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A low velocity impact between a rigid sphere and transversely isotropic strain-hardening plate supported by a rigid substrate is
generalized to the concept of noninteger derivatives order. A brief history of fractional derivatives order is presented.The fractional
derivatives order adopted is in Caputo sense.The new equation is solved via the analytical technique, the Homotopy decomposition
method (HDM). The technique is described and the numerical simulations are presented. Since it is very important to accurately
predict the contact force and its time history, the three stages of the indentation process, including (1) the elastic indentation, (2)
the plastic indentation, and (3) the elastic unloading stages, are investigated.

1. Introduction

The concept of noninteger order derivative has been inten-
sively applied in many fields. It is worth nothing that the
standard mathematical models of integer-order derivatives,
including nonlinear models, do not work adequately in many
cases. In the recent years, fractional calculus has played a very
important role in various fields such asmechanics, electricity,
chemistry, biology, economics, notably control theory, signal
image processing, and groundwater problems; an excellent
literature of this can be found in [1–9].

However, there exist a quite number of these fractional
derivative definitions in the literature which range from
Riemann-Liouville to Jumarie [10–17]. The real problem that
mathematicians face is that analytical solutions of these
equations with noninteger order derivatives are usually not
available. Since only limited classes of equations are solved
by analytical means, numerical solution of these nonlin-
ear partial differential equations is of practical importance.

Though computer science is growing very fast, and numerical
simulation is applied everywhere, nonnumerical issues will
still play a large role [18–20]. In this paper a possibility of
generalization of a low velocity impact between a rigid sphere
and transversely isotropic strain-hardening plate supported
by a rigid substrate that is generalized to the concept of
noninteger derivatives order will be investigated.

There are many physical situations in which a thin
plate made of strain-hardening materials resting on a rigid
substrate is impacted by a rigid indenter. For example, such
a phenomenon may be caused by the impact of hailstones,
run way debris, or small stones on the panels of a vehicle
or aircraft [21]. Although low velocity impact of a plate
by a rigid indenter has been investigated by numerous
researchers, the strain-hardening behaviour of the plate
material has not been included in the analytical studies
yet. Ollson [22] presented a one parameter nondimensional
model for small mass impacts. Yigit andChristoforou [23, 24]
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have investigated the elastoplastic indentation phenomenon.
They assumed the plate material to exhibit perfectly plastic
behaviour and considered three stages for the indentation
process: Hertzian elastic contact, elastic-perfectly plastic
indentation, and Hertzian elastic unloading. Christoforou
andYigit [25, 26] used scaling rules for establishing a dynamic
similarity between behaviours of the models and prototypes
to present a model based on a linearized contact law with
two nondimensional parameters that can be used for small
as well as large mass impacts. In follow-up work [27], they
obtained the nondimensional governing parameters of the
low velocity impact response of composite plates through
dimensional analysis and simple lumped-parameters models
based on asymptotic solutions.

In this paper, approximated solutions for the generalized
version of a low velocity impact between a rigid sphere
and transversely isotropic strain-hardening plate supported
by a rigid substrate will be obtained via the relatively new
analytical method HDM.

The remaining of this paper is structured as follows:
in Section 2, we present a brief history of the fractional
derivative order and their properties. We present the basic
ideal of the homotopy decomposition method for solving
high order nonlinear fractional partial differential equations,
its convergence and stability.Wepresent the application of the
HDM for system fractional nonlinear differential equations
under investigation and numerical results in Section 4. The
conclusions are then given in Section 5.

2. Brief History of Definitions and Properties

There exists a vast literature on different definitions of frac-
tional derivatives. The most popular ones are the Riemann-
Liouville and the Caputo derivatives. For Caputo, we have
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For the case of Riemann-Liouville we have the following
definition:
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Guy Jumarie proposed a simple alternative definition to
the Riemann-Liouville derivative:
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For the case of Weyl we have the following definition:

𝐷
𝛼

𝑥
(𝑓 (𝑥))=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

∞

𝑥

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑡) 𝑑𝑡. (4)

With the Erdelyi-Kober type we have the following
definition:
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Here
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With Hadamard type, we have the following definition:
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With Riesz type, we have the following definition:
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We will not mention the Grunward-Letnikov type here
because it is in series form [28]. This is not more suitable for
analytical purpose.

In 1998, Davison and Essex [16] published a paper which
provides a variation to the Riemann-Liouville definition
suitable for conventional initial value problems within the
realm of fractional calculus [28]. The definition is as follows:
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In an article published by Coimbra [17] in 2003, a
variable-order differential operator is defined as follows:
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2.1. Advantages and Disadvantages

2.1.1. Advantages [28]. It is very important to point out that
all these fractional derivative order definitions have their
advantages and disadvantages; here we will include Caputo,
variational order, Riemann-Liouville Jumarie, and Weyl
[28]. We will examine first the variational order differential
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operator. Anomalous diffusion phenomena are extensively
observed in physics, chemistry, and biology fields [19, 29].
To characterize anomalous diffusion phenomena, constant-
order fractional diffusion equations are introduced and have
received tremendous success. However, it has been found
that the constant-order fractional diffusion equations are
not capable of characterizing some complex diffusion pro-
cesses, for instance, diffusion process in inhomogeneous or
heterogeneous medium [30]. In addition, when we consider
diffusion process in porous medium, if the medium structure
or external field changes with time, in this situation, the
constant-order fractional diffusion equation model cannot
be used to well characterize such phenomenon [31, 32]. Still
in some biology diffusion processes, the concentration of
particles will determine the diffusion pattern [33, 34]. To
solve the above problems, the variable-order (VO) fractional
diffusion equation models have been suggested for use [34].

With the Jumarie definition which is actually the mod-
ified Riemann-Liouville fractional derivative, an arbitrary
continuous function needs not to be differentiable; the
fractional derivative of a constant is equal to zero and
more importantly it removes singularity at the origin for
all functions for which 𝑓(0) = constant, for instant, the
exponentials functions and Mittag-Leffler functions [28].

With the Riemann-Liouville fractional derivative, an
arbitrary function needs not to be continuous at the origin
and it needs not to be differentiable.

One of the great advantages of the Caputo fractional
derivative is that it allows traditional initial and boundary
conditions to be included in the formulation of the problem
[5, 12]. In addition its derivative for a constant is zero.

It is customary in groundwater investigations to choose a
point on the centreline of the pumped borehole as a reference
for the observations and therefore neither the drawdown nor
its derivatives will vanish at the origin, as required [13]. In
such situationswhere the distribution of the piezometric head
in the aquifer is a decreasing function of the distance from the
borehole, the problem may be circumvented by rather using
the complementary, or Weyl, fractional order derivative [13].

2.1.2. Disadvantages [28]. Although these fractional order
derivatives display great advantages, however, they are not
applicable in all the situations. We will begin with the
Liouville-Riemann type.

The Riemann-Liouville derivative has certain disadvan-
tages when trying to model real-world phenomena with
fractional differential equations [28]. The Riemann-Liouville
derivative of a constant is not zero. In addition, if an arbitrary
function is a constant at the origin, its fractional deriva-
tion has a singularity at the origin for instant exponential
and Mittag-Leffler functions. Theses disadvantages reduce
the field of application of the Riemann-Liouville fractional
derivative.

Caputo’s derivative demands higher conditions of regu-
larity for differentiability: to compute the fractional derivative
of a function in the Caputo sense, we must first calculate
its derivative. Caputo derivatives are defined only for differ-
entiable functions while functions that have no first-order

derivative might have fractional derivatives of all orders less
than one in the Riemann-Liouville sense.

With the Jumarie fractional derivative, if the function is
not continuous at the origin, the fractional derivative will not
exist, for instance, what will be the fractional derivative of
ln(𝑥) and many other ones [28].

Variational order differential operator cannot easily be
handled analytically. Numerical approach is some time needs
to deal with the problem under investigation.

Although Weyl fractional derivative found its place in
groundwater investigation, it is still displaying a signifi-
cant disadvantage; because the integral defining these Weyl
derivatives is improper, greater restrictions must be placed
on a function [28]. For instance, the Weyl derivative of a
constant is not defined. On the other hand general theorems
about Weyl derivatives are often more difficult to formulate
and prove than are corresponding theorems for Riemann-
Liouville derivatives.

3. Method Description [35, 36]

To illustrate the basic idea of this method, we consider a
general nonlinear nonhomogeneous fractional partial differ-
ential equation with initial conditions of the following form:
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operator, 𝑓 is a known function, 𝑁 is the general nonlinear
fractional differential operator, and 𝐿 represents a linear
fractional differential operator. The method first step here is
to transform the fractional partial differential equation to the
fractional partial integral equation by applying the inverse
operator 𝜕𝛼/𝜕𝑡𝛼 on both sides of (11) to obtain
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We obtain
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In the homotopy decomposition method, the basic
assumption is that the solutions can be written as a power
series in 𝑝
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The homotopy decomposition method is obtained by the
graceful coupling of homotopy technique with Abel integral
and is given by
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Comparing the terms of same powers of 𝑝 gives solutions
of various orders with the first term

𝑈
0 (𝑥, 𝑡) = 𝑇 (𝑥, 𝑡) . (20)

4. Application of the Method to Solve the
Governing Differential Equations

In this section, the analytical technique described in Section 3
is employed to obtain the solutions of the governing differen-
tial equations in each of the mentioned three contact stages.
The derivation of this equation can be found in [37].

4.1. Solution of the Governing Differential Equation in the
Elastic Indentation Phase. The governing equation under
investigation here is given as follows:

𝜕
𝛽

𝑡
𝛼 (𝑡) +

𝜋𝐸
𝑧
𝑅

(1 − V
𝑧𝑟
V
𝑟𝑧
) ℎ𝑚

𝛼
2
(𝑡) = 0, 1 < 𝛽 ≤ 2. (21)

Subject to the initial conditions
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0
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Here, 𝐸 and V are Young’s modulus and Poisson’s ratio
of the plate, respectively. 𝛼(𝑡) is elastic indentation phase; 𝑚
and 𝑉0 are the mass of the indenter and the initial velocity,
respectively; ℎ is the thickness of the plate and 𝑅 is the radius
of the spherical indenter [38, 39].

Now following the description of the HDM, we arrive at
the following equation:
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(23)

Comparing the terms of the same power of 𝑝 we arrive
at the following integral equations, which are very easier to
compute:

𝑝
0
: 𝛼0 (𝑡) = 𝑉0𝑡

𝑝
1
: 𝛼1 (𝑡) = −

𝛾

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

𝛼
2

0
𝑑𝜏

...

𝑝
𝑛
: 𝛼
𝑛 (𝑡) = −

𝛾

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

𝑛−1

∑

𝑗=0

𝛼
𝑗
𝛼
𝑛−𝑗−1

𝑑𝜏, 𝑛 ≥ 2.

(24)

Integrating the above we obtain the following solutions:
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𝛼
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In the same manner one can obtain the rest of the
components. But in this case, few terms were computed and
the asymptotic solution is given by

𝛼 (𝑡) = 𝛼
0 (𝑡) + 𝛼

1 (𝑡) + 𝛼
2 (𝑡) + 𝛼

3 (𝑡) +𝛼4 (𝑡) + 𝛼
5 (𝑡) + ⋅ ⋅ ⋅ .

(26)

Remark 1. Equation (21) was solved in [37] via the homotopy
perturbation method for = 2. In the HPM, the initial guess
or first component of the series solution may not be unique,
whereas with the HDM the first component is uniquely
defined as the Taylor series expansion of order 𝑛 − 1 (𝑛 is the
order of the partial differential equation). This is one of the
advantages that the HDM has over HPM.

The contact force in the elastic indentation phase may be
interpreted in terms of the indentation value [37]

𝐹 (𝛼 (𝑡)) = 𝛾𝛼
2
(𝑡) . (27)
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Approximate solution for five first components

Figure 1: Approximate solution (26) of the governing differential
equation in the elastic indentation phase for 𝛽 = 1.9.
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Figure 2: Approximate solution (26) of the governing differential
equation in the elastic indentation phase for 𝛽 = 2.

Figures 1–6 present the approximate solution for 𝑅 =

0.008m,𝑚 = 10
−2, 𝑉
0
= 5mm/s, ℎ = 0.0003, V

𝑟𝑧
= V
𝑧𝑟

= 0.3,
and 𝐸 = 75GPa.The approximate solutions of main problem
have been depicted in Figures 1, 2, 3, 4, 5, and 6 which plotted
according to different 𝛽 values as function of time for a fixed
𝑥 and as function of space and time.
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Figure 3: Approximate solution of the contact force in the elastic
indentation phase (27) with 𝛽 = 1.9.
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Figure 4: Approximate solution of the contact force in the elastic
indentation phase (27) with 𝛽 = 2.

4.2. Solution of the Governing Differential Equation in the
Plastic Indentation Phase. The governing equation under
investigation here is given as follows.

𝑚
𝑖
𝜕
𝛽

𝑡
𝛼 (𝑡) + 2𝜋𝑅𝑆

𝑦
[2𝛼 (𝑡) − 𝛼 (𝑡

𝑐𝑟
)]

+
𝑃𝑧𝜋𝑅

(1 − V
𝑟𝑧
V
𝑧𝑟
) ℎ

(𝛼 (𝑡) − 𝛼 (𝑡
𝑐𝑟
))
2
, 1 < 𝛽 ≤ 2.

(28)
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Figure 5: Surface showing the approximate solution of the govern-
ing differential equation in the elastic indentation phase equation
(21) for 𝛽 = 1.9.
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Figure 6: Approximate solution of the contact force in the elastic
indentation phase equation (27) for 𝛽 = 2.

Subject to the initial conditions

𝛼 (𝑡
𝑐𝑟) = 𝛼

𝑐𝑟
; 𝜕

𝑡
𝛼 (𝑡𝑐𝑟) = 𝑉

𝑐𝑟
. (29)

Here, 𝑆
𝑦 is the yield stress, 𝑃𝑧 is the slope of the stress-

strain curve in the plastic region and it may be defined
as 𝑃𝑧 = 𝑛𝐸𝑧, with 0 ≤ 𝑛 ≤ 1. Therefore, 𝑛 may be
considered as a strain-hardening index. 𝑁 = 0 denotes a
perfectly plastic behavior, whereas 𝑛 = 1 represents an elastic
material behaviour. By increasing 𝑛 from 0 to 1, behaviour of
the material approaches elastic behaviour. In addition, initial
conditions of this phase or the initial velocity correspond to
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the values attained at the critical indentation at the end of the
elastic indentation stage based on (26). For simplicity let

𝑎 =

4𝜋𝑅𝑆
𝑦

𝑚𝑖

−
2𝜋𝑃
𝑧
𝑅𝛼
𝑐𝑟

(1 − V
𝑟𝑧
V
𝑧𝑟
) ℎ𝑚
𝑖

, 𝑏 =
𝑃
𝑧
𝜋𝑅

𝑚
𝑖
(1 − V

𝑟𝑧
V
𝑧𝑟
) ℎ

,

𝑐 =
𝑃𝑧𝜋𝑅

𝑚
𝑖
(1 − V

𝑟𝑧
V
𝑧𝑟
) ℎ

𝛼 (𝑡
𝑐𝑟
)
2
.

(30)

Such that (28) can be reduced to

𝜕
𝛽

𝑡
𝛼 (𝑡) + 𝑎𝛼 (𝑡) + 𝑏𝛼 (𝑡)

2
+ 𝑐 = 0, 1 < 𝛽 ≤ 2. (31)

Employing the HDM, we obtain the following integral
equations:

𝛼
0 (𝑡) = 𝑡𝑉

𝑐𝑟
,

𝛼
1 (𝑡) = −

1

Γ (𝛽)
∫

𝑡

𝑡
𝑐𝑟

(𝑡 − 𝜏)
𝛽−1

[𝑎𝛼
0 (𝜏) + 𝑏𝛼

2

0
(𝜏) + 𝑐] 𝑑𝜏,

𝛼
1 (𝑡𝑐𝑟) = 𝜕𝑡𝛼1 (𝑡𝑐𝑟) = 0,

𝛼𝑛 (𝑡) = −
1

Γ (𝛽)
∫

𝑡

𝑡
𝑐𝑟

(𝑡 − 𝜏)
𝛽−1

× [

[

𝑎𝛼
𝑛−1 (𝜏) + 𝑏

𝑛−1

∑

𝑗

𝛼
𝑗 (𝜏) 𝛼𝑛−𝑗−1 (𝜏)

]

]

𝑑𝜏,

𝛼
𝑛
(𝑡
𝑐𝑟
) = 𝜕
𝑡
𝛼
𝑛
(𝑡
𝑐𝑟
) = 0, 𝑛 ≥ 0.

(32)

Integrating the above we arrived at the following:

𝛼
0 (𝑡) = 𝑡𝑉

𝑐𝑟
,

𝛼
1 (𝑡) = − ((𝑡 − 𝑡

𝑐𝑟
)
𝛽
(𝑐 (1 + 𝛽) (2 + 𝛽) + (𝑡 − 𝑡

𝑐𝑟
)

× 𝑉
0
(2𝑏 (𝑡 − 𝑡

𝑐𝑟
) 𝑉
0
+ 𝑎 (2 + 𝛽)) ))

× (Γ (3 + 𝛽))
−1
,

𝑎
2 (𝑡) =

(𝑡 − 𝑡𝑐𝑟)
2𝛽

Γ (1 + 2𝛽) Γ (2 + 2𝛽) Γ (3 + 2𝛽) Γ (4 + 2𝛽)

× (𝑎𝑐Γ (2 + 2𝛽) Γ (3 + 2𝛽) Γ (4 + 2𝛽)+ 𝑡𝑉
0
Γ (1+2𝛽)

× ((𝑎
2
+ 2𝑏𝑐 (1 + 𝛽)) Γ (3 + 2𝛽) Γ (4 + 2𝛽)

+ 2𝑏 (𝑡 − 𝑡
𝑐𝑟
) 𝑉
0
(3 + 𝛽) Γ (2 + 2𝛽)

× (2𝑏 (𝑡 − 𝑡
𝑐𝑟
) 𝑉
0
Γ (3 + 2𝛽)

+𝑎Γ (4 + 2𝛽) ))) .

(33)

Using the package Mathematica, in the same manner one
can obtain the rest of the components. But in this case, few
terms were computed and the asymptotic solution is given by

𝛼 (𝑡) = 𝛼
0 (𝑡) + 𝛼

1 (𝑡) + 𝛼
2 (𝑡) + 𝛼

3 (𝑡) +𝛼4 (𝑡) + 𝛼
5 (𝑡) + ⋅ ⋅ ⋅ .

(34)

4.3. Solution of the Governing Differential Equation of the
Unloading Phase. The governing equation of motion of the
indenter mass in the unloading phase under investigation
here is given as follows:

𝜕
𝛽

𝑡
𝛼 (𝑡) +

𝜋𝑅𝐸
𝑧

(1 − V𝑟𝑧V𝑧𝑟) ℎ
(𝛼
2
(𝑡) − (1 − 𝑛) (𝛼𝑚 − 𝛼𝑐𝑟)

2
) = 0,

1 < 𝛽 ≤ 2.

(35)

Subject to the initial conditions

𝛼 (𝑡
𝑚
) = 𝛼
𝑚
, 𝜕

𝑡
𝛼 (𝑡
𝑚
) , (36)

where 𝛼𝑚 and 𝑡𝑚 are the maximum indentation value and
its relevant occurrence time, respectively. At the maximum
indentation time, the velocity of the indenter becomes zero.
Therefore, the values corresponding to this time may be used
as initial conditions for the unloading stage [37].

Initial conditions of this phase may be obtained from
solutions of the previous stage at the time of the maximum
indentation. The velocity of the indenter at the time instant
that it attains its maximum indentation is zero. Therefore,
time of the maximum indentationmay be determined by dif-
ferentiating (34), with respect to time and setting the resulting
equation equal to zero. Solving this equation, the time of the
maximum indentation is obtained. Substituting this time into
(34) yields the value of the maximum indentation as

𝛼 (𝑡
𝑚
) = 𝛼
0
(𝑡
𝑚
) + 𝛼
1
(𝑡
𝑚
) + 𝛼
2
(𝑡
𝑚
)

+ 𝛼
3
(𝑡
𝑚
) +𝛼
4
(𝑡
𝑚
) + 𝛼
5
(𝑡
𝑚
) + ⋅ ⋅ ⋅ .

(37)

For simplicity let:

𝑎 =
𝜋𝑅𝐸
𝑧

𝑚(1 − V𝑟𝑧V𝑧𝑟) ℎ
,

𝑏 =
𝜋𝑅𝐸
𝑧

𝑚(1 − V𝑟𝑧V𝑧𝑟) ℎ
(𝑛 − 1) (𝛼𝑚 − 𝛼

𝑐𝑟
)
2
.

(38)

Thus (35) is reduced to

𝜕
𝛽

𝑡
𝛼 (𝑡) + 𝑎𝛼

2
(𝑡) + 𝑏 = 0, 1 < 𝛽 ≤ 2. (39)
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Following carefully the steps involved in the HDM we
obtain the following integral equations:

𝛼
0 (𝑡) = 𝛼

𝑚

𝛼
1 (𝑡) = −

1

Γ (𝛽)
∫

𝑡

𝑡
𝑚

(𝑡 − 𝜏)
𝛽−1

[𝑎𝛼
2

0
(𝜏) + 𝑏] 𝑑𝜏

...

𝛼
𝑛 (𝑡) = −

1

Γ (𝛽)
∫

𝑡

𝑡
𝑚

(𝑡 − 𝜏)
𝛽−1 [

[

𝑎

𝑛−1

∑

𝑗=0

𝛼
𝑗
𝛼
𝑛−𝑗−1

]

]

𝑑𝜏,

𝛼
𝑛
(𝑡
𝑚
) = 𝜕
𝑡
𝛼 (𝑡
𝑚
) = 0, 𝑛 ≥ 1.

(40)

Integrating the above we arrive at the following series
solutions:

𝛼0 (𝑡) = 𝛼𝑚,

𝛼
1 (𝑡) = −

(𝑎𝑎
2

𝑚
+ 𝑏) (𝑡 − 𝑡𝑚)

𝛽

Γ (1 + 𝛽)
,

𝛼
2 (𝑡) =

2𝑎𝑎
𝑚
(𝑎𝑎
2

𝑚
+ 𝑏) (𝑡 − 𝑡

𝑚
)
2𝛽

Γ (1 + 2𝛽)
,

𝑎3 (𝑡) = − (𝑎 (𝑎𝑎
2

𝑚
+ 𝑏) (𝑡 − 𝑡𝑚)

3𝛽

× (8𝑎𝑎
2

𝑚
Γ
2
(1 + 𝛽) + (𝑎𝑎

2

𝑚
+ 𝑏) Γ (1 + 2𝛽)) )

× (Γ
2
(1 + 𝛽) Γ (1 + 3𝛽))

−1

,

𝛼
4 (𝑡) =

𝑎𝑎
2

𝑚
(𝑡 − 𝑡
𝑚
)
4𝛽

𝛽Γ (2𝛽) Γ (4𝛽) Γ2 (1 + 𝛽) Γ (1 + 2𝛽) Γ (1 + 4𝛽)

× (Γ (4𝛽) Γ (1 + 2𝛽)

× ((𝑎𝑎
2

𝑚
+ 𝑏) Γ (1 + 2𝛽)

× (8𝑎𝑎
2

𝑚
Γ
2
(1 + 𝛽) + (𝑎𝑎

2

𝑚
+ 𝑏) Γ (1 + 2𝛽)

+2 (𝑎
2
𝑎
4

𝑚
+ 𝑏
2
) Γ (1 + 𝛽) Γ (1 + 3𝛽))

+ 2𝑎𝑎
2

𝑚
𝑏Γ (2𝛽) Γ (1 + 𝛽) Γ (1 + 3𝛽)

× Γ (1 + 4𝛽) )) .

(41)

Using the package Mathematica, in the same manner one
can obtain the rest of the components. But in this case, few
terms were computed and the asymptotic solution is given by

𝛼 (𝑡) = 𝛼
0 (𝑡) + 𝛼

1 (𝑡) + 𝛼
2 (𝑡) + 𝛼

3 (𝑡) +𝛼4 (𝑡) + 𝛼
5 (𝑡) + ⋅ ⋅ ⋅ .

(42)

5. Conclusion and Discussion

Low velocity impact between a rigid sphere and a transversely
isotropic strain-hardening plate supported by a rigid sub-
strate was extended to the concept of noninteger derivatives.
The governing equations of the elastic indentation were
obtained by Yigit and Christoforou [23, 24]. The contact was
assumed to be elastic, and the stresses through the thickness
were assumed to be constant. The stress expressions are only
valid when no permanent deformation results due to the
impact. The experimental evidence reported by Poe Jr. and
Illg [39] and Poe Jr. [40] confirms the maximum value of the
transverse. Normal stress has the dominant influence on the
failure of a plate subjected to impact loads. The third phase is
assumed to be an elastic one again.

A brief history of the fractional derivative orders was pre-
sented. Advantages and disadvantages of each definitionwere
presented. The new equations were solved approximately
using the relatively new analytical technique, the homotopy
decomposition methods. The numerical simulations showed
that the approximate solutions are continuous and increase
functions of the fractional derivative orders. The method
used to derive approximate solution is very efficient, easier
to implement, and less time consuming. The HDM is a
promising method for solving nonlinear fractional partial
differential equations.
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