts from
period-1 bursting to chaotic-bursting to chaotic spiking to
period-2 spiking to period-1 spiking, as shown in Figure 8(a).
The dashed vertical lines separate the different chaotic and
periodic patterns. The numbers represent the periods of the
periodic firing patterns. The chaotic firing pattern included
the chaotic bursting and spiking, similar to that shown
in Figure 2(c). The result shows that the period-adding
sequences resemble those simulated with the HR model
with decreasing 𝑟 along line L1. The first return map of ISI
series of the chaotic bursting between period-1 and period-
2 burstings manifested only a part of that of HR model
shown in Figure 3(b), which was similar to that observed
in a previous study [34], as illustrated in Figure 8(b). The
first return map of the chaotic firing lying between period-
2 bursting and period-2 spiking exhibited a deterministic
structure, as shown in Figure 8(c).

4.3. Deterministic Characteristics of the Chaotic Firing Pat-
terns. The deterministic property of chaotic firing patterns
can be estimated by nonlinear time series analysis method
[34, 37, 49, 50]. In this study, the normalized prediction
error (NPE)was computed using the simple nearest-neighbor
method [49, 50] with the following algorithm.
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Figure 4: Example 1 of bifurcation process from period-1 bursting to period-1 spiking. (a) In detail, the process lasts from period-1 bursting to
chaotic bursting to period-2 bursting to chaotic bursting to period-3 bursting to chaotic bursting to period-4 bursting to chaotic bursting to
chaotic spiking to period-2 spiking to period-1 spiking. (b) Detail of Figure 4(a), which involves period-adding bifurcation with chaos from
period-2 bursting to chaotic bursting after period-4 bursting. (c) Detail of Figure 4(a), which involves chaotic bursting to chaotic spiking to
period-2 spiking.

With a reconstruction dimension 𝑚, a time series 𝑡
𝑖
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is the ℎth step prediction error for point 𝑉
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points, the normalized prediction error (NPE) is defined as
follows:
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𝑛+ℎ

)
2

)
1/2

,

(2)

where 𝑡 is the average of time series 𝑡
𝑖
. From the definition, a

value of NPE much less than 1.0 means that there is linear or
nonlinear predictability in the time series beyond the baseline

prediction of the series mean. In general, the NPE of raw
data and surrogate data are compared. The surrogate data
generated by random shuffle method, shuffling the original
sequence randomly, have the same probability distribution as
the original data, but the deterministic temporal structures
within ISI series are broken [51].TheNPEvalue of the original
chaotic ISI series is much less than 1 in any short-term
prediction and approaches 1 in the long term. However, the
surrogate data is always approximately equal to 1, showing the
deterministic property of the original series.

All experimental chaotic firings exhibited a short-term
prediction when 𝑚 = 3, 4, or 5 and 𝛽 = 0.5%, 1%, or
2%. Four examples are provided as representative. The NPE
(𝑚 = 4 and 𝛽 = 1%) of the chaotic bursting between period-1
and period-2 burstings of example 1 (Figure 5(a)), the chaotic
bursting between period-2 and period-3 burstings of example
2 (Figure 7(b)), the chaotic spiking of example 2 (Figure 7(c)),
the chaotic firing pattern between period-1 and period-2
burstings of example 3 (Figure 8(b)), and the corresponding
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Figure 5: The first return map of ISI series of chaotic firing within the bifurcation scenario shown in Figure 4. (a) Chaotic bursting lying
between period-1 and period-2 bursting patterns. (b) Chaotic bursting between period-2 and period-3 bursting patterns. (c) Chaotic bursting
after period-4 bursting. (d) Chaotic spiking.

surrogate data (mean of 10 realizations) are shown in Figures
9(a)–9(d). The original chaotic firing exhibited a short-term
prediction and the surrogate data manifested no predication.
The results showed that the experimental chaotic firing
patterns possessed deterministic dynamics.

5. Conclusion and Discussion

Bifurcation scenarios containing chaotic bursting between
period-1 and period-2 burstings and chaotic firings appear-
ing after period-2 bursting in period-adding sequences or
period-doubling cascade were observed in biological exper-
iments performed using different neural pacemakers. The
deterministic dynamics within the chaotic bursting were
identified. The experimental results manifested characteris-
tics that were very similar to those of the HR model in
parameter space. These characteristics included two chaotic
regions; one is the well-known comb-shaped region appear-
ing after period-2 bursting and the other is the chaotic region
between period-1 and period-2 burstings.The results showed

the chaotic firing pattern between period-1 and period-2
bursting and bifurcation scenarios to contain two chaotic
regions, such as those observed in real nervous systems.With
exception of the two separated chaotic regions, the process
that transitioned from period-1 bursting to period-1 spiking
through complex processes should be emphasized. Most
bifurcation processes observed from the neural pacemakers
terminated at a certain firing pattern before period-1 spiking
[36, 37, 40, 41]. The complex bifurcation processes from
period-1 bursting to period-1 spiking in the present paper
contained the chaotic bursting lying between period-1 and
period-2 burstings, different from those observed in our
previous studies [32, 33], wherein no chaotic bursting lying
between period-1 and period-2 burstings was identified. The
experimental result provides novel examples of complex
bifurcation process from period-1 bursting to period-1 spik-
ing. The experimental observations showed the relationships
between chaotic burstings lying within two chaotic regions
and between bursting and spiking patterns, which is impor-
tant for the identification of different chaotic firing patterns
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Figure 6: Example 2 of bifurcation scenario as observed from a pacemaker with decreasing [Ca2+]o. (a) Bifurcation scenario from period-1
bursting to period-1 spiking. In detail, the process is from period-1 bursting to chaotic bursting to period-2 bursting to chaotic bursting to
period-3 bursting to chaotic bursting to chaotic spiking to period-2 spiking to period-1 spiking. (b) Part of Figure 6(a); the process is from
chaotic bursting to chaotic spiking.
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Figure 7:The first returnmaps of ISI series of chaotic firings within the bifurcation scenario as shown in Figure 6(a). (a)The chaotic bursting
between period-1 and period-2 bursting patterns. (b) The chaotic bursting appearing after period-3 bursting patterns. (c) Chaotic spiking.
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Figure 8: Example 3 of bifurcation scenario and firing patterns observed from a pacemaker with decreasing [Ca2+]o. (a) Bifurcation scenario
from period-1 bursting to chaotic bursting to period-2 bursting to chaotic firing to period-2 spiking to period-1 spiking. (b) The first return
map of ISI series of the chaotic firing between period-1 and period-2 burstings. (c) The first return map of ISI series of the chaotic firing.

and the relationships between periodic and chaotic firing
patterns in parameter space.

As studied in a previous study [52], neural firing patterns
existing within a short parameter range have become blurred
and disappeared in the bifurcations, influenced by noise
of a suitable intensity. Considering that noise is inevitable
in the real nervous system, the firing patterns existing in
a narrow parameter region, such as the period-4 bursting
proceeding to period-2 bursting in Figure 2, disappeared in
the experimental bifurcations, as shown in Figures 4(a), 6(a),
and 8(a). Based on such a viewpoint, we can conclude that the
experimental bifurcation closely matches those reproduced
by the HR model. In addition, the chaotic bursting between
period-1 bursting and period-2 bursting in example 3 was
similar to the one observed in a previous study [34] but it
was different from those in another previous study [35] and in
examples 1 and 2. Experiments should be performed onmore
neural pacemakers to further identify the dynamics of chaos
between period-1 and period-2 burstings.

Compared with many simulation results about the bifur-
cations and chaos of the HR model, there existed less theo-

retical investigations of the HR model. The generation of
the chaotic bursting and the transition from bursting to
spiking in excitable membrane models were analyzed in a
theoretical model resembling HR model by Terman [53,
54]. The different cases of period-adding bifurcations were
distinguished and analyzed in both of the original HR
model and a map reduced from the HR model [11–13]. The
mechanism of the transition from the chaotic bursting to
spiking was analyzed in several references [21, 30, 31, 54, 55],
suggested as a homoclinic reinjection to an unstable chaotic
saddle, a continuous interior crisis or trajectory separatrix
in the manifolds of the equilibrium point. The Floquet
multipliers of periodic neural firing patterns were calculated
numerically with a modified shooting method, and period-
doubling bifurcation point of bursting and spiking patterns
and the tangent bifurcation point from period-3 bursting
to chaotic bursting were identified in our previous study
[56]. Codimensional-2 bifurcation analysis was performed to
investigate the dynamics of the period-adding bifurcations
[57]. The generation of the chaotic bursting lying between
period-1 and period-2 burstings was suggested to be caused
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Figure 9: NPE of the experimental chaotic firings. (a) The chaotic bursting between period-1 and period-2 burstings of example 1
(Figure 5(a)). (b) The chaotic bursting lying between period-2 and period-3 burstings of example 2 (Figure 7(b)). (c) The chaotic spiking
of example 2 (Figure 7(c)). (d) The chaotic bursting lying between period-1 and period-2 burstings of example 3 (Figure 8(b)). Lines with
squares show the original chaotic firing pattern and lines with triangles show the surrogate data.

by a crisis by Holden and Fan [11], needed to be further
investigated.

Neural firing patterns play important roles in neural
information processing in different nervous systems [1–
3]. Chaotic firing patterns have been observed in different
nervous systems and the roles of chaotic behaviors have
been discussed [32–41]. The CCI model has been widely
used to investigate abnormal spontaneous pain [42, 43, 47,
48, 52]. Neural firing patterns were found to participate in
the abnormal spontaneous pain. The responses of chaotic
bursting to an external electronic stimulation have been
reported as a critical sensitivity [9]. The details of the
biological role of periodic and chaotic firing patterns of the
CCI model may be investigated in the future using very
difficult experimental designs through recording of animal
behaviors, such as spontaneous foot lifting, at the same time
as neural firing patterns [58].
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