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We investigate the stability of a functional equation 𝑓(𝑥 + 𝑦 + 𝑧) + 𝑓(𝑥 − 𝑦 + 𝑧) + 𝑓(𝑥 + 𝑦 − 𝑧) + 𝑓(−𝑥 + 𝑦 + 𝑧) = 3𝑓(𝑥) + 𝑓(−𝑥) +
3𝑓(𝑦) + 𝑓(−𝑦) + 3𝑓(𝑧) + 𝑓(−𝑧) by applying the direct method in the sense of Hyers and Ulam.

1. Introduction

In 1940, Ulam [1] gave a wide ranging talk before the
mathematics club of the University of Wisconsin in which he
discussed a number of important unsolved problems. Among
those was the question concerning the stability of group
homomorphisms:

Let 𝐺
1
be a group and let 𝐺

2
be a metric group with

the metric 𝑑(⋅, ⋅). Given 𝜀 > 0, does there exist a 𝛿 >
0 such that if a function ℎ : 𝐺

1
→ 𝐺

2
satisfies the

inequality 𝑑(ℎ(𝑥𝑦), ℎ(𝑥)ℎ(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺
1
,

then there exists a homomorphism 𝐻 : 𝐺
1

→ 𝐺
2

with 𝑑(ℎ(𝑥),𝐻(𝑥)) < 𝜀 for all 𝑥 ∈ 𝐺
1
?

The Ulam’s problem for the Cauchy additive functional
equation was solved by Hyers under the assumption that 𝐺

1

and𝐺
2
are Banach spaces. Indeed,Hyers [2] proved that every

solution of the inequality ‖𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝜀 (for
all 𝑥 and 𝑦) can be approximated by an additive function. In
this case, the Cauchy additive functional equation,𝑓(𝑥+𝑦) =
𝑓(𝑥) + 𝑓(𝑦), is said to satisfy the Hyers-Ulam stability.

Thereafter, Rassias [3] attempted to weaken the condition
for the bound of norm of the Cauchy difference as follows:

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜀 (‖𝑥‖

𝑝 +
𝑦


𝑝

) , (1)

and he proved that Hyers’ theorem is also true for this
case. Indeed, Rassias proved the generalized Hyers-Ulam

stability (or the Hyers-Ulam-Rassias stability) of the Cauchy
additive functional equation between Banach spaces.We here
remark that a paper of Aoki [4] was published concerning the
generalized Hyers-Ulam stability of the Cauchy functional
equation earlier than Rassias’ paper.

The stability concept that was introduced by Rassias’
theorem provided a large influence to a number of math-
ematicians to develop the notion of what is known today
with the term generalized Hyers-Ulam stability of functional
equations. Since then, the stability problems of several func-
tional equations have been extensively investigated by several
mathematicians (e.g., see [5–10] and the references therein).

Almost all subsequent proofs in this very active area have
used the Hyers’ method presented in [2]. Namely, starting
from the givenmapping𝑓 that approximately satisfies a given
functional equation, a solution 𝐹 of the functional equation
is explicitly constructed by using the formula:

𝐹 (𝑥) := lim
𝑛→∞

1

2𝑛
𝑓 (2𝑛𝑥) or 𝐹 (𝑥) := lim

𝑛→∞
2𝑛𝑓(

𝑥

2𝑛
) ,

(2)

which approximates the mapping 𝑓. This method of Hyers is
called the direct method.

We remark that another method for proving the Hyers-
Ulam stability of various functional equations was intro-
duced by Baker [11], which is called the fixed-point method.
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This method is very powerful technique of proving the
stability of functional equations (see [12, 13]).

Now we consider the following functional equation:

𝑓 (𝑥 + 𝑦 + 𝑧) + 𝑓 (𝑥 − 𝑦 + 𝑧)

+ 𝑓 (𝑥 + 𝑦 − 𝑧) + 𝑓 (−𝑥 + 𝑦 + 𝑧)

= 3𝑓 (𝑥) + 𝑓 (−𝑥) + 3𝑓 (𝑦)

+ 𝑓 (−𝑦) + 3𝑓 (𝑧) + 𝑓 (−𝑧) ,

(3)

which is called the mixed type functional equation. The
mapping 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 is a solution of this functional
equation, where 𝑎, 𝑏 are real constants. Every solution of (3)
will be called a quadratic-additive mapping.

In 1998, Jung [14] proved the stability of (3) by decom-
posing 𝑓 into the odd and even parts. In his proof, using
the direct method, an additive mapping 𝐴 and a quadratic
mapping𝑄 are separately constructed from the odd and even
parts of 𝑓, and then 𝐴 and 𝑄 are combined to provide a
quadratic-additive mapping 𝐹 which is close to 𝑓.

In this paper, we will prove the generalized Hyers-Ulam
stability of (3) by making use of the direct method. In
particular, we will approximate the given mapping 𝑓 by a
solution 𝐹 of (3) without decomposing 𝑓 into its odd and
even parts, while in the Jung’s paper [14] the mapping 𝑓 was
decomposed into the odd and even parts, and each of them
was separately approximated by the corresponding part of a
solution 𝐹 of (3).

2. Main Results

Throughout this paper, let 𝑋 be a (real or complex) normed
space and𝑌 a Banach space. For an arbitrary𝑝 ∈ R, we define
𝑠 := sign (2 − 𝑝) and 𝑡 := sign (1 − 𝑝).

For a given mapping 𝑓 : 𝑋 → 𝑌, we use the following
abbreviations:

𝑓
𝑜
(𝑥) :=

𝑓 (𝑥) − 𝑓 (−𝑥)

2
,

𝑓
𝑒
(𝑥) :=

𝑓 (𝑥) + 𝑓 (−𝑥)

2
,

𝐽
𝑛
𝑓 (𝑥) :=

9−𝑠𝑛

2
(𝑓 (3𝑠𝑛𝑥) + 𝑓 (−3𝑠𝑛𝑥))

+
3−𝑡𝑛

2
(𝑓 (3𝑡𝑛𝑥) − 𝑓 (−3𝑡𝑛𝑥)) ,

𝐴𝑓 (𝑥, 𝑦) := 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦) ,

𝑄𝑓 (𝑥, 𝑦) := 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦) ,

𝐷𝑓 (𝑥, 𝑦, 𝑧) := 𝑓 (𝑥 + 𝑦 + 𝑧) + 𝑓 (𝑥 − 𝑦 + 𝑧)

+ 𝑓 (𝑥 + 𝑦 − 𝑧) + 𝑓 (−𝑥 + 𝑦 + 𝑧)

− 3𝑓 (𝑥) − 𝑓 (−𝑥) − 3𝑓 (𝑦)

− 𝑓 (−𝑦) − 3𝑓 (𝑧) − 𝑓 (−𝑧)

(4)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.
As we stated in the previous section, 𝑓 is called a

quadratic-additive mapping provided that 𝑓 satisfies the
functional equation 𝐷𝑓(𝑥, 𝑦, 𝑧) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Proposition 1. A mapping 𝑓 : 𝑋 → 𝑌 is a solution of (3)
if and only if 𝑓

𝑒
is a quadratic mapping and 𝑓

𝑜
is an additive

mapping.

Proof. Assume that 𝑓 : 𝑋 → 𝑌 is a solution of (3). Then we
have

𝑄𝑓
𝑒
(𝑥, 𝑦, 𝑧) =

𝐷𝑓
𝑒
(𝑥, 𝑦, 0)

2
= 0,

𝐴𝑓
𝑜
(𝑥, 𝑦, 𝑧) =

𝐷𝑓
𝑜
(𝑥, 𝑦, 0)

2
= 0

(5)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, that is, 𝑓
𝑒
is a quadratic mapping and 𝑓

𝑜
is

an additive mapping.
Conversely, assume that 𝑓

𝑒
is a quadratic mapping and 𝑓

𝑜

is an additive mapping. Then we get

𝐷𝑓 (𝑥, 𝑦, 𝑧) = 𝐷𝑓
𝑒
(𝑥, 𝑦, 𝑧) + 𝐷𝑓

𝑜
(𝑥, 𝑦, 𝑧)

= 𝑄𝑓
𝑒
(𝑥 + 𝑦, 𝑧) + 𝑄𝑓

𝑒
(𝑥 − 𝑦, 𝑧)

+ 2𝑄𝑓
𝑒
(𝑥, 𝑦) + 𝐴𝑓

𝑜
(𝑥 + 𝑦, 𝑧)

+ 𝐴𝑓
𝑜
(𝑥 + 𝑦, −𝑧) + 𝐴𝑓

𝑜
(𝑥 − 𝑦, 𝑧)

+ 𝐴𝑓
𝑜
(−𝑥 + 𝑦, 𝑧) + 2𝐴𝑓

𝑜
(𝑥, 𝑦)

= 0

(6)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋; that is, 𝑓 is a solution of (3).

We first prove the following lemma.

Lemma 2. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies 𝐷𝑓(𝑥, 𝑦, 𝑧) = 0
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 \ {0} and 𝑓(0) = 0, then 𝑓 is a quadratic-
additive mapping.

Proof. Using the hypothesis, we have

𝑓 (2𝑥) − 3𝑓 (𝑥) − 𝑓 (−𝑥)

=
11

112
(𝐷𝑓 (4𝑥, 3𝑥, 𝑥) − 𝐷𝑓 (4𝑥, 2𝑥, 2𝑥)

− 𝐷𝑓 (2𝑥, 2𝑥, 2𝑥) + 2𝐷𝑓 (2𝑥, 𝑥, 𝑥)

+ 3𝐷𝑓 (𝑥, 𝑥, 𝑥) + 𝐷𝑓 (−𝑥, −𝑥, −𝑥))

−
3

112
(𝐷𝑓 (−4𝑥, −3𝑥, −𝑥) − 𝐷𝑓 (−4𝑥, −2𝑥, −2𝑥)

− 𝐷𝑓 (−2𝑥, −2𝑥, −2𝑥) + 2𝐷𝑓 (−2𝑥, −𝑥, −𝑥)

+ 3𝐷𝑓 (−𝑥, −𝑥, −𝑥) + 𝐷𝑓 (𝑥, 𝑥, 𝑥))

= 0

(7)
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for all 𝑥 ∈ 𝑋 \ {0}. Furthermore, by the last equality, we get

𝐷𝑓 (𝑥, 𝑦, 0) = 𝐷𝑓(𝑥,
𝑦

2
,
𝑦

2
) + 𝐷𝑓(𝑦,

𝑥

2
,
𝑥

2
)

− 2𝑓 (𝑥) + 6𝑓(
𝑥

2
) + 2𝑓(−

𝑥

2
)

− 2𝑓 (𝑦) + 6𝑓(
𝑦

2
) + 2𝑓(−

𝑦

2
)

= 0

(8)

for all𝑥, 𝑦 ∈ 𝑋\{0}. Since𝐷𝑓(𝑥, 𝑦, 𝑧) is invariant with respect
to the permutation of (𝑥, 𝑦, 𝑧), it holds that 𝐷𝑓(0, 𝑦, 𝑧) =
𝐷𝑓(𝑥, 0, 𝑧) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 \ {0}. It is also easy to show
that 𝐷𝑓(𝑥, 0, 0) = 0, 𝐷𝑓(0, 𝑦, 0) = 0, 𝐷𝑓(0, 0, 𝑧) = 0, and
𝐷𝑓(0, 0, 0) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 \ {0} as we desired.

In the following theorem, we can prove the generalized
Hyers-Ulam stability of the functional equation (3) by mak-
ing use of the direct method.

Theorem 3. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies 𝑓(0) = 0 and

𝐷𝑓 (𝑥, 𝑦, 𝑧)
 ≤ ‖𝑥‖

𝑝 +
𝑦


𝑝

+ ‖𝑧‖
𝑝 (9)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 \ {0} with a real constant 𝑝 ∉ {1, 2}, then
there exists a unique quadratic-additive mapping 𝐹 : 𝑋 → 𝑌
such that

𝑓 (𝑥) − 𝐹 (𝑥)


≤

{{{{{{{{
{{{{{{{{
{

3‖𝑥‖ 𝑝

3𝑝 − 9
(𝑓𝑜𝑟 𝑝 > 2) ,

(
3

9 − 3𝑝
+

3

3𝑝 − 3
) ‖𝑥‖ 𝑝 (𝑓𝑜𝑟 1 < 𝑝 < 2) ,

3‖𝑥‖ 𝑝

3 − 3𝑝
(𝑓𝑜𝑟 0 ≤ 𝑝 < 1)

(10)

for all 𝑥 ∈ 𝑋 \ {0}. Moreover, if 𝑝 < 0, then 𝑓 itself is a
quadratic-additive mapping.

Proof. Let us define 𝜏
𝑠,𝑛

:= 𝑠(𝑛+1/2)−1/2, where 𝑠 ∈ {−1, 1}.
From the definitions of 𝐽

𝑛
𝑓(𝑥) and 𝐷𝑓(𝑥, 𝑦, 𝑧), we have

𝐽
𝑛
𝑓 (𝑥) − 𝐽

𝑛+1
𝑓 (𝑥)

= −
1

2
(9𝜏−𝑠,𝑛 (𝐷𝑓 (3𝜏𝑠,𝑛𝑥, 3𝜏𝑠,𝑛𝑥, 3𝜏𝑠,𝑛𝑥)

+𝐷𝑓 (−3𝜏𝑠,𝑛𝑥, −3𝜏𝑠,𝑛𝑥, −3𝜏𝑠,𝑛𝑥)) 𝑠

+ 3𝜏−𝑡,𝑛 (𝐷𝑓 (3𝜏𝑡,𝑛𝑥, 3𝜏𝑡,𝑛𝑥, 3𝜏𝑡,𝑛𝑥)

−𝐷𝑓 (−3𝜏𝑡,𝑛𝑥, −3𝜏𝑡,𝑛𝑥, −3𝜏𝑡,𝑛𝑥)) 𝑡)

(11)

for all 𝑥 ∈ 𝑋\ {0} and 𝑛 ∈ N
0
. It follows from (9) and (11) that

𝐽𝑛𝑓 (𝑥) − 𝐽
𝑛+𝑚

𝑓 (𝑥)


=
𝑛+𝑚−1

∑
𝑗=𝑛

𝐽𝑗𝑓 (𝑥) − 𝐽
𝑗+1

𝑓 (𝑥)


≤
1

2

𝑛+𝑚−1

∑
𝑗=𝑛

(
9
𝜏
−𝑠,𝑗𝐷𝑓 (3𝜏𝑠,𝑗𝑥, 3𝜏𝑠,𝑗𝑥, 3𝜏𝑠,𝑗𝑥) 𝑠

+3𝜏−𝑡,𝑗𝐷𝑓 (3𝜏𝑡,𝑗𝑥, 3𝜏𝑡,𝑗𝑥, 3𝜏𝑡,𝑗𝑥) 𝑡


+
9
𝜏
−𝑠,𝑗𝐷𝑓 (−3𝜏𝑠,𝑗𝑥, −3𝜏𝑠,𝑗𝑥, −3𝜏𝑠,𝑗𝑥) 𝑠

−3𝜏−𝑡,𝑗𝐷𝑓 (−3𝜏𝑡,𝑗𝑥, −3𝜏𝑡,𝑗𝑥, −3𝜏𝑡,𝑗𝑥) 𝑡
 )

≤

{{{{{{{{{{
{{{{{{{{{{
{

𝑛+𝑚−1

∑
𝑗=𝑛

3−𝑗
3
𝑗𝑥


𝑝

(for 𝑝 < 1) ,

𝑛+𝑚−1

∑
𝑗=𝑛

(3−2𝑗−1
3
𝑗𝑥


𝑝

+ 3𝑗+1
3
−𝑗−1𝑥


𝑝

) (for 1<𝑝 <2) ,

𝑛+𝑚−1

∑
𝑗=𝑛

32𝑗+1
3
−𝑗−1𝑥


𝑝

(for 𝑝 > 2)

≤

{{{{{{{{{
{{{{{{{{{
{

3𝑛𝑝‖𝑥‖ 𝑝

3𝑛−1 (3 − 3𝑝)
(for 𝑝 < 1) ,

3𝑛𝑝‖𝑥‖ 𝑝

32𝑛−1 (9 − 3𝑝)
+

3𝑛+1‖𝑥‖ 𝑝

3𝑛𝑝 (3𝑝 − 3)
(for 1 < 𝑝 < 2) ,

32𝑛+1‖𝑥‖ 𝑝

3𝑛𝑝 (3𝑝 − 9)
(for 𝑝 > 2)

(12)

for all 𝑥 ∈ 𝑋 \ {0}. So, it is easy to show that the sequence
{𝐽
𝑛
𝑓(𝑥)} is a Cauchy sequence for all 𝑥 ∈ 𝑋 \ {0}.
Since 𝑌 is complete and 𝑓(0) = 0, the sequence {𝐽

𝑛
𝑓(𝑥)}

converges for all 𝑥 ∈ 𝑋. Hence, we can define a mapping 𝐹 :
𝑋 → 𝑌 by

𝐹 (𝑥) := lim
𝑛→∞

𝐽
𝑛
𝑓 (𝑥) (13)

for all 𝑥 ∈ 𝑋. Moreover, if we put 𝑛 = 0 and let 𝑚 → ∞ in
(12), we obtain the inequality (10).

From the definition of 𝐹, we get

𝐷𝐹 (𝑥, 𝑦, 𝑧)

= lim
𝑛→∞

9−𝑠𝑛

2
(𝐷𝑓 (3𝑠𝑛𝑥, 3𝑠𝑛𝑦, 3𝑠𝑛𝑧)

+𝐷𝑓 (−3𝑠𝑛𝑥, −3𝑠𝑛𝑦, −3𝑠𝑛𝑧))

+ lim
𝑛→∞

3−𝑡𝑛

2
(𝐷𝑓 (3𝑡𝑛𝑥, 3𝑡𝑛𝑦, 3𝑡𝑛𝑧)

−𝐷𝑓 (−3𝑡𝑛𝑥, −3𝑡𝑛𝑦, −3𝑡𝑛𝑧))

≤ lim
𝑛→∞

(3−𝑠(2−𝑝)𝑛 + 3−𝑡𝑛(1−𝑝)) (‖𝑥‖
𝑝 +

𝑦

𝑝

+ ‖𝑧‖
𝑝)

= 0

(14)
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for all 𝑥, 𝑦, 𝑧 ∈ 𝑋\ {0}. By Lemma 2, 𝐹 is a quadratic-additive
mapping.

Now, we will show that 𝐹 is uniquely determined. Let 𝐹 :
𝑋 → 𝑌 be another quadratic-additive mapping satisfying
(10). It is easy to show that𝐹(0) = 0 for all quadratic-additive
mapping 𝐹. It follows from (11) that

𝐹 (𝑥) − 𝐽
𝑛
𝐹 (𝑥)

=
𝑛−1

∑
𝑗=0

(𝐽
𝑗
𝐹 (𝑥) − 𝐽

𝑗+1
𝐹 (𝑥))

= −
1

2

𝑛−1

∑
𝑗=0

(9𝜏−𝑠,𝑗 (𝐷𝐹 (3𝜏𝑠,𝑗𝑥, 3𝜏𝑠,𝑗𝑥, 3𝜏𝑠,𝑗𝑥)

+𝐷𝐹 (−3𝜏𝑠,𝑗𝑥, −3𝜏𝑠,𝑗𝑥, −3𝜏𝑠,𝑗𝑥)) 𝑠

+ 3𝜏−𝑡,𝑗 (𝐷𝐹 (3𝜏𝑡,𝑗𝑥, 3𝜏𝑡,𝑗𝑥, 3𝜏𝑡,𝑗𝑥)

−𝐷𝐹 (−3𝜏𝑡,𝑗𝑥, −3𝜏𝑡,𝑗𝑥, −3𝜏𝑡,𝑗𝑥)) 𝑡)

= 0

(15)

for all 𝑛 ∈ N and𝑥 ∈ 𝑋. Since𝐹 and𝐹 are quadratic-additive,
if we replace 𝑥 with 3𝑛𝑥 in (10), then we have
𝐹 (𝑥) − 𝐹 (𝑥)



=
𝐽𝑛𝐹 (𝑥) − 𝐽

𝑛
𝐹 (𝑥)



≤
9−𝑠𝑛

2
(
 (𝐹 − 𝑓) (3𝑠𝑛𝑥)

 +
 (𝑓 − 𝐹) (3𝑠𝑛𝑥)



+
 (𝐹 − 𝑓) (−3𝑠𝑛𝑥)

 +
 (𝑓 − 𝐹) (−3𝑠𝑛𝑥)

 )

+
2−𝑡𝑛

2
(
 (𝐹 − 𝑓) (3𝑡𝑛𝑥)

 +
 (𝐹 − 𝑓) (3𝑡𝑛𝑥)



+
 (𝐹 − 𝑓) (−3𝑡𝑛𝑥)

 +
 (𝐹 − 𝑓) (−3𝑡𝑛𝑥)

 )

≤ (
6

|9 − 3𝑝|
+

6

|3𝑝 − 3|
) (3−𝑠𝑛(2−𝑝) + 3−𝑡𝑛(1−𝑝)) ‖𝑥‖

𝑝

(16)

for all 𝑥 ∈ 𝑋 \ {0} and 𝑛 ∈ N. Taking the limit in the above
inequality as 𝑛 → ∞, we can conclude that 𝐹(𝑥) = 𝐹(𝑥) for
all 𝑥 ∈ 𝑋, which proves the uniqueness of 𝐹.

Since
𝑓 (𝑥) − 𝐹 (𝑥)



≤
𝐷𝑓 ((2𝑘 − 1) 𝑥, 𝑘𝑥, 𝑘𝑥) − 𝐷𝐹 ((2𝑘 − 1) 𝑥, 𝑘𝑥, 𝑘𝑥)



+
𝐹 ((4𝑘 − 1) 𝑥) − 𝑓 ((4𝑘 − 1) 𝑥)



+
𝑓 ((2𝑘 − 1) 𝑥) − 𝐹 ((2𝑘 − 1) 𝑥)



+
𝑓 ((1 − 2𝑘) 𝑥) − 𝐹 ((1 − 2𝑘) 𝑥)



+ 2
𝑓 (−𝑘𝑥) − 𝐹 (−𝑘𝑥)



+ 6
𝑓 (𝑘𝑥) − 𝐹 (𝑘𝑥)



≤ ((2𝑘 − 1)
𝑝 + 2𝑘𝑝 +

3 ((4𝑘 − 1)𝑝 + 2(2𝑘 − 1)𝑝 + 8𝑘𝑝)

3 − 3𝑝
)

× ‖𝑥‖
𝑝

(17)

for all 𝑥 ∈ 𝑋 \ {0} and 𝑘 ∈ N, if 𝑝 < 0, then we conclude
that 𝑓(𝑥) = 𝐹(𝑥) for all 𝑥 ∈ 𝑋 \ {0} by letting 𝑘 → ∞ in
the previous inequality. From the fact that 𝑓(0) = 0, 𝑓 is a
quadratic-additive mapping.

Theorem 4. If a mapping 𝑓 : 𝑋 → 𝑌 satisfies

𝐷𝑓 (𝑥, 𝑦, 𝑧)
 ≤ ‖𝑥‖

𝑝 +
𝑦


𝑝

+ ‖𝑧‖
𝑝 (18)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and for a nonnegative real constant 𝑝 ∉
{1, 2}, then there exists a unique quadratic-additive mapping
𝐹 : 𝑋 → 𝑌 such that

𝑓 (𝑥) − 𝐹 (𝑥)


≤

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

‖𝑥‖ 𝑝

2𝑝 − 4
(𝑓𝑜𝑟 𝑝 > 2) ,

(
1

4 − 2𝑝
+

1

2𝑝 − 2
) ‖𝑥‖ 𝑝 (𝑓𝑜𝑟 1 < 𝑝 < 2) ,

‖𝑥‖ 𝑝

2 − 2𝑝
(𝑓𝑜𝑟 0 < 𝑝 < 1) ,

25

16
(𝑓𝑜𝑟 𝑝 = 0)

(19)

for all 𝑥 ∈ 𝑋.

Proof. Since

𝑓 (0)
 =



1

8
𝐷𝑓 (0, 0, 0)


≤

3‖0‖ 𝑝

8
, (20)

we get 𝑓(0) = 0 for 𝑝 ∉ {0, 1, 2} and ‖𝑓(0)‖ ≤ 3/8 for 𝑝 = 0.
From the definitions of 𝐽

𝑛
𝑓(𝑥) and 𝐷𝑓(𝑥, 𝑦, 𝑧), we have

𝐽
𝑛
𝑓 (𝑥) − 𝐽

𝑛+1
𝑓 (𝑥)

= −
1

4
(4𝜏−𝑠,𝑛 (𝐷𝑓 (2𝜏𝑠,𝑛𝑥, 2𝜏𝑠,𝑛𝑥, 0)

+𝐷𝑓 (−2𝜏𝑠,𝑛𝑥, −2𝜏𝑠,𝑛𝑥, 0)) 𝑠

+ 2𝜏−𝑡,𝑛 (𝐷𝑓 (2𝜏𝑡,𝑛𝑥, 2𝜏𝑡,𝑛𝑥, 0)

−𝐷𝑓 (−2𝜏𝑡,𝑛𝑥, −2𝜏𝑡,𝑛𝑥, 0)) 𝑡)

+
1

2
4𝜏−𝑠,𝑛𝑓 (0)

(21)

for all 𝑥 ∈ 𝑋 and 𝑛 ∈ N
0
, where 𝜏

𝑠,𝑛
is defined by 𝜏

𝑠,𝑛
=

𝑠(𝑛 + 1/2) − 1/2 and 𝑠 ∈ {−1, 1}.
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It follows from (18) and (21) that

𝐽𝑛𝑓 (𝑥) − 𝐽
𝑛+𝑚

𝑓 (𝑥)


=
𝑛+𝑚−1

∑
𝑗=𝑛

𝐽𝑗𝑓 (𝑥) − 𝐽
𝑗+1

𝑓 (𝑥)


≤
1

4

𝑛+𝑚−1

∑
𝑗=𝑛

(
4
𝜏
−𝑠,𝑗𝐷𝑓 (2𝜏𝑠,𝑗𝑥, 2𝜏𝑠,𝑗𝑥, 0) 𝑠

+ 2𝜏−𝑡,𝑗𝐷𝑓 (2𝜏𝑡,𝑗𝑥, 2𝜏𝑡,𝑗𝑥, 0) 𝑡


+
4
𝜏
−𝑠,𝑗𝐷𝑓 (−2𝜏𝑠,𝑗𝑥, −2𝜏𝑠,𝑗𝑥, 0) 𝑠

−2𝜏−𝑡,𝑗𝐷𝑓 (−2𝜏𝑡,𝑗𝑥, −2𝜏𝑡,𝑗𝑥, 0) 𝑡


+ 2 ⋅ 4𝜏−𝑠,𝑗
𝑓 (0)

 )

≤

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

𝑛+𝑚−1

∑
𝑗=𝑛

3

2𝑗+2
+

3 ⋅ 2−2𝑗−3

8
(for 𝑝 = 0) ,

𝑛+𝑚−1

∑
𝑗=𝑛

2−𝑗−1
2
𝑗𝑥


𝑝

(for 0 < 𝑝 < 1) ,

𝑛+𝑚−1

∑
𝑗=𝑛

2−2𝑗−2
2
𝑗𝑥


𝑝

+ 2𝑗
2
−𝑗−1𝑥


𝑝

(for 1 < 𝑝 < 2) ,

𝑛+𝑚−1

∑
𝑗=𝑛

22𝑗
2
−𝑗−1𝑥


𝑝

(for 𝑝 > 2)

≤

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

3

2𝑛+1
+

1

22𝑛+4
(for 𝑝 = 0) ,

2𝑛𝑝‖𝑥‖ 𝑝

2𝑛 (2 − 2𝑝)
(for 0 < 𝑝 < 1) ,

2𝑛𝑝‖𝑥‖ 𝑝

4𝑛 (4 − 2𝑝)
+

2𝑛‖𝑥‖ 𝑝

2𝑛𝑝 (2𝑝 − 2)
(for 1 < 𝑝 < 2) ,

4𝑛‖𝑥‖ 𝑝

2𝑛𝑝 (2𝑝 − 4)
(for 𝑝 > 2)

(22)

for all 𝑥 ∈ 𝑋. So, it is easy to show that the sequence {𝐽
𝑛
𝑓(𝑥)}

is a Cauchy sequence for all 𝑥 ∈ 𝑋.
Since 𝑌 is complete, the sequence {𝐽

𝑛
𝑓(𝑥)} converges for

all 𝑥 ∈ 𝑋. Hence, we can define a mapping 𝐹 : 𝑋 → 𝑌 by

𝐹 (𝑥) := lim
𝑛→∞

𝐽
𝑛
𝑓 (𝑥) (23)

for all 𝑥 ∈ 𝑋. Moreover, putting 𝑛 = 0 and letting 𝑚 → ∞
in (22), we get the inequality (19).
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