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Let R be the set of real numbers, R* = {x ¢ R | x > 0}, e € R,,and f,g,h : R* — C. As classical and L™ versions of the
Hyers-Ulam stability of the logarithmic type functional equation in a restricted domain, we consider the following inequalities:
[f(x+ y)—glxy) —h((1/x) + (1/y)| < €, and || f(x + y) — g(xy) — h((1/x) + (1/)’))”L°°(rd) < einthe sectors I; = {(x, y) : x >
0,y > 0,(y/x) > d}. As consequences of the results, we obtain asymptotic behaviors of the previous inequalities. We also consider
its distributional version |[uo S —vo Il —wo R”rd < ¢, where u, v,w € @' (R"), S(x, y)=x+yI(x,y) = xy, R(x,y) = 1/x + 1/,
x, y € R", and the inequality || - I, < emeans that |{-,@)| < € || @l for all test functions ¢ € C(Ty).

1. Introduction

The Hyers-Ulam stability problem of functional equations
was originated in 1940 when Ulam proposed a question con-
cerning the approximate homomorphisms from a group to a
metric group (see [1]). A partial answer was given by Hyers
et al. [2, 3] under the assumption that the target space of the
involved mappings is a Banach space. It is possible to prove
stability results similar to Hyers for functions that do not have
bounded Cauchy difference. In 1950, Aoki [4] first proved
such a result for additive functions. Bourgin [5, 6] and Aoki
[4] studied the Ulam problem from 1949 to 1951. The area
rested there for a while until 1978 when Rassias [7] published
a generalized version of Hyers result on linear mappings,
where the Cauchy difference was allowed to be unbounded.
Rassias’ work provided an impetus for the study on the sta-
bility of functional equations (see [2, 7-31]).

Let R be the set of real numbers, R, the set of positive
real numbers, and C the set of complex numbers. The subset,
for fixed real number d > 0,

I‘dz{(x,y):x>0,y>0,z>d} (1)
x

of the plane, R?, will be referred to as a sector. A function f :
R, — Cissaid to be logarithmic if and only if it satisfies the
logarithmic functional equation:

fl)-fx-f) =0,

for all x, y € R,. There are several variants of logarithmic
functional equations (see [14-16]). It was shown by Heuvers
and Kannappan [16] that the logarithmic functional equation
is equivalent to the following functional equation:

Fean)-fen-1(5+5)=0 veyer. @

They have also studied the following pexiderized version of

(3):

f(x+y)—g(xy)—h<i+i)=0, Vx,y eR,. (4)

Vx,y € R,, (2)

The general solution of the functional equation (4) has the
form (see [16])

f(x)=L(x)+¢+c,
g(x) =L(x)+c, (5)
h(x)=L(x)+c,



where L : R — C is a logarithmic function and ¢;, ¢, are
arbitrary constants.

In this paper, we study Hyers-Ulam stability of the func-
tional equation (4). In Section 2, we treat the Hyers-Ulam
stability of the functional equation (4) in the classical sense
and present its asymptotic behavior. In Section 3, we consider
the stability of (4) in L -sense and its asymptotic behavior.
Finally, in Section 4 we present the stability of (4) in Schwartz
distributions.

2. Stability of (4) in Classical Sense and
Its Asymptotic Behavior

In this section, we consider the classical Hyers-Ulam stability
of the functional equation (4) on the sector I'; and then study
its asymptotic behavior.

The following theorem is a direct consequence of the
Hyers’ result [3] (see also result of Forti [32]).

Theorem 1. Let € be a nonnegative real number. Suppose that
f:R" — C satisfies

lf(xy)-f(x)-f(y)|<e (6)

forall x, y € R,. Then there exists a unique logarithmic func-
tion L : R" — C such that

|f(x)—L(x)|Se, Vx € R,. (7)

Next, we establish the Hyers-Ulam stability of the func-
tional equation (4) on the restricted domain I;.

Theorem 2. Suppose thate > 0,d > 0, and f, g, h satisfy the
functional inequality

<e (8)

F+)-g () -n(5+3)

for all (x, y) € I;. Then there exists a unique logarithmic func-
tion L : R* — C such that

|f(x)—L(x)—f(1)| < 4e,
|9 (x) = L(x) - g (D] < 4e, 9)
|h(x)-L(x)-h()| < 4e

forall x € R,.

Proof. For given t,s > 0, choose a real number u > 0 such

that
2L 2% 2922 L
ts? ts s s2

(10)
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and let
tsu — Vi2s2u? — 4t tsu + Vi2s2u? — 4t
X = > =
2 2
tsu — Vt2s2u? — 4ts tsu + Vt2s?u? — 4ts
X, = S =
2 2 2 2
su— Vsiu? —4s su+ Vsu? —4s
.X3 = —) y3 = —)
2 2
su— Vs2u? -4 su+ Vsu? —4
Xy=——, =
4 2 Ya 2
(11)

Then it is easy to check that x;, y; > 0, y;/x; > d for all
j = 1,2,3,4. Replacing x, y by x;, y; in (8), respectively, for
j=1,2,3,4 we have

|f (tsu) — g (t) —h(su)| <€, (12)
|f (tsu) — g (ts) —h(u)| <€, (13)
|f (su) =g (s) -h@w)|<e (14)
|f (su) =g (1) = h(sw)| < e (15)

From (12)-(15), using the triangle inequality we have
lgts)—gt)—g(s)+g ()| < 4e (16)

for all t, s > 0. Similarly, for given ¢, s > 0, choose u > 0 such
that

N { 4 4 4 4 4d 4d 4d 4d} 1)
UZ2IMAX )55 555 55 5 5 > 5 5> 50
t2s 12527 27 s s 252 §2 7 s
and let
tsu — Vt2s?u? — 4su tsu + Vt2s?u? — 4su
X, = > N =
2 2
v = tsu — Vt?s?u? — 4u _ tsu+ Virstu? -
2 B > Y B
su— Vsiu? —4u su+ Vs2u? —4u
x3 = —) y3 = —,
2 2
su— Vsiu? — 4su su+ Vsiu? — 4su
x4 = - - > y4 =
2 2
(18)

Then it is easy to check that x;, y; > 0, y;/x; > d forall j =
1,2,3,4. Next, replacing x, y by x;, y; in (8), respectively, for
j=1,2,3,4, we have

|f (tsu) —h () — g (su)| <,

|f (ksu) = h(ts) - g (w)| <€,

|f(su) —h(s) —g(u)| <e

|f (su) —h(1) - g(su)| <e.

(19)
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From (19), using the triangle inequality, we have
|h(ts)—h(t)—h(s)+h(1)] <4e (20)
for all t,s > 0. Now we prove that
|f (ts) = f (&)= f(s)+ f (D] <4e (21

forallt,s > 0. For given t, s > 0, choose u > 0 such that

pemm [EE PSS s 08 0 2 s
- 4’ 4744 4d’ 4d’ 4d’ 4d

and let
ts — Vt?s® —4u ts+ Vt?s? —4u
S T
. t—\t2 —4uls t+ it —4ufs
2= - o > 2: )
2 2
(23)
s— Vs —4u s+ Vs —4u
BTy Bt
. 1= +1-4u/s ) 1++/1-4u/s
=5 = -
2 2

Then x;, y; > 0, y;/x; > d forall j = 1,2,3, 4. Replacing x, y
by x;, y; in (8), respectively, for j = 1,2, 3,4, we have

‘f(ts)—g(u)—h(%s>| <e,

ro-9(5)-n(3)

F@-gw-n(Z) <e

r-a(®) 4(2) <o
From (24), using the triangle inequality we get (21).

Now by Theorem 1, there exist L; : R* — Cforj =
1,2, 3 satistying the logarithmic functional equation

<E,

Lits)=L;(®)+L;(s), j=123, (25)
for which
|f &)=L, () - £ ()] < 4e, (26)
lg () =L, (t) - g (1)] < 4, 7)
|h(t) = Lsy () —h(1)| < 4e. (28)

Now we show that L, = L, = L;. Puttings = u = 1 and
t = u = 1 in (12) separately, we have

|f(t)-g@®) —h(1)] <e for t > max{4,4d}, (29)

|f(s)=h(s)-g)|<e fors>max{2,2Vd}. (30)

From (26), (27), and (29), using the triangle inequality we
have

|L1 (t) - L, (t)l
<9 +|f(1)-g(1)-h(1)| (31)
;=M for t > max {4,4d}.

Lett > 1. Then we can choose a positive integer 1, such that
" > max{4, 4d} for all integers n > n,. In view of (25), and
(31) we have

L O -Ly@]= S () - L@ < ()
for all integer n > n,. Lettingn — ooin (32), wehave L (t) =
L,(t)forallt > 1.For0 <t < 1,we have L,(¢t) = -L,(1/¢) =
—L,(1/t) = L,(t). Thus, we have L, (t) = L,(t) forallt > 0.
Similarly, using (26), (28), and (30) we can show that L, = L.
The uniqueness of the logarithmic function L is obvious. This

completes the proof of the theorem. O

Lettingg = h = f in Theorem 2 and using the inequalities
(12)-(14) together with the triangle inequality, we obtain

|f (ts) = f ()= f(s)] <3e (33)

forallt,s > 0. Thus, by Theorem 1 we have the following theo-
rem.

Theorem 3. Letd > 0. Suppose that f : R* — C satisfies the
functional inequality

<e (34)

P -fl)-f(5+5)

for all (x, y) € I;. Then there exists a unique logarithmic func-
tion L : R* — C such that
|f (x) - L(x)| <3¢, VxeR". (35)

Now we prove the following asymptotic result concerning

(8).

Theorem 4. Suppose that f,g,h: R™ — C satisfy the asymp-
totic condition

P9t -n(1+3)—0 w9

as (y/x) — oo. Then there exists a logarithmic function L :
R* — Candc,,c, € C such that

f(x)=L(x)+¢ +c,
g(x) =L(x)+c, (37)
h(x)=L(x)+c¢

forall x > 0.



Proof. By the condition (36), for any positive integer n, there
exists d,, > 0 such that

Fls+) =g -h(5+3)

< 1 (38)
n

for all x, y > 0 with (y/x) > d,,. By Theorem 1, there exists a
logarithmic function L, : R* — C such that

'S

f (=L, x) - f (D] <~ (39)
lg ()~ L, (x) - g(1)] < % (40)
Ih(x) - L, (x) - h (D) < g (4)

for all x > 0. Replacing »n by m in (39) and using the triangle
inequality, we have

IL,(x)-L,, (x)|< %+ <8 (42)

4
m
for all x > 0. Thus, we obtain

1 8
|y () = Ly (0] = 7 [L (x*)-L,,(x") < PG

forall x > 0 and k € N. Letting k — 00 in (43), we have
L,(x) =L, (x):= L(x) for all x > 0. Finally, lettingn — oo
in (39), (40), and (41), we have

fF=Lx)+f1),

gx)=L(x)+g(1), (44)
h(x)=L(x)+h(1)

for all x > 0. Finally, substituting (44) in (36) we get f(1) =
g(1) + h(1). Letting ¢, = g(1) and ¢, = h(1) we obtain the
asserted result. ]

3. Stability of (4) in L°°-Sense and
Its Asymptotic Behavior

In this section, we consider the Hyers-Ulam stability of the
functional equation (4) in L*-sense on the sector I'; and then
examine its asymptotic behavior. Consider the functional
inequality

<e  (45)
L(T,)

”f(x+y) - g(xy) —hG + i)

where I; = {(x,y) : x > 0,y > 0,(y/x) > d}andd > lis
fixed, where || - || 1(r,) denotes the essential supremum norm
of D(x, y) = f(x+ y) — g(xy) — h((1/x) + (1/y)) on the set
I;. We employ the function § on R defined by

_(1_x2)71 .
S (x) = qe , if x| <1, (46)
0, if |x]>1,
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where

1 et -1
q= (J e ) dx) . (47)
-1

It is easy to see that §(x) is an infinitely differentiable function
with support {x : |x| < 1}. Let f be a locally integrable
function and 6,(x) := t718(x/t), t > 0. Then for each t > 0,

f*8(x)= Jo;f(y)‘st (x-y) dy (48)

is a smooth function of x € Rand f * §,(x) — f(x) for
almost every x € Rast — 0.

Now we prove the Hyers-Ulam stability of the functional
equation (4) in L°-sense on the sector [;.

Theorem 5. Let f, g, h be locally integrable functions satisfy-
ing (45). Then there exist constants c;, ¢,, ¢;,a € C such that

||f (x)—¢ —aln x||Loo(R+) < 4e,
[g(x)-¢c, —aln x”Lw(R,,) < 4e, (49)

||h (x)-¢—aln x||L°°(R+) < 4e.

Proof. We will use the diffeomorphism

P4 > . (50)
xy

J(x,y) = (ln xy,1n x

Letu =Inxy, v = In((x + y)/xy) and y/x =t > 1. Then, we
have

u+2v= lnxy+21nx+y

ln<2+§+£> (51)

1
ln<2+t+—>.
t

Thus, we have J(T;) :=U,; = {(u,v) : u+2v > In(2+d+1/d)}.
Consequently, (45) is converted to

If () =g () =h (e ow, <€ (52)
Now, let
Fw=f("), Gw=g("), Hw=h(").
(53)

Then, we have

IF(u+v)=Gw) - H®W)leoq, <€ (54)
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For each x, y € Rand t,s > 0, we have

”oo Fu+v)8, (x—u)d,(y—v)dudv

=j:F(u)<J008(x u+ )8, (y —v)dv)

—00

= LO:OF(u)(Jjoét(v)Ss(x+y—u—v)dv>du

= joo F(u) (8, = 8) (x+y-u)du

=F=*8,#08,(x+y).

(55)
We also have
”00 Gw)d, (x—u)d,(y—v)dudv
= J-OO G ()8, (x — u) <ro 8 (y- v)dv> du
-0 -0 (56)

- ro G W), (x - u)du
=G =6, (x).
Similarly, we have
”OO HW), (x—u)d,(y—v)dudv=H = 6,(y). (57)

On the other hand, let x+2y > 3+In(2+d+1/d)and0 < t < 1,
0 < s < 1. Then, we have

supp (8, (x =) 8, (y = v))

={wv):x—t<u<x+t,y-s<v<y+stcU,.
(58)

Letd' =In(2 + d + 1/d). Then it follows from (54)~(58) that
|F#8, 0, (x +y) =G * 6, (x) - H 5, ()]

I”io (Fu+v) -

x 8, (x —u)8, (y —v)dudv

G -H(v)

|j°° j:o (F(u+v) - G () - HW)
-0 —2v (59)

x8, (x—u)d,(y —v)dudv

g IS SR

x |6, (x —u) 8, (y — v)| dudv

G(u) - H ()|

< e“'oo 6, (x —u) 8, (y —v)|dudv =e.

Thus, we have the functional inequality
|F %8, %8, (x+y)-G=6,(x)-H=8,(y)<e (60)

forallx+2y >d;, :=3+In(2+d+1/d)and 0 < t < 1,
0 < s < 1. From now on, we assume that 0 <t < 1,0 < s < 1.
From (60), we have

|[F#8, %8, (x+y+2z)-G=*8,(x+y)—H=d(z)| <e
(61)

forx+y+2z>d,

|[F#8, %8, (x+y+2z)-G=*8,(x)—H=8(y+z)| <e
(62)

forx +2y+2z>d,,
|[F8,%6,(y+2)-G=68,(y)—H=0d,(z)| <e (63)
for y +2z > d,,
|F 8,8, (y+2)—G=*8,(0)—H = 8,(y+z)| <e (64)

for2y +2z > d,.
For given x, y € R, choose z > (1/2)(d; + |x| + 2[y]).
Then, using the triangle inequality with (61)~(64), we have

|G %8, (x+y)—Gx8,(x)—Gx8,(y) +G =8, (0)] < 4e
(65)

for all x, y € R. Replacing (x,t) by (y,5), (3,s) by (x,t) in
(60) and changing the roles of G and H, we have

|[H #6, (x+y)—H =08, (x)—H =08, (y) + H* 6, (0)| <4e
(66)

for all x, y € R. Now we prove that

|F#8,(x+y)—F*6,(x)—Fx8,(y)+Fx8,(0) <4e
(67)

for all x, y € R. From (60), we have
[F e 6,08, (x+ y) ~ G 8, () H =8, (x+ y—2)| <
|[F 8,0, (x)-G*08,(z—y)-H=*08,(x+y-2)| <
[F# 8, 8,(y) =G # 8, (2) —H 5, (y - 2)| < e,

|F 8, %8,(0) -G8, (z-y)-H=*5,(y-2)| <e,
(68)

forall x, y, zsuch that 2x + 2y —z > d,2x + y —z > d,
2y —z > dj,and y —z > d,. For given x, y € R, choose
z < — d, —2|x|-2|y|. Using the triangle inequality with (68),
we have

|F*8t*6s(x+y)_F*6t*8s(x)_F*8t*6s(y)

+F # 8, * 6, (0)] < 4e.

(69)

Letting s — 0" in (69), we get (67).



Applying Hyers’ stability theorem from [3] for (65), (66),
and (67), we obtain that for each 0 < t < 1 there exist func-
tions A (-, 1), j = 1,2,3, satisfying

Ai(x+pt)=A;(xt)+A;(1t), xyeR,  (70)
for which

|F # 8, (x) — Ay (x,1) = F * 8, (0)] < 4e, (71)

|G # 8, (x) — Ay (x,t) = G * 5, (0)] < 4e, (72)

|H % 8, (x) — A; (x,1) — H * 6, (0)| < 4e, (73)

forall x € R.
Now we prove that A, = A, = A;. From (60), using the
triangle inequality we have

|G %8, (x)| <e+|F =6, x8 (x+y)|+|H=6(y) (74

forall x + 2y > d,. Since F * §, * §,(x) — F * §,(x) as
t — 0%, in view of (74) it is easy to see that

G (x) := limsup G * &, (x) (75)

t— 0"

exists for all x € R. Similarly, we can show that

H (x) := limsup H * 8, (x) (76)

s— 0"

exists for all x € R. Putting y = 0 in (60) and lettings — 0"
so that H = 8,(0) — H(0) we have

|[F %8, (x) -G8, (x)-H(0)| < e (77)
for all x > d,. Similarly, we have
[F %8, (x) - H*06,(x)-G(0)| <e (78)

for all x > (d,/2). Using (71), (72), (77), and the triangle ine-
quality, we have

|A; (1) = A, (x,1)] < 9e + |F %8,(0) -G = 8, (0) —H(0)|

= M (t)
(79)

for all x > d,. From (71) and (80), we have

1

|A, (x, 1) = A, (x,1)] = i

|4, (kx,t) - A, (kx, t)|
(80)

1
< mM(t)

for all x € R, x#0, and all integers k with kx > d,. Letting
k — ooifx > 0andletting k — —oco if x < 0 in (80), we
have A (x,t) = A,(x,t) for x#0, which implies A, = A,
since A;(0,t) = A,(0,t) = 0. Similarly, using (71), (73), and
(78) we obtain that A, = A;.
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Finally, we prove that A, isindependent of ¢. Fixing x € R
andlettingt — 0" so that G#8,(x) — G(x) in (60), we have

|F*85(x+y)—(~}(x)—H*8s(y)|Se (81)

forall x+2y > d,. From (81), using the same substitutions as
in (61)~(64) we have

|G(x+y)—§(x)—5(y)+§(0)'s4e. (82)

By Hyers’ stability theorem [3], there exists a unique function
A satisfying the Cauchy functional equation

Alx+y)-A@X)-A(y)=0 (83)
for which
|G (x) = A(x) - G(0)] < 4e. (84)

Now we show that A;(x,t) = A(x) forallx € Rand0 < ¢ < 1.
Putting y = 0 in (81), we have
|[F 0, (x) -G (x) - H*5,(0) < (85)

forall x > d,.From (71), (84), and (85), using the triangle ine-
quality we have
|A; (x,1) - A(x)| < 9e + |F #8,(0)— H * 6, (0) —G(0)|
(86)
for all x > d,. From (86), using the method of proving A, =
A, we can show that A,(x,t) = A(x) forallx € Rand 0 <
t < 1. Thus,wehave A| = A, = A; := A
Lettingt — 0" in (72) so that G*6,(0) — G(0), we have

|Gx) = AGx) - G(0)| ., < 4e. (87)
Similarly, lettingt — 0% in (73) so that H * 8,(0) — H(0),
we have

|H(x) - Ax) - H )., < 4e. (88)
Now we prove the inequality

[Fx) - Ax) = F(0)| ., < 4e. (89)

For given x € R, choosing z such that x + z > d, replacing x
by x—z and y by z in (81), and using the triangle inequality, we
have

[Fx8,(x)| <e+|G(x-2)+Hx*38,(z)|].  (90)
From (90), it is easy to see that

F (x) := lim supF * &, (x) 91)
s— 0t
exists forall x € R. Letting# — 07 in (71) so that F%§,(0) —
F(0), we get (89). Replacing x by In x in (87), (88), and (89),
we have

|£(x) - Anx) - FO)] ., ) < 46

l9Go) - Alnx) = GO)] . 0, < e, (92)

Lo (R*

|10 = Altnx) = HO) 0 ., < de.
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Finally, we show that the solution A of the Cauchy equation
(83) has the form A(x) = cx for some ¢ € C. Since G is the
supremum limit of a collection of continuous functions G*3J,,
0 <t < 1,G is a Lebesgue measurable function. Also, as we
see in the proof of Hyers-Ulam stability theorem (see [3]), the
function A is given by

Ax) = n@;gbz‘”ii(z”x). (93)

Thus, A is a Lebesgue measurable function since it is the
limit of a sequence of Lebesgue measurable functions. It is
well known that every Lebesgue measurable solution A of the
Cauchy functional equation (83) has the form A(x) = ax for
some a € C. Letting ¢; = F(0), G = G(0), G = H(0) we get
the asserted result. O

Now we discuss an asymptotic behavior of the inequality
(45).

Theorem 6. Let f,g,h: R* — C, j=1,2,3, be locally inte-
grable functions satisfying

— 0 (94)
L(T,)

”ﬂx+w—gww—h<i+i>

asd — o©0. Then there exist constants a,c,,¢,,¢; € C such
that

||f(x) -¢ —aln xl]Lw(W) =0,
l9) - - aln o]y = 0. (9
||h(x) -G -aln x||Lm(R+) =0.

Proof. By the condition (94), for any positive integer # there
exists d,, > 1 such that

Hﬂx+w—gww—h<i+l> S% (96)

y

L (Ty)

for all x, y > 0 with (y/x) > d,. Now by Theorem 5, there
exist constants a, ¢, ¢,,¢; € C (which are independent of )
such that

||f(x) -¢ —aln x||Loo(R+) < %,
[g(x) - ¢, —aln x“Lm(W) < é, (97)
n
1) - ¢ - aln ] oy < -
n
Lettingn — o0 in (97), we obtain the asserted result. O

As a direct consequence of the previous result we have
found the solution of functional equation (4) in the L®-sense.

Corollary 7. Let f,g,h: R* — C be locally integrable func-
tions satisfying

Hf(xw)—g(xy)—h(}—lc + i)

=0 (98)
L2(Iy)

7
forall x, y € R,. Then there exist a, ¢, c,, &5 € C such that

1f ) = e - alnx ey =0,

[g(x) - ¢, —aln x||Loo(R+) =0, (99)
||h(x) -G -aln x"L‘”(R*) =0.

Finally, we discuss the locally integrable solution f, g, h :
R* — C of the functional equation (c.f. [16])

Fe)-gl)-n(3+5)=0 a0

forall (x, y) € I;. The following result is a direct consequence
of Theorem 2. However, we introduce an alternative proof
using Corollary 7. The following method of proof will be use-
ful when we know only regular solution in L*-sense.

Corollary 8. Every locally integrable solution f, g,h : R" —
C of the functional equation (100) has the form

f(x)=¢+¢+alnx, (101)
g(x)=¢ +alnx, (102)
h(x)=c¢ +alnx (103)

for some constants a, c¢;, ¢, € C.

Proof. It follows from Corollary 7 that (101), (102), and (103)
hold in almost everywhere sense; that is, there exists a subset
Q ¢ R* with Lebesgue measure m(Q°) = 0 such that (101),
(102), and (103) hold for all x € Q. For given x > 0, let p,q :
(0,x) — Rbyp(t) = (1/t)+(1/(x—1)), q(t) = t(x—1t). Since
m[(p”(Q) N g ()] = m[p™(Q) U g (Q)] = 0, we can
choose y € pil(Q)ﬂqfl(Q). Letz = x—y.Then y+z = xand
vz, (1/y) + (1/z) € Q. Thus, we can write

z

f(x)=g(yz>+h(i+l)

:c1+aln(yz)+cz+aln<l+l> (104)
y oz

=¢q+g+aln(y+z)=¢+g+alnx,

which gives (101). For given x > 0,let p: R — R by p(t) =
(1/t) + (t/x). Then, we have pil(Q) #0. Choose y € p’l(Q)
andletz = (x/y). Then yz = x, (1/y)+(1/z) € Q. Thus, using
(101) we can write

g(x):f()’+z)—h(i+l>

z

1 1
=c1+Q+aln(y+z)—Q—aln<—+—> (105)
y oz

=¢ +aln(yz) =¢ +alnx,

which gives (102). Finally, (103) follows from (100), (101), and
(102). This completes the proof of the corollary. O



4. Stability of (4) in Schwartz Distributions

Let Q) be an open subset of R”. We briefly introduce the space
2'(Q) of distributions. We denote & = (a;,...,q,) € Np,
where N, is the set of nonnegative integers and || = «; +
et 0% =07 00, 0;=(0/0x)), j=1,2,...,n.
Definition 9. Let C2°(Q)) be the set of all infinitely differen-
tiable functions on Q) with compact supports. A distribution
u is a linear form on C.°(€) such that for every compact set
K ¢ Q there exist constants C > 0 and k € N, for which

[(u.@)| <C Y sup|o®y|

e (106)
holds forall ¢ € C:°(Q2) with supports contained in K. The set
of all distributions is denoted by 2'(Q).

Let QO; be open subsets of R" for j = 1,2, with n; > n,.

Definition 10. Let u; € 9'(01-) andlet A : O — Q, be
a smooth function such that for each x € Q, the derivative
M(x) is surjective; that is, the Jacobian matrix VA of A has
rankn,. Then there exists a unique continuous linear map A* :
2'(Q,) - D'(Q,) such that A*u = u o A when u is a con-
tinuous function. We call A*u the pullback of u by A and it is
usually denoted by 1 o A.

If A is a diffeomorphism (a bijection with A, A~' smooth
functions) the pullback u o A can be written as

(uod, @) = <u, ((p 0 )L_l) (x) |V/\_1 (x)'> . (107)
For more details of distributions we refer the reader to
[29, 33].
In this section, we consider the Hyers-Ulam stability of
the functional equation of (4) in Schwartz distributions, that
is, the functional inequality

[ueS—vell—weR|, <e, (108)

where u,v,w € Z'(R"), [1: R? > R, andR: R?> - R are
defined by

1 1
R (X, )/) = ; + ;
(109)

S(x,y)=x+y,  T(xy)=xy,

and the inequality | - ||1-d < € in (108) means that [(-,¢)| <
ellgll;: for all test functions ¢ € C°(I;). For each t > 0, u *
O,(x) = (u},,6t(x — y)) is a smooth function of x € R" and
u*8,(x) » uast — 0" in the sense that

lim JOO (u=8,) (x)p(x) dx = (u,¢) (110)

t—0" J_co

for all ¢ € C°(R").
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Theorem 11. Let u,v,w € D' (RY) satisfy (108). Then there
exist constants a, ¢;, ¢,, ¢; € C such that

¢, —alnx| < 4e,
||v - —aln x|| < 4e, (111)
|w-c —alnx| < 4e.

Proof. The idea of the following proof is essentially the same
as that of Theorem 5, only with different terminologies. For
the reader we give a sketch of proof. Letuyjand J : I; — Uy
be the set and mapping in the proof of Theorem 5, respec-
tively. Then, ™' : U, — T} is given by

I (% 9)
B (e’“')’ + \Ve2xt2y _ gex e’“’)’ — \Je2xt2y _ 4ex>
B 2 ’ 2 ‘

(112)
Taking pullback by ™! in (108), we have
lucEoS-voEoP ~woEoP|, <e  (113)

where E: R — R, S,P,,P, : R* — R are given by

E(x) = €%, S(x,y)=x+y,
(114)
P(x,y)=x,  P(x.y)=y.
Thus, instead of (54) we have the inequality
lieS-7eP -@oBy, <e, (115)

wherefi = u o E,V = vo E, and @ = w o E. Using the same
approach as in the proof of Theorem 5, we have

||ﬁ —cx - c1|| < 4e,
||§ —cx — cz” < 4e, (116)

||w—cx—03|| < 4e

for some ¢ € C. Taking pullback by E'(x) = Inx in (116), we
have

[u—alnx—c <4e,
||v—a1nx—cz|| < 4e, (117)
[w-alnx - ¢ < 4e,

for some constants a, ¢}, ¢,,¢; € C. This completes the proof
of the theorem. O
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