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Let R be the set of real numbers, R+ = {𝑥 ∈ R | 𝑥 > 0}, 𝜖 ∈ R
+
, and 𝑓, 𝑔, ℎ : R+ → C. As classical and 𝐿∞ versions of the

Hyers-Ulam stability of the logarithmic type functional equation in a restricted domain, we consider the following inequalities:
|𝑓(𝑥 + 𝑦) − 𝑔(𝑥𝑦) − ℎ((1/𝑥) + (1/𝑦))| ≤ 𝜖, and ‖𝑓(𝑥 + 𝑦) − 𝑔(𝑥𝑦) − ℎ((1/𝑥) + (1/𝑦))‖

𝐿
∞
(Γ
𝑑
)
≤ 𝜖 in the sectors Γ

𝑑
= {(𝑥, 𝑦) : 𝑥 >

0, 𝑦 > 0, (𝑦/𝑥) > 𝑑}. As consequences of the results, we obtain asymptotic behaviors of the previous inequalities. We also consider
its distributional version ‖𝑢 ∘ 𝑆 − V ∘ Π − 𝑤 ∘ 𝑅‖

Γ
𝑑

≤ 𝜖, where 𝑢, V, 𝑤 ∈ D󸀠(R+), 𝑆(𝑥, 𝑦) = 𝑥 + 𝑦, Π(𝑥, 𝑦) = 𝑥𝑦, 𝑅(𝑥, 𝑦) = 1/𝑥 + 1/𝑦,
𝑥, 𝑦 ∈ R+, and the inequality ‖ ⋅ ‖

Γ
𝑑

≤ 𝜖means that |⟨⋅, 𝜑⟩| ≤ 𝜖 ‖ 𝜑‖
𝐿
1 for all test functions 𝜑 ∈ 𝐶∞

𝑐
(Γ
𝑑
).

1. Introduction

The Hyers-Ulam stability problem of functional equations
was originated in 1940 when Ulam proposed a question con-
cerning the approximate homomorphisms from a group to a
metric group (see [1]). A partial answer was given by Hyers
et al. [2, 3] under the assumption that the target space of the
involved mappings is a Banach space. It is possible to prove
stability results similar toHyers for functions that do not have
bounded Cauchy difference. In 1950, Aoki [4] first proved
such a result for additive functions. Bourgin [5, 6] and Aoki
[4] studied the Ulam problem from 1949 to 1951. The area
rested there for a while until 1978 when Rassias [7] published
a generalized version of Hyers’ result on linear mappings,
where the Cauchy difference was allowed to be unbounded.
Rassias’ work provided an impetus for the study on the sta-
bility of functional equations (see [2, 7–31]).

Let R be the set of real numbers, R
+
the set of positive

real numbers, andC the set of complex numbers. The subset,
for fixed real number 𝑑 > 0,

Γ
𝑑
= {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 > 0,

𝑦

𝑥

> 𝑑} (1)

of the plane,R2, will be referred to as a sector. A function 𝑓 :
R
+
→ C is said to be logarithmic if and only if it satisfies the

logarithmic functional equation:
𝑓 (𝑥𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦) = 0, ∀𝑥, 𝑦 ∈ R

+
, (2)

for all 𝑥, 𝑦 ∈ R
+
. There are several variants of logarithmic

functional equations (see [14–16]). It was shown by Heuvers
and Kannappan [16] that the logarithmic functional equation
is equivalent to the following functional equation:

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥𝑦) − 𝑓(

1

𝑥

+

1

𝑦

) = 0, ∀𝑥, 𝑦 ∈ R
+
. (3)

They have also studied the following pexiderized version of
(3):

𝑓 (𝑥 + 𝑦) − 𝑔 (𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

) = 0, ∀𝑥, 𝑦 ∈ R
+
. (4)

The general solution of the functional equation (4) has the
form (see [16])

𝑓 (𝑥) = 𝐿 (𝑥) + 𝑐
1
+ 𝑐
2
,

𝑔 (𝑥) = 𝐿 (𝑥) + 𝑐
1
,

ℎ (𝑥) = 𝐿 (𝑥) + 𝑐
2
,

(5)
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where 𝐿 : R+ → C is a logarithmic function and 𝑐
1
, 𝑐
2
are

arbitrary constants.
In this paper, we study Hyers-Ulam stability of the func-

tional equation (4). In Section 2, we treat the Hyers-Ulam
stability of the functional equation (4) in the classical sense
and present its asymptotic behavior. In Section 3, we consider
the stability of (4) in 𝐿∞-sense and its asymptotic behavior.
Finally, in Section 4we present the stability of (4) in Schwartz
distributions.

2. Stability of (4) in Classical Sense and
Its Asymptotic Behavior

In this section, we consider the classical Hyers-Ulam stability
of the functional equation (4) on the sector Γ

𝑑
and then study

its asymptotic behavior.
The following theorem is a direct consequence of the

Hyers’ result [3] (see also result of Forti [32]).

Theorem 1. Let 𝜖 be a nonnegative real number. Suppose that
𝑓 : R+ → C satisfies

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (6)

for all 𝑥, 𝑦 ∈ R
+
. Then there exists a unique logarithmic func-

tion 𝐿 : R+ → C such that

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥) − 𝐿 (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖, ∀𝑥 ∈ R
+
. (7)

Next, we establish the Hyers-Ulam stability of the func-
tional equation (4) on the restricted domain Γ

𝑑
.

Theorem 2. Suppose that 𝜖 ≥ 0, 𝑑 > 0, and 𝑓, 𝑔, ℎ satisfy the
functional inequality

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥 + 𝑦) − 𝑔 (𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (8)

for all (𝑥, 𝑦) ∈ Γ
𝑑
. Then there exists a unique logarithmic func-

tion 𝐿 : R+ → C such that

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥) − 𝐿 (𝑥) − 𝑓 (1)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖,

󵄨
󵄨
󵄨
󵄨

𝑔 (𝑥) − 𝐿 (𝑥) − 𝑔 (1)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖,

|ℎ (𝑥) − 𝐿 (𝑥) − ℎ (1)| ≤ 4𝜖

(9)

for all 𝑥 ∈ R
+
.

Proof. For given 𝑡, 𝑠 > 0, choose a real number 𝑢 > 0 such
that

𝑢 ≥ max
{

{

{

2

√
𝑡𝑠

2

,

2

√𝑡𝑠

,

2

√𝑠

,

2

𝑠

, 2
√

𝑑

𝑡𝑠

2
, 2
√

𝑑

𝑡𝑠

, 2
√

𝑑

𝑠

, 2
√

𝑑

𝑠

2

}

}

}

,

(10)

and let

𝑥
1
=

𝑡𝑠𝑢 −
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑡

2

, 𝑦
1
=

𝑡𝑠𝑢 +
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑡

2

,

𝑥
2
=

𝑡𝑠𝑢 −
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑡𝑠

2

, 𝑦
2
=

𝑡𝑠𝑢 +
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑡𝑠

2

,

𝑥
3
=

𝑠𝑢 −
√
𝑠

2
𝑢

2
− 4𝑠

2

, 𝑦
3
=

𝑠𝑢 +
√
𝑠

2
𝑢

2
− 4𝑠

2

,

𝑥
4
=

𝑠𝑢 −
√
𝑠

2
𝑢

2
− 4

2

, 𝑦
4
=

𝑠𝑢 +
√
𝑠

2
𝑢

2
− 4

2

.

(11)

Then it is easy to check that 𝑥
𝑗
, 𝑦
𝑗
> 0, 𝑦

𝑗
/𝑥
𝑗
> 𝑑 for all

𝑗 = 1, 2, 3, 4. Replacing 𝑥, 𝑦 by 𝑥
𝑗
, 𝑦
𝑗
in (8), respectively, for

𝑗 = 1, 2, 3, 4 we have
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡𝑠𝑢) − 𝑔 (𝑡) − ℎ (𝑠𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖, (12)
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡𝑠𝑢) − 𝑔 (𝑡𝑠) − ℎ (𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖, (13)
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑠𝑢) − 𝑔 (𝑠) − ℎ (𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖, (14)
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑠𝑢) − 𝑔 (1) − ℎ (𝑠𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖. (15)

From (12)–(15), using the triangle inequality we have
󵄨
󵄨
󵄨
󵄨

𝑔 (𝑡𝑠) − 𝑔 (t) − 𝑔 (𝑠) + 𝑔 (1)󵄨󵄨󵄨
󵄨

≤ 4𝜖 (16)

for all 𝑡, 𝑠 > 0. Similarly, for given 𝑡, 𝑠 > 0, choose 𝑢 > 0 such
that

𝑢 ≥ max{ 4

𝑡

2
𝑠

,

4

𝑡

2
𝑠

2
,

4

𝑠

2
,

4

𝑠

,

4𝑑

𝑡

2
𝑠

,

4𝑑

𝑡

2
𝑠

2
,

4𝑑

𝑠

2
,

4𝑑

𝑠

} (17)

and let

𝑥
1
=

𝑡𝑠𝑢 −
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑠𝑢

2

, 𝑦
1
=

𝑡𝑠𝑢 +
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑠𝑢

2

,

𝑥
2
=

𝑡𝑠𝑢 −
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑢

2

, 𝑦
2
=

𝑡𝑠𝑢 +
√
𝑡

2
𝑠

2
𝑢

2
− 4𝑢

2

,

𝑥
3
=

𝑠𝑢 −
√
𝑠

2
𝑢

2
− 4𝑢

2

, 𝑦
3
=

𝑠𝑢 +
√
𝑠

2
𝑢

2
− 4𝑢

2

,

𝑥
4
=

𝑠𝑢 −
√
𝑠

2
𝑢

2
− 4𝑠𝑢

2

, 𝑦
4
=

𝑠𝑢 +
√
𝑠

2
𝑢

2
− 4𝑠𝑢

2

.

(18)

Then it is easy to check that 𝑥j, 𝑦𝑗 > 0, 𝑦
𝑗
/𝑥
𝑗
> 𝑑 for all 𝑗 =

1, 2, 3, 4. Next, replacing 𝑥, 𝑦 by 𝑥
𝑗
, 𝑦
𝑗
in (8), respectively, for

𝑗 = 1, 2, 3, 4, we have
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡𝑠𝑢) − ℎ (𝑡) − 𝑔 (𝑠𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡𝑠𝑢) − ℎ (𝑡𝑠) − 𝑔 (𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑠𝑢) − ℎ (𝑠) − 𝑔 (𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑠𝑢) − ℎ (1) − 𝑔 (𝑠𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖.

(19)
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From (19), using the triangle inequality, we have

|ℎ (𝑡𝑠) − ℎ (𝑡) − ℎ (𝑠) + ℎ (1)| ≤ 4𝜖 (20)

for all 𝑡, 𝑠 > 0. Now we prove that
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡𝑠) − 𝑓 (𝑡) − 𝑓 (𝑠) + 𝑓 (1)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖 (21)

for all 𝑡, 𝑠 > 0. For given 𝑡, 𝑠 > 0, choose 𝑢 > 0 such that

𝑢 ≤ min{𝑡
2
𝑠

2

4

,

𝑡

2
𝑠

4

,

𝑠

2

4

,

𝑠

4

,

𝑡

2
𝑠

2

4𝑑

,

𝑡

2
𝑠

4𝑑

,

𝑠

2

4𝑑

,

𝑠

4𝑑

} (22)

and let

𝑥
1
=

𝑡𝑠 −
√
𝑡

2
𝑠

2
− 4𝑢

2

, 𝑦
1
=

𝑡𝑠 +
√
𝑡

2
𝑠

2
− 4𝑢

2

,

𝑥
2
=

𝑡 − √𝑡

2
− 4𝑢/𝑠

2

, 𝑦
2
=

𝑡 + √𝑡

2
− 4𝑢/𝑠

2

,

𝑥
3
=

𝑠 −
√
𝑠

2
− 4𝑢

2

, 𝑦
3
=

𝑠 +
√
𝑠

2
− 4𝑢

2

,

𝑥
4
=

1 − √1 − 4𝑢/𝑠

2

, 𝑦
4
=

1 + √1 − 4𝑢/𝑠

2

.

(23)

Then 𝑥
𝑗
, 𝑦
𝑗
> 0, 𝑦

𝑗
/𝑥
𝑗
> 𝑑 for all 𝑗 = 1, 2, 3, 4. Replacing 𝑥, 𝑦

by 𝑥
𝑗
, 𝑦
𝑗
in (8), respectively, for 𝑗 = 1, 2, 3, 4, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡𝑠) − 𝑔 (𝑢) − ℎ (

𝑡𝑠

𝑢

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡) − 𝑔 (

𝑢

𝑠

) − ℎ (

𝑡𝑠

𝑢

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑠) − 𝑔 (𝑢) − ℎ (

𝑠

𝑢

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (1) − 𝑔 (

𝑢

𝑠

) − ℎ (

𝑠

𝑢

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖.

(24)

From (24), using the triangle inequality we get (21).
Now by Theorem 1, there exist 𝐿

𝑗
: R+ → C for 𝑗 =

1, 2, 3 satisfying the logarithmic functional equation

𝐿
𝑗
(𝑡𝑠) = 𝐿

𝑗
(𝑡) + 𝐿

𝑗
(𝑠) , 𝑗 = 1, 2, 3, (25)

for which
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡) − 𝐿
1
(𝑡) − 𝑓 (1)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖, (26)
󵄨
󵄨
󵄨
󵄨

𝑔 (𝑡) − 𝐿
2
(𝑡) − 𝑔 (1)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖, (27)
󵄨
󵄨
󵄨
󵄨

ℎ (𝑡) − 𝐿
3
(𝑡) − ℎ (1)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖. (28)

Now we show that 𝐿
1
= 𝐿
2
= 𝐿
3
. Putting 𝑠 = 𝑢 = 1 and

𝑡 = 𝑢 = 1 in (12) separately, we have
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡) − 𝑔 (𝑡) − ℎ (1)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 for 𝑡 ≥ max {4, 4𝑑} , (29)

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑠) − ℎ (𝑠) − 𝑔 (1)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 for 𝑠 ≥ max {2, 2√𝑑} . (30)

From (26), (27), and (29), using the triangle inequality we
have

󵄨
󵄨
󵄨
󵄨

𝐿
1
(𝑡) − 𝐿

2
(𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 9𝜖 +

󵄨
󵄨
󵄨
󵄨

𝑓 (1) − 𝑔 (1) − ℎ (1)

󵄨
󵄨
󵄨
󵄨

:= 𝑀 for 𝑡 ≥ max {4, 4𝑑} .

(31)

Let 𝑡 > 1. Then we can choose a positive integer 𝑛
0
such that

𝑡

𝑛
≥ max{4, 4𝑑} for all integers 𝑛 ≥ 𝑛

0
. In view of (25), and

(31) we have

󵄨
󵄨
󵄨
󵄨

𝐿
1
(𝑡) − 𝐿

2
(𝑡)

󵄨
󵄨
󵄨
󵄨

=

1

𝑛

󵄨
󵄨
󵄨
󵄨

𝐿
1
(𝑡

𝑛

) − 𝐿
2
(𝑡

𝑛

)

󵄨
󵄨
󵄨
󵄨

≤

𝑀

𝑛

(32)

for all integer 𝑛 ≥ 𝑛
0
. Letting 𝑛 → ∞ in (32), we have 𝐿

1
(𝑡) =

𝐿
2
(𝑡) for all 𝑡 > 1. For 0 < 𝑡 < 1, we have 𝐿

1
(𝑡) = −𝐿

1
(1/𝑡) =

−𝐿
2
(1/𝑡) = 𝐿

2
(𝑡). Thus, we have 𝐿

1
(𝑡) = 𝐿

2
(𝑡) for all 𝑡 > 0.

Similarly, using (26), (28), and (30) we can show that 𝐿
1
= 𝐿
3
.

The uniqueness of the logarithmic function 𝐿 is obvious.This
completes the proof of the theorem.

Letting𝑔 = ℎ = 𝑓 inTheorem 2 andusing the inequalities
(12)–(14) together with the triangle inequality, we obtain

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡𝑠) − 𝑓 (𝑡) − 𝑓 (𝑠)

󵄨
󵄨
󵄨
󵄨

≤ 3𝜖 (33)

for all 𝑡, 𝑠 > 0.Thus, byTheorem 1we have the following theo-
rem.

Theorem 3. Let 𝑑 > 0. Suppose that 𝑓 : R+ → C satisfies the
functional inequality

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥𝑦) − 𝑓(

1

𝑥

+

1

𝑦

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (34)

for all (𝑥, 𝑦) ∈ Γ
𝑑
. Then there exists a unique logarithmic func-

tion 𝐿 : R+ → C such that

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥) − 𝐿 (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 3𝜖, ∀𝑥 ∈ R
+

. (35)

Nowwe prove the following asymptotic result concerning
(8).

Theorem4. Suppose that𝑓, 𝑔, ℎ : R+ → C satisfy the asymp-
totic condition

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥 + 𝑦) − 𝑔 (𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󳨀→ 0 (36)

as (𝑦/𝑥) → ∞. Then there exists a logarithmic function 𝐿 :

R+ → C and 𝑐
1
, 𝑐
2
∈ C such that

𝑓 (𝑥) = 𝐿 (𝑥) + 𝑐
1
+ 𝑐
2
,

𝑔 (𝑥) = 𝐿 (𝑥) + 𝑐
1
,

ℎ (𝑥) = 𝐿 (𝑥) + 𝑐
2

(37)

for all 𝑥 > 0.
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Proof. By the condition (36), for any positive integer 𝑛, there
exists 𝑑

𝑛
> 0 such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥 + 𝑦) − 𝑔 (𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

𝑛

(38)

for all 𝑥, 𝑦 > 0 with (𝑦/𝑥) > 𝑑
𝑛
. By Theorem 1, there exists a

logarithmic function 𝐿
𝑛
: R+ → C such that

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥) − 𝐿
𝑛
(𝑥) − 𝑓 (1)

󵄨
󵄨
󵄨
󵄨

≤

4

𝑛

, (39)

󵄨
󵄨
󵄨
󵄨

𝑔 (𝑥) − 𝐿
𝑛
(𝑥) − 𝑔 (1)

󵄨
󵄨
󵄨
󵄨

≤

4

𝑛

, (40)

󵄨
󵄨
󵄨
󵄨

ℎ (𝑥) − 𝐿
𝑛
(𝑥) − ℎ (1)

󵄨
󵄨
󵄨
󵄨

≤

4

𝑛

(41)

for all 𝑥 > 0. Replacing 𝑛 by 𝑚 in (39) and using the triangle
inequality, we have

󵄨
󵄨
󵄨
󵄨

𝐿
𝑛
(𝑥) − 𝐿

𝑚
(𝑥)

󵄨
󵄨
󵄨
󵄨

≤

4

𝑛

+

4

𝑚

≤ 8 (42)

for all 𝑥 > 0. Thus, we obtain

󵄨
󵄨
󵄨
󵄨

𝐿
𝑛
(𝑥) − 𝐿

𝑚
(𝑥)

󵄨
󵄨
󵄨
󵄨

=

1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿
𝑛
(𝑥

𝑘

) − 𝐿
𝑚
(𝑥

𝑘

)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

8

𝑘

(43)

for all 𝑥 > 0 and 𝑘 ∈ N. Letting 𝑘 → ∞ in (43), we have
𝐿
𝑛
(𝑥) = 𝐿

𝑚
(𝑥) := 𝐿(𝑥) for all 𝑥 > 0. Finally, letting 𝑛 → ∞

in (39), (40), and (41), we have

𝑓 (𝑥) = 𝐿 (𝑥) + 𝑓 (1) ,

𝑔 (𝑥) = 𝐿 (𝑥) + 𝑔 (1) ,

ℎ (𝑥) = 𝐿 (𝑥) + ℎ (1)

(44)

for all 𝑥 > 0. Finally, substituting (44) in (36) we get 𝑓(1) =
𝑔(1) + ℎ(1). Letting 𝑐

1
= 𝑔(1) and 𝑐

2
= ℎ(1) we obtain the

asserted result.

3. Stability of (4) in 𝐿

∞-Sense and
Its Asymptotic Behavior

In this section, we consider the Hyers-Ulam stability of the
functional equation (4) in 𝐿∞-sense on the sector Γ

𝑑
and then

examine its asymptotic behavior. Consider the functional
inequality

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑥 + 𝑦) − 𝑔(𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Γ
𝑑
)

≤ 𝜖, (45)

where Γ
𝑑
= {(𝑥, 𝑦) : 𝑥 > 0, 𝑦 > 0, (𝑦/𝑥) > 𝑑} and 𝑑 > 1 is

fixed, where ‖ ⋅ ‖
𝐿
∞
(Γ
𝑑
)
denotes the essential supremum norm

of 𝐷(𝑥, 𝑦) = 𝑓(𝑥 + 𝑦) − 𝑔(𝑥𝑦) − ℎ((1/𝑥) + (1/𝑦)) on the set
Γ
𝑑
. We employ the function 𝛿 on R defined by

𝛿 (𝑥) = {

𝑞𝑒

−(1−𝑥
2

)

−1

, if |𝑥| < 1,
0, if |𝑥| ≥ 1,

(46)

where

𝑞 = (∫

1

−1

𝑒

−(1−𝑥
2

)

−1

𝑑𝑥)

−1

.
(47)

It is easy to see that 𝛿(𝑥) is an infinitely differentiable function
with support {𝑥 : |𝑥| ≤ 1}. Let 𝑓 be a locally integrable
function and 𝛿

𝑡
(𝑥) := 𝑡

−1
𝛿(𝑥/𝑡), 𝑡 > 0. Then for each 𝑡 > 0,

𝑓 ∗ 𝛿
𝑡
(𝑥) = ∫

∞

−∞

𝑓 (𝑦) 𝛿
𝑡
(𝑥 − 𝑦) 𝑑𝑦 (48)

is a smooth function of 𝑥 ∈ R and 𝑓 ∗ 𝛿
𝑡
(𝑥) → 𝑓(𝑥) for

almost every 𝑥 ∈ R as 𝑡 → 0

+.
Now we prove the Hyers-Ulam stability of the functional

equation (4) in 𝐿∞-sense on the sector Γ
𝑑
.

Theorem 5. Let 𝑓, 𝑔, ℎ be locally integrable functions satisfy-
ing (45). Then there exist constants 𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑎 ∈ C such that

󵄩
󵄩
󵄩
󵄩

𝑓 (𝑥) − 𝑐
1
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(𝑅
+
)
≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

𝑔 (𝑥) − 𝑐
2
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(𝑅
+
)
≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

ℎ (𝑥) − 𝑐
3
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(𝑅
+
)
≤ 4𝜖.

(49)

Proof. We will use the diffeomorphism

𝐽 (𝑥, 𝑦) = (ln𝑥𝑦, ln
𝑥 + 𝑦

𝑥𝑦

) . (50)

Let 𝑢 = ln𝑥𝑦, V = ln((𝑥 + 𝑦)/𝑥𝑦) and 𝑦/𝑥 = 𝑡 > 1. Then, we
have

𝑢 + 2V = ln𝑥𝑦 + 2 ln
𝑥 + 𝑦

𝑥𝑦

= ln(2 + 𝑥

𝑦

+

𝑦

𝑥

)

= ln(2 + 𝑡 + 1

𝑡

) .

(51)

Thus, we have 𝐽(Γ
𝑑
) := 𝑈

𝑑
= {(𝑢, V) : 𝑢+2V > ln(2+𝑑+1/𝑑)}.

Consequently, (45) is converted to

󵄩
󵄩
󵄩
󵄩

𝑓 (𝑒

𝑢+V
) − 𝑔 (𝑒

𝑢

) − ℎ (𝑒

V
)

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑈
𝑑
)
≤ 𝜖. (52)

Now, let

𝐹 (𝑢) = 𝑓 (𝑒

𝑢

) , 𝐺 (𝑢) = 𝑔 (𝑒

𝑢

) , 𝐻 (𝑢) = ℎ (𝑒

𝑢

) .

(53)

Then, we have

‖𝐹 (𝑢 + V) − 𝐺 (𝑢) − 𝐻 (V)‖
𝐿
∞
(𝑈
𝑑
)
≤ 𝜖. (54)
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For each 𝑥, 𝑦 ∈ R and 𝑡, 𝑠 > 0, we have

∬

∞

−∞

𝐹 (𝑢 + V) 𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V) 𝑑𝑢 𝑑V

= ∫

∞

−∞

𝐹 (𝑢) (∫

∞

−∞

𝛿
𝑡
(𝑥 − 𝑢 + V) 𝛿

𝑠
(𝑦 − V) 𝑑V)𝑑𝑢

= ∫

∞

−∞

𝐹 (𝑢) (∫

∞

−∞

𝛿
𝑡
(V) 𝛿
𝑠
(𝑥 + 𝑦 − 𝑢 − V) 𝑑V)𝑑𝑢

= ∫

∞

−∞

𝐹 (𝑢) (𝛿
𝑡
∗ 𝛿
𝑠
) (𝑥 + 𝑦 − 𝑢) 𝑑𝑢

= 𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦) .

(55)

We also have

∬

∞

−∞

𝐺 (𝑢) 𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V) 𝑑𝑢 𝑑V

= ∫

∞

−∞

𝐺 (𝑢) 𝛿
𝑡
(𝑥 − 𝑢) (∫

∞

−∞

𝛿
𝑠
(𝑦 − V) 𝑑V)𝑑𝑢

= ∫

∞

−∞

𝐺 (𝑢) 𝛿
𝑡
(𝑥 − 𝑢) 𝑑𝑢

= 𝐺 ∗ 𝛿
𝑡
(𝑥) .

(56)

Similarly, we have

∬

∞

−∞

𝐻(V) 𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V) 𝑑𝑢 𝑑V = 𝐻 ∗ 𝛿

𝑠
(𝑦) . (57)

On the other hand, let𝑥+2𝑦 > 3+ln(2+𝑑+1/𝑑) and 0 < 𝑡 < 1,
0 < 𝑠 < 1. Then, we have

supp (𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V))

= {(𝑢, V) : 𝑥 − 𝑡 ≤ 𝑢 ≤ 𝑥 + 𝑡, 𝑦 − 𝑠 ≤ V ≤ 𝑦 + 𝑠} ⊂ 𝑈
𝑑
.

(58)

Let 𝑑󸀠 = ln(2 + 𝑑 + 1/𝑑). Then it follows from (54)∼(58) that
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦) − 𝐺 ∗ 𝛿

𝑡
(𝑥) − 𝐻 ∗ 𝛿

𝑠
(𝑦)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∬

∞

−∞

(𝐹 (𝑢 + V) − 𝐺 (𝑢) − 𝐻 (V))

× 𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V) 𝑑𝑢 𝑑V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

∞

−∞

∫

∞

𝑑
󸀠
−2V

(𝐹 (𝑢 + V) − 𝐺 (𝑢) − 𝐻 (V))

× 𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V) 𝑑𝑢 𝑑V

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= ∫

∞

−∞

∫

∞

𝑑
󸀠
−2V

|𝐹 (𝑢 + V) − 𝐺 (𝑢) − 𝐻 (V)|

×

󵄨
󵄨
󵄨
󵄨

𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V)󵄨󵄨󵄨

󵄨

𝑑𝑢 𝑑V

≤ 𝜖∬

∞

−∞

󵄨
󵄨
󵄨
󵄨

𝛿
𝑡
(𝑥 − 𝑢) 𝛿

𝑠
(𝑦 − V)󵄨󵄨󵄨

󵄨

𝑑𝑢 𝑑V = 𝜖.

(59)

Thus, we have the functional inequality
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦) − 𝐺 ∗ 𝛿

𝑡
(𝑥) − 𝐻 ∗ 𝛿

𝑠
(𝑦)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (60)

for all 𝑥 + 2𝑦 > 𝑑
1
:= 3 + ln(2 + 𝑑 + 1/𝑑) and 0 < 𝑡 < 1,

0 < 𝑠 < 1. From now on, we assume that 0 < 𝑡 < 1, 0 < 𝑠 < 1.
From (60), we have
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦 + 𝑧) − 𝐺 ∗ 𝛿

𝑡
(𝑥 + 𝑦) − 𝐻 ∗ 𝛿

𝑠
(𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖

(61)

for 𝑥 + 𝑦 + 2𝑧 > 𝑑
1
,

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦 + 𝑧) − 𝐺 ∗ 𝛿

𝑡
(𝑥) − 𝐻 ∗ 𝛿

𝑠
(𝑦 + 𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖

(62)

for 𝑥 + 2𝑦 + 2𝑧 > 𝑑
1
,

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑦 + 𝑧) − 𝐺 ∗ 𝛿

𝑡
(𝑦) − 𝐻 ∗ 𝛿

𝑠
(𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (63)

for 𝑦 + 2𝑧 > 𝑑
1
,

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑦 + 𝑧) − 𝐺 ∗ 𝛿

𝑡
(0) − 𝐻 ∗ 𝛿s (𝑦 + 𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (64)

for 2𝑦 + 2𝑧 > 𝑑
1
.

For given 𝑥, 𝑦 ∈ R, choose 𝑧 > (1/2)(𝑑
1
+ |𝑥| + 2|𝑦|).

Then, using the triangle inequality with (61)∼(64), we have
󵄨
󵄨
󵄨
󵄨

𝐺 ∗ 𝛿
𝑡
(𝑥 + 𝑦) − 𝐺 ∗ 𝛿

𝑡
(𝑥) − 𝐺 ∗ 𝛿

𝑡
(𝑦) + 𝐺 ∗ 𝛿

𝑡
(0)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖

(65)

for all 𝑥, 𝑦 ∈ R. Replacing (𝑥, 𝑡) by (𝑦, 𝑠), (𝑦, 𝑠) by (𝑥, 𝑡) in
(60) and changing the roles of 𝐺 and𝐻, we have
󵄨
󵄨
󵄨
󵄨

𝐻 ∗ 𝛿
𝑡
(𝑥 + 𝑦) − 𝐻 ∗ 𝛿

𝑡
(𝑥) − 𝐻 ∗ 𝛿

𝑡
(𝑦) + 𝐻 ∗ 𝛿

𝑡
(0)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖

(66)

for all 𝑥, 𝑦 ∈ R. Now we prove that
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
(𝑥 + 𝑦) − 𝐹 ∗ 𝛿

𝑡
(𝑥) − 𝐹 ∗ 𝛿

𝑡
(𝑦) + 𝐹 ∗ 𝛿

𝑡
(0)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖

(67)

for all 𝑥, 𝑦 ∈ R. From (60), we have
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦) − 𝐺 ∗ 𝛿

𝑡
(𝑧) − 𝐻 ∗ 𝛿

𝑠
(𝑥 + 𝑦 − 𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥) − 𝐺 ∗ 𝛿

𝑡
(𝑧 − 𝑦) − 𝐻 ∗ 𝛿

𝑠
(𝑥 + 𝑦 − 𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑦) − 𝐺 ∗ 𝛿

𝑡
(𝑧) − 𝐻 ∗ 𝛿

𝑠
(𝑦 − 𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(0) − 𝐺 ∗ 𝛿

𝑡
(𝑧 − 𝑦) − 𝐻 ∗ 𝛿

𝑠
(𝑦 − 𝑧)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖,

(68)

for all 𝑥, 𝑦, 𝑧 such that 2𝑥 + 2𝑦 − 𝑧 > 𝑑
1
, 2𝑥 + 𝑦 − 𝑧 > 𝑑

1
,

2𝑦 − 𝑧 > 𝑑
1
, and 𝑦 − 𝑧 > 𝑑

1
. For given 𝑥, 𝑦 ∈ R, choose

𝑧 ≤ − 𝑑
1
−2|𝑥|−2|𝑦|. Using the triangle inequality with (68),

we have
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦) − 𝐹 ∗ 𝛿

𝑡
∗ 𝛿
𝑠
(𝑥) − 𝐹 ∗ 𝛿

𝑡
∗ 𝛿
𝑠
(𝑦)

+𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(0)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖.

(69)

Letting 𝑠 → 0

+ in (69), we get (67).
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Applying Hyers’ stability theorem from [3] for (65), (66),
and (67), we obtain that for each 0 < 𝑡 < 1 there exist func-
tions 𝐴

𝑗
(⋅, 𝑡), 𝑗 = 1, 2, 3, satisfying

𝐴
𝑗
(𝑥 + 𝑦, 𝑡) = 𝐴

𝑗
(𝑥, 𝑡) + 𝐴

𝑗
(𝑦, 𝑡) , 𝑥, 𝑦 ∈ R, (70)

for which
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
(𝑥) − 𝐴

1
(𝑥, 𝑡) − 𝐹 ∗ 𝛿

𝑡
(0)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖, (71)
󵄨
󵄨
󵄨
󵄨

𝐺 ∗ 𝛿
𝑡
(𝑥) − 𝐴

2
(𝑥, 𝑡) − 𝐺 ∗ 𝛿

𝑡
(0)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖, (72)
󵄨
󵄨
󵄨
󵄨

𝐻 ∗ 𝛿
𝑡
(𝑥) − 𝐴

3
(𝑥, 𝑡) − 𝐻 ∗ 𝛿

𝑡
(0)

󵄨
󵄨
󵄨
󵄨

≤ 4𝜖, (73)

for all 𝑥 ∈ R.
Now we prove that 𝐴

1
= 𝐴
2
= 𝐴
3
. From (60), using the

triangle inequality we have
󵄨
󵄨
󵄨
󵄨

𝐺 ∗ 𝛿
𝑡
(𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 +

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
∗ 𝛿
𝑠
(𝑥 + 𝑦)

󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨

𝐻 ∗ 𝛿
𝑠
(𝑦)

󵄨
󵄨
󵄨
󵄨

(74)

for all 𝑥 + 2𝑦 > 𝑑
1
. Since 𝐹 ∗ 𝛿

𝑡
∗ 𝛿
𝑠
(𝑥) → 𝐹 ∗ 𝛿

𝑠
(𝑥) as

𝑡 → 0

+, in view of (74) it is easy to see that

̃
𝐺 (𝑥) := lim sup

𝑡→0
+

𝐺 ∗ 𝛿
𝑡
(𝑥) (75)

exists for all 𝑥 ∈ R. Similarly, we can show that

̃
𝐻 (𝑥) := lim sup

𝑠→0
+

𝐻 ∗ 𝛿
𝑠
(𝑥) (76)

exists for all 𝑥 ∈ R. Putting 𝑦 = 0 in (60) and letting 𝑠 → 0

+

so that𝐻 ∗ 𝛿
𝑠
(0) →

̃
𝐻(0) we have

󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
(𝑥) − 𝐺 ∗ 𝛿

𝑡
(𝑥) −

̃
𝐻 (0)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (77)

for all 𝑥 > 𝑑
1
. Similarly, we have

󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
(𝑥) − 𝐻 ∗ 𝛿

𝑡
(𝑥) −

̃
𝐺 (0)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (78)

for all 𝑥 > (𝑑
1
/2). Using (71), (72), (77), and the triangle ine-

quality, we have

󵄨
󵄨
󵄨
󵄨

𝐴
1
(𝑥, 𝑡) − 𝐴

2
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

≤ 9𝜖 +

󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
(0) − 𝐺 ∗ 𝛿

𝑡
(0) −

̃
𝐻 (0)

󵄨
󵄨
󵄨
󵄨
󵄨

:= 𝑀 (𝑡)

(79)

for all 𝑥 > 𝑑
1
. From (71) and (80), we have

󵄨
󵄨
󵄨
󵄨

𝐴
1
(𝑥, 𝑡) − 𝐴

2
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

=

1

|𝑘|

󵄨
󵄨
󵄨
󵄨

𝐴
1
(𝑘𝑥, 𝑡) − 𝐴

2
(𝑘𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨

≤

1

|𝑘|

𝑀 (𝑡)

(80)

for all 𝑥 ∈ R, 𝑥 ̸= 0, and all integers 𝑘 with 𝑘𝑥 > 𝑑
1
. Letting

𝑘 → ∞ if 𝑥 > 0 and letting 𝑘 → −∞ if 𝑥 < 0 in (80), we
have 𝐴

1
(𝑥, 𝑡) = 𝐴

2
(𝑥, 𝑡) for 𝑥 ̸= 0, which implies 𝐴

1
= 𝐴
2

since 𝐴
1
(0, 𝑡) = 𝐴

2
(0, 𝑡) = 0. Similarly, using (71), (73), and

(78) we obtain that 𝐴
1
= 𝐴
3
.

Finally, we prove that𝐴
1
is independent of 𝑡. Fixing𝑥 ∈ R

and letting 𝑡 → 0

+ so that𝐺∗𝛿
𝑡
(𝑥) →

̃
𝐺(𝑥) in (60), we have

󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑠
(𝑥 + 𝑦) −

̃
𝐺 (𝑥) − 𝐻 ∗ 𝛿

𝑠
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (81)

for all 𝑥+2𝑦 > 𝑑
1
. From (81), using the same substitutions as

in (61)∼(64) we have
󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝐺 (𝑥 + 𝑦) −

̃
𝐺 (𝑥) −

̃
𝐺 (𝑦) +

̃
𝐺 (0)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 4𝜖. (82)

By Hyers’ stability theorem [3], there exists a unique function
𝐴 satisfying the Cauchy functional equation

𝐴 (𝑥 + 𝑦) − 𝐴 (𝑥) − 𝐴 (𝑦) = 0 (83)

for which
󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝐺 (𝑥) − 𝐴 (𝑥) −

̃
𝐺 (0)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 4𝜖. (84)

Nowwe show that𝐴
1
(𝑥, 𝑡) = 𝐴(𝑥) for all𝑥 ∈ R and 0 < 𝑡 < 1.

Putting 𝑦 = 0 in (81), we have
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑠
(𝑥) −

̃
𝐺 (𝑥) − 𝐻 ∗ 𝛿

𝑠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜖 (85)

for all𝑥 > 𝑑
1
. From (71), (84), and (85), using the triangle ine-

quality we have
󵄨
󵄨
󵄨
󵄨

𝐴
1
(𝑥, 𝑡) − 𝐴 (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 9𝜖 +

󵄨
󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑡
(0) − 𝐻 ∗ 𝛿

𝑡
(0) −

̃
𝐺 (0)

󵄨
󵄨
󵄨
󵄨
󵄨

(86)

for all 𝑥 > 𝑑
1
. From (86), using the method of proving 𝐴

1
=

𝐴
2
we can show that 𝐴

1
(𝑥, 𝑡) = 𝐴(𝑥) for all 𝑥 ∈ R and 0 <

𝑡 < 1. Thus, we have 𝐴
1
= 𝐴
2
= 𝐴
3
:= 𝐴.

Letting 𝑡 → 0

+ in (72) so that𝐺∗𝛿
𝑡
(0) →

̃
𝐺(0), we have

󵄩
󵄩
󵄩
󵄩
󵄩

𝐺(𝑥) − 𝐴(𝑥) −
̃
𝐺(0)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
≤ 4𝜖. (87)

Similarly, letting 𝑡 → 0

+ in (73) so that𝐻 ∗ 𝛿
𝑡
(0) →

̃
𝐻(0),

we have
󵄩
󵄩
󵄩
󵄩
󵄩

𝐻(𝑥) − 𝐴(𝑥) −
̃
𝐻(0)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
≤ 4𝜖. (88)

Now we prove the inequality
󵄩
󵄩
󵄩
󵄩
󵄩

𝐹(𝑥) − 𝐴(𝑥) −
̃
𝐹(0)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
≤ 4𝜖. (89)

For given 𝑥 ∈ R, choosing 𝑧 such that 𝑥 + 𝑧 > 𝑑
1
replacing 𝑥

by𝑥−𝑧 and𝑦 by 𝑧 in (81), and using the triangle inequality, we
have

󵄨
󵄨
󵄨
󵄨

𝐹 ∗ 𝛿
𝑠
(𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝜖 +

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝐺 (𝑥 − 𝑧) + 𝐻 ∗ 𝛿

𝑠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

. (90)

From (90), it is easy to see that

̃
𝐹 (𝑥) := lim sup

𝑠→0
+

𝐹 ∗ 𝛿
𝑠
(𝑥) (91)

exists for all 𝑥 ∈ R. Letting 𝑡 → 0

+ in (71) so that𝐹∗𝛿
𝑡
(0) →

̃
𝐹(0), we get (89). Replacing 𝑥 by ln𝑥 in (87), (88), and (89),
we have

󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑥) − 𝐴(ln𝑥) − ̃
𝐹(0)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R+)

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩
󵄩

𝑔(𝑥) − 𝐴(ln𝑥) − ̃𝐺(0)󵄩󵄩󵄩
󵄩
󵄩𝐿
∞
(R+)

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩
󵄩

ℎ(𝑥) − 𝐴(ln𝑥) − ̃
𝐻(0)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(R+)

≤ 4𝜖.

(92)
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Finally, we show that the solution 𝐴 of the Cauchy equation
(83) has the form 𝐴(𝑥) = 𝑐𝑥 for some 𝑐 ∈ C. Since ̃𝐺 is the
supremum limit of a collection of continuous functions𝐺∗𝛿

𝑡
,

0 < 𝑡 < 1, ̃𝐺 is a Lebesgue measurable function. Also, as we
see in the proof of Hyers-Ulam stability theorem (see [3]), the
function 𝐴 is given by

𝐴 (𝑥) = lim
𝑛→∞

2

−𝑛
̃
𝐺 (2

𝑛

𝑥) . (93)

Thus, 𝐴 is a Lebesgue measurable function since it is the
limit of a sequence of Lebesgue measurable functions. It is
well known that every Lebesguemeasurable solution𝐴 of the
Cauchy functional equation (83) has the form 𝐴(𝑥) = 𝑎𝑥 for
some 𝑎 ∈ C. Letting 𝑐

1
=
̃
𝐹(0), 𝑐

2
=
̃
𝐺(0), 𝑐

3
=
̃
𝐻(0) we get

the asserted result.

Now we discuss an asymptotic behavior of the inequality
(45).

Theorem 6. Let 𝑓, 𝑔, ℎ : R+ → C, 𝑗 = 1, 2, 3, be locally inte-
grable functions satisfying

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑥 + 𝑦) − 𝑔(𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Γ
𝑑
)

󳨀→ 0 (94)

as 𝑑 → ∞. Then there exist constants 𝑎, 𝑐
1
, 𝑐
2
, 𝑐
3
∈ C such

that
󵄩
󵄩
󵄩
󵄩

𝑓(𝑥) − 𝑐
1
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

= 0,

󵄩
󵄩
󵄩
󵄩

𝑔(𝑥) − 𝑐
2
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

= 0,

󵄩
󵄩
󵄩
󵄩

ℎ(𝑥) − 𝑐
3
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

= 0.

(95)

Proof. By the condition (94), for any positive integer 𝑛 there
exists 𝑑

𝑛
> 1 such that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑥 + 𝑦) − 𝑔(𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Γ
𝑑
)

≤

1

𝑛

(96)

for all 𝑥, 𝑦 > 0 with (𝑦/𝑥) > 𝑑
𝑛
. Now by Theorem 5, there

exist constants 𝑎, 𝑐
1
, 𝑐
2
, 𝑐
3
∈ C (which are independent of 𝑛)

such that

󵄩
󵄩
󵄩
󵄩

𝑓(𝑥) − 𝑐
1
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

≤

4

𝑛

,

󵄩
󵄩
󵄩
󵄩

𝑔(𝑥) − 𝑐
2
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

≤

4

𝑛

,

󵄩
󵄩
󵄩
󵄩

ℎ(𝑥) − 𝑐
3
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

≤

4

𝑛

.

(97)

Letting 𝑛 → ∞ in (97), we obtain the asserted result.

As a direct consequence of the previous result we have
found the solution of functional equation (4) in the𝐿∞-sense.

Corollary 7. Let 𝑓, 𝑔, ℎ : R+ → C be locally integrable func-
tions satisfying

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑥 + 𝑦) − 𝑔(𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(Γ
𝑑
)

= 0 (98)

for all 𝑥, 𝑦 ∈ R
+
. Then there exist 𝑎, 𝑐

1
, 𝑐
2
, 𝑐
3
∈ C such that

󵄩
󵄩
󵄩
󵄩

𝑓(𝑥) − 𝑐
1
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

= 0,

󵄩
󵄩
󵄩
󵄩

𝑔(𝑥) − 𝑐
2
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

= 0,

󵄩
󵄩
󵄩
󵄩

ℎ(𝑥) − 𝑐
3
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩𝐿
∞
(R+)

= 0.

(99)

Finally, we discuss the locally integrable solution 𝑓, 𝑔, ℎ :
R+ → C of the functional equation (c.f. [16])

𝑓 (𝑥 + 𝑦) − 𝑔 (𝑥𝑦) − ℎ(

1

𝑥

+

1

𝑦

) = 0 (100)

for all (𝑥, 𝑦) ∈ Γ
𝑑
.The following result is a direct consequence

of Theorem 2. However, we introduce an alternative proof
using Corollary 7.The followingmethod of proof will be use-
ful when we know only regular solution in 𝐿∞-sense.

Corollary 8. Every locally integrable solution 𝑓, 𝑔, ℎ : R+ →
C of the functional equation (100) has the form

𝑓 (𝑥) = 𝑐
1
+ 𝑐
2
+ 𝑎 ln𝑥, (101)

𝑔 (𝑥) = 𝑐
1
+ 𝑎 ln𝑥, (102)

ℎ (𝑥) = 𝑐
2
+ 𝑎 ln𝑥 (103)

for some constants 𝑎, 𝑐
1
, 𝑐
2
∈ C.

Proof. It follows from Corollary 7 that (101), (102), and (103)
hold in almost everywhere sense; that is, there exists a subset
Ω ⊂ R+ with Lebesgue measure 𝑚(Ω𝑐) = 0 such that (101),
(102), and (103) hold for all 𝑥 ∈ Ω. For given 𝑥 > 0, let 𝑝, 𝑞 :
(0, 𝑥) → R by 𝑝(𝑡) = (1/𝑡)+(1/(𝑥−𝑡)), 𝑞(𝑡) = 𝑡(𝑥−𝑡). Since
𝑚[(𝑝

−1
(Ω) ∩ 𝑞

−1
(Ω))

𝑐

] = 𝑚[𝑝

−1
(Ω

𝑐
) ∪ 𝑞

−1
(Ω

𝑐
)] = 0, we can

choose 𝑦 ∈ 𝑝−1(Ω)∩𝑞−1(Ω). Let 𝑧 = 𝑥−𝑦.Then𝑦+𝑧 = 𝑥 and
𝑦𝑧, (1/𝑦) + (1/𝑧) ∈ Ω. Thus, we can write

𝑓 (𝑥) = 𝑔 (𝑦𝑧) + ℎ(

1

𝑦

+

1

𝑧

)

= 𝑐
1
+ 𝑎 ln (𝑦𝑧) + 𝑐

2
+ 𝑎 ln( 1

𝑦

+

1

𝑧

)

= 𝑐
1
+ 𝑐
2
+ 𝑎 ln (𝑦 + 𝑧) = 𝑐

1
+ 𝑐
2
+ 𝑎 ln𝑥,

(104)

which gives (101). For given 𝑥 > 0, let 𝑝 : R+ → R by 𝑝(𝑡) =
(1/𝑡) + (𝑡/𝑥). Then, we have 𝑝−1(Ω) ̸= 0. Choose 𝑦 ∈ 𝑝−1(Ω)
and let 𝑧 = (𝑥/𝑦).Then𝑦𝑧 = 𝑥, (1/𝑦)+(1/𝑧) ∈ Ω.Thus, using
(101) we can write

𝑔 (𝑥) = 𝑓 (𝑦 + 𝑧) − ℎ(

1

𝑦

+

1

𝑧

)

= 𝑐
1
+ 𝑐
2
+ 𝑎 ln (𝑦 + 𝑧) − 𝑐

2
− 𝑎 ln( 1

𝑦

+

1

𝑧

)

= 𝑐
1
+ 𝑎 ln (𝑦𝑧) = 𝑐

1
+ 𝑎 ln𝑥,

(105)

which gives (102). Finally, (103) follows from (100), (101), and
(102). This completes the proof of the corollary.
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4. Stability of (4) in Schwartz Distributions

LetΩ be an open subset ofR𝑛. We briefly introduce the space
D󸀠(Ω) of distributions. We denote 𝛼 = (𝛼

1
, . . . , 𝛼

𝑛
) ∈ N𝑛

0
,

where N
0
is the set of nonnegative integers and |𝛼| = 𝛼

1
+

⋅ ⋅ ⋅ + 𝛼
𝑛
, 𝜕𝛼 = 𝜕𝛼1

1
⋅ ⋅ ⋅ 𝜕

𝛼
𝑛

𝑛
, 𝜕
𝑗
= (𝜕/𝜕𝑥

𝑗
), 𝑗 = 1, 2, . . . , 𝑛.

Definition 9. Let 𝐶∞
𝑐
(Ω) be the set of all infinitely differen-

tiable functions on Ω with compact supports. A distribution
𝑢 is a linear form on 𝐶∞

𝑐
(Ω) such that for every compact set

𝐾 ⊂ Ω there exist constants 𝐶 > 0 and 𝑘 ∈ N
0
for which

󵄨
󵄨
󵄨
󵄨

⟨𝑢, 𝜑⟩

󵄨
󵄨
󵄨
󵄨

≤ 𝐶 ∑

|𝛼|≤𝑘

sup 󵄨󵄨󵄨
󵄨

𝜕

𝛼

𝜑

󵄨
󵄨
󵄨
󵄨 (106)

holds for all𝜑 ∈ 𝐶∞
𝑐
(Ω)with supports contained in𝐾.The set

of all distributions is denoted byD󸀠(Ω).

LetΩ
𝑗
be open subsets of R𝑛𝑗 for 𝑗 = 1, 2, with 𝑛

1
≥ 𝑛
2
.

Definition 10. Let 𝑢
𝑗
∈ D󸀠(Ω

𝑗
) and let 𝜆 : Ω

1
→ Ω

2
be

a smooth function such that for each 𝑥 ∈ Ω
1
the derivative

𝜆

󸀠
(𝑥) is surjective; that is, the Jacobian matrix ∇𝜆 of 𝜆 has

rank 𝑛
2
.Then there exists a unique continuous linearmap𝜆∗ :

D󸀠(Ω
2
) → D󸀠(Ω

1
) such that 𝜆∗𝑢 = 𝑢 ∘ 𝜆 when 𝑢 is a con-

tinuous function. We call 𝜆∗𝑢 the pullback of 𝑢 by 𝜆 and it is
usually denoted by 𝑢 ∘ 𝜆.

If 𝜆 is a diffeomorphism (a bijection with 𝜆, 𝜆−1 smooth
functions) the pullback 𝑢 ∘ 𝜆 can be written as

⟨𝑢 ∘ 𝜆, 𝜑⟩ = ⟨𝑢, (𝜑 ∘ 𝜆

−1

) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

∇𝜆

−1

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

⟩ . (107)

For more details of distributions we refer the reader to
[29, 33].

In this section, we consider the Hyers-Ulam stability of
the functional equation of (4) in Schwartz distributions, that
is, the functional inequality

‖𝑢 ∘ 𝑆 − V ∘ Π − 𝑤 ∘ 𝑅‖
Γ
𝑑

≤ 𝜖, (108)

where 𝑢, V, 𝑤 ∈ D󸀠(R+), Π : R2 → R, and 𝑅 : R2 → R are
defined by

𝑆 (𝑥, 𝑦) = 𝑥 + 𝑦, Π (𝑥, 𝑦) = 𝑥𝑦, 𝑅 (𝑥, 𝑦) =

1

𝑥

+

1

𝑦

(109)

and the inequality ‖ ⋅ ‖
Γ
𝑑

≤ 𝜖 in (108) means that |⟨⋅, 𝜑⟩| ≤
𝜖‖𝜑‖

𝐿
1 for all test functions 𝜑 ∈ 𝐶

∞

𝑐
(Γ
𝑑
). For each 𝑡 > 0, 𝑢 ∗

𝛿
𝑡
(𝑥) = ⟨𝑢

𝑦
, 𝛿
𝑡
(𝑥 − 𝑦)⟩ is a smooth function of 𝑥 ∈ R𝑛 and

𝑢 ∗ 𝛿
𝑡
(𝑥) → 𝑢 as 𝑡 → 0

+ in the sense that

lim
𝑡→0
+

∫

∞

−∞

(𝑢 ∗ 𝛿
𝑡
) (𝑥) 𝜑 (𝑥) 𝑑𝑥 = ⟨𝑢, 𝜑⟩ (110)

for all 𝜑 ∈ 𝐶∞
𝑐
(R𝑛).

Theorem 11. Let 𝑢, V, 𝑤 ∈ D󸀠(R+) satisfy (108). Then there
exist constants 𝑎, 𝑐

1
, 𝑐
2
, 𝑐
3
∈ C such that

󵄩
󵄩
󵄩
󵄩

𝑢 − 𝑐
1
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

V − 𝑐
2
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

𝑤 − 𝑐
3
− 𝑎 ln𝑥󵄩󵄩󵄩

󵄩

≤ 4𝜖.

(111)

Proof. The idea of the following proof is essentially the same
as that of Theorem 5, only with different terminologies. For
the reader we give a sketch of proof. Let 𝑢

𝑑
and 𝐽 : Γ

𝑑
→ 𝑈
𝑑

be the set and mapping in the proof of Theorem 5, respec-
tively. Then, 𝐽−1 : 𝑈

𝑑
→ Γ
𝑑
is given by

𝐽

−1

(𝑥, 𝑦)

= (

𝑒

𝑥+𝑦
+
√
𝑒

2𝑥+2𝑦
− 4𝑒

𝑥

2

,

𝑒

𝑥+𝑦
−
√
𝑒

2𝑥+2𝑦
− 4𝑒

𝑥

2

) .

(112)

Taking pullback by 𝐽−1 in (108), we have
󵄩
󵄩
󵄩
󵄩

𝑢 ∘ 𝐸 ∘ 𝑆 − V ∘ 𝐸 ∘ 𝑃
1
− 𝑤 ∘ 𝐸 ∘ 𝑃

2

󵄩
󵄩
󵄩
󵄩𝑈
𝑑

≤ 𝜖, (113)

where 𝐸 : R → R, 𝑆, 𝑃
1
, 𝑃
2
: R2 → R are given by

𝐸 (𝑥) = 𝑒

𝑥

, 𝑆 (𝑥, 𝑦) = 𝑥 + 𝑦,

𝑃
1
(𝑥, 𝑦) = 𝑥, 𝑃

2
(𝑥, 𝑦) = 𝑦.

(114)

Thus, instead of (54) we have the inequality
󵄩
󵄩
󵄩
󵄩

𝑢̃ ∘ 𝑆 − Ṽ ∘ 𝑃
1
− 𝑤 ∘ 𝑃

2

󵄩
󵄩
󵄩
󵄩𝑈
𝑑

≤ 𝜖, (115)

where 𝑢̃ = 𝑢 ∘ 𝐸, Ṽ = V ∘ 𝐸, and 𝑤 = 𝑤 ∘ 𝐸. Using the same
approach as in the proof of Theorem 5, we have

󵄩
󵄩
󵄩
󵄩

𝑢̃ − 𝑐𝑥 − 𝑐
1

󵄩
󵄩
󵄩
󵄩

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

Ṽ − 𝑐𝑥 − 𝑐
2

󵄩
󵄩
󵄩
󵄩

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

𝑤 − 𝑐𝑥 − 𝑐
3

󵄩
󵄩
󵄩
󵄩

≤ 4𝜖

(116)

for some 𝑐 ∈ C. Taking pullback by 𝐸−1(𝑥) = ln𝑥 in (116), we
have

󵄩
󵄩
󵄩
󵄩

𝑢 − 𝑎 ln𝑥 − 𝑐
1

󵄩
󵄩
󵄩
󵄩

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

V − 𝑎 ln𝑥 − 𝑐
2

󵄩
󵄩
󵄩
󵄩

≤ 4𝜖,

󵄩
󵄩
󵄩
󵄩

𝑤 − 𝑎 ln𝑥 − 𝑐
3

󵄩
󵄩
󵄩
󵄩

≤ 4𝜖,

(117)

for some constants 𝑎, 𝑐
1
, 𝑐
2
, 𝑐
3
∈ C. This completes the proof

of the theorem.
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