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We consider general solution and the generalized Hyers-Ulam stability of an Euler-Lagrange quadratic functional equation 𝑓(𝑟𝑥 +
𝑠𝑦) + 𝑟𝑠𝑓(𝑥 − 𝑦) = (𝑟 + 𝑠)[𝑟𝑓(𝑥) + 𝑠𝑓(𝑦)] in fuzzy Banach spaces, where 𝑟, 𝑠 are nonzero rational numbers with 𝑟2 + 𝑟𝑠 + 𝑠2 − 1 ̸= 0,
𝑟 + 𝑠 ̸= 0.

1. Introduction

The stability problem of functional equations originated from
a question of Ulam [1] concerning the stability of group
homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for additive mappings on
Banach spaces. Hyers’s theorem was generalized by Aoki
[3] for additive mappings and by Rassias [4] for linear
mappings by considering an unbounded Cauchy difference.
A generalization of the Rassias theorem was obtained by
Gǎvruta [5] by replacing the unbounded Cauchy difference
by a general control function.

The functional equation
𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) (1)

is called a quadratic functional equation. In particular, every
solution of the quadratic functional equation is said to be a
quadratic function. Cholewa [6] noticed that the theorem of
F. Skof is still true if the relevant domain 𝑋 is replaced by an
Abelian group. Czerwik [7] proved the Hyers-Ulam stability
of the quadratic functional equation. In particular, Rassias
investigated the Hyers-Ulam stability for the relative Euler-
Lagrange functional equation

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑏𝑥 − 𝑎𝑦) = (𝑎2 + 𝑏2) [𝑓 (𝑥) + 𝑓 (𝑦)]

(2)
in [8–10]. The stability problems of several functional equa-
tions have been extensively investigated by a number of

authors, and there are many interesting results concerning
this problem (see [11–14]).

The theory of fuzzy space has much progressed as the
theory of randomness has developed. Some mathematicians
have defined fuzzy norms on a vector space from various
points of view [15–19]. Following Cheng and Mordeson [20]
and Bag and Samanta [15] gave an idea of fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil
and Michalek type [21] and investigated some properties of
fuzzy normed spaces [22].

We use the definition of fuzzy normed spaces given [15,
18, 23].

Definition 1 (see [15, 18, 23]). Let 𝑋 be a real vector space. A
function𝑁 : 𝑋 ×R → [0, 1] is said to be a fuzzy norm on𝑋
if, for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑠, 𝑡 ∈ R,

(𝑁
1
) 𝑁(𝑥, 𝑡) = 0 for 𝑡 ≤ 0;

(𝑁
2
) 𝑥 = 0 if and only if𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0;

(𝑁
3
) 𝑁(𝑐𝑥, 𝑡) = 𝑁(𝑥, 𝑡/|𝑐|) for 𝑐 ̸= 0;

(𝑁
4
) 𝑁(𝑥 + 𝑦, 𝑠 + 𝑡) ≥ min{𝑁(𝑥, 𝑠),𝑁(𝑦, 𝑡)};

(𝑁
5
) 𝑁(𝑥, ⋅) is a nondecreasing function on R and
lim
𝑡→∞
𝑁(𝑥, 𝑡) = 1;

(𝑁
6
) for 𝑥 ̸= 0,𝑁(𝑥, ⋅) is continuous on R.
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The pair (𝑋,𝑁) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples
of fuzzy norms are given in [18, 24].

Definition 2 (see [15, 18, 23]). Let (𝑋,𝑁) be a fuzzy normed
vector space. A sequence {𝑥

𝑛
} in 𝑋 is said to be convergent

or converges to 𝑥 if there exists an 𝑥 ∈ 𝑋 such that
lim
𝑛→∞

𝑁(𝑥
𝑛
− 𝑥, 𝑡) = 1 for all 𝑡 > 0. In this case, 𝑥 is

called the limit of the sequence {𝑥
𝑛
}, and one denotes it by

𝑁-lim
𝑛→∞

𝑥
𝑛
= 𝑥.

Definition 3 (see [15, 18, 23]). Let (𝑋,𝑁) be a fuzzy normed
vector space. A sequence {𝑥

𝑛
} in𝑋 is called Cauchy if for each

𝜀 > 0 and each 𝑡 > 0 there exists an 𝑛
0
∈ N such that, for all

𝑛 ≥ 𝑛
0
and all 𝑝 > 0, one has𝑁(𝑥

𝑛+𝑝
− 𝑥
𝑛
, 𝑡) > 1 − 𝜀.

It is well known that every convergent sequence in a fuzzy
normed space is a Cauchy sequence. If each Cauchy sequence
is convergent, then the fuzzy norm is said to be complete, and
the fuzzy normed vector space is called a fuzzy Banach space.

It is said that a mapping 𝑓 : 𝑋 → 𝑌 between fuzzy
normed spaces 𝑋 and 𝑌 is continuous at 𝑥

0
∈ 𝑋 if, for each

sequence {𝑥
𝑛
} converging to 𝑥

0
∈ 𝑋, the sequence {𝑓(𝑥

𝑛
)}

converges to 𝑓(𝑥
0
). If 𝑓 : 𝑋 → 𝑌 is continuous at each

𝑥 ∈ 𝑋, then 𝑓 : 𝑋 → 𝑌 is said to be continuous on 𝑋 (see
[22]).

We recall the fixed point theorem from [25], which is
needed in Section 4.

Theorem4 (see [25, 26]). Let (𝑋, 𝑑) be a complete generalized
metric space and let 𝐽 : 𝑋 → 𝑋 be a strictly contractive
mapping with Lipschitz constant 𝐿 < 1. Then for each given
element 𝑥 ∈ 𝑋, either

𝑑 (𝐽𝑛𝑥, 𝐽𝑛+1𝑥) = ∞ (3)

for all nonnegative integers 𝑛 or there exists a positive integer
𝑛
0
such that

(1) 𝑑(𝐽𝑛𝑥, 𝐽𝑛+1𝑥) < ∞, for all 𝑛 ≥ 𝑛
0
;

(2) the sequence {𝐽𝑛𝑥} converges to a fixed point 𝑦∗ of 𝐽;
(3) 𝑦∗ is the unique fixed point of 𝐽 in the set 𝑌 = {𝑦 ∈ 𝑋 |
𝑑(𝐽𝑛0𝑥, 𝑦) < ∞};

(4) 𝑑(𝑦, 𝑦∗) ≤ (1/(1 − 𝐿))𝑑(𝑦, 𝐽𝑦), for all 𝑦 ∈ 𝑌.

In 1996, Isac and Rassias [27] were the first to provide new
application of fixed point theorems to the proof of stability
theory of functional equations. By using fixed pointmethods,
the stability problems of several functional equations have
been extensively investigated by a number of authors (see
[28–30] and references therein).

Recently, Kim et al. [31] investigated the solution and the
stability of the Euler-Lagrange quadratic functional equation

𝑓 (𝑘𝑥 + 𝑙𝑦) + 𝑓 (𝑘𝑥 − 𝑙𝑦) = 𝑘𝑙 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

+ 2 (𝑘 − 𝑙) [𝑘𝑓 (𝑥) − 𝑙𝑓 (𝑦)] ,

(4)

where 𝑘, 𝑙 are non-zero rational numbers with 𝑘 ̸= 𝑙.

Najati and Jung [32] have observed the Hyers-Ulam
stability of the generalized quadratic functional equation

𝑓 (𝑟𝑥 + 𝑠𝑦) + 𝑟𝑠𝑓 (𝑥 − 𝑦) = 𝑟𝑓 (𝑥) + 𝑠𝑓 (𝑦) , (5)

where 𝑟, 𝑠 are non-zero rational numbers with 𝑟 + 𝑠 = 1.
In this paper, we generalize the above quadratic func-

tional equation (5) to investigate the generalized Hyers-Ulam
stability of an Euler-Lagrange quadratic functional equation

𝑓 (𝑟𝑥 + 𝑠𝑦) + 𝑟𝑠𝑓 (𝑥 − 𝑦) = (𝑟 + 𝑠) [𝑟𝑓 (𝑥) + 𝑠𝑓 (𝑦)] (6)

in fuzzy Banach spaces, where 𝑟, 𝑠 are non-zero rational
numbers with 𝑟2 + 𝑟𝑠 + 𝑠2 − 1 ̸= 0, 𝑟 + 𝑠 ̸= 0. In particular, if
𝑟+𝑠 = 1 in the functional equation (6), then 𝑟2+𝑟𝑠+𝑠2−1 ̸= 0
is trivial and so (6) reduces to (5).

2. General Solution of (6)
Lemma 5 (see [31]). A mapping 𝑓 : 𝑋 → 𝑌 between linear
spaces satisfies the functional equation

𝑓 (𝑘𝑥 + 𝑙𝑦) + 𝑓 (𝑘𝑥 − 𝑙𝑦) = 𝑘𝑙 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

+ 2 (𝑘 − 𝑙) [𝑘𝑓 (𝑥) − 𝑙𝑓 (𝑦)] ,

(7)

where 𝑘, 𝑙 are non-zero rational numbers with 𝑘 ̸= 𝑙 if and only
if 𝑓 is quadratic.

Lemma 6. Let 𝑋 and 𝑌 be vector spaces and 𝑓 : 𝑋 → 𝑌 an
odd function satisfying (6). Then 𝑓 ≡ 0.

Proof. Putting 𝑥 = 0 (resp., 𝑦 = 0) in (6), we get

𝑓 (𝑠𝑦) = 𝑠 (𝑠 + 2𝑟) 𝑓 (𝑦) , 𝑓 (𝑟𝑥) = 𝑟
2𝑓 (𝑥) (8)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑦 by −𝑦 in (6) and adding the
obtained functional equation to (6), we get

𝑓 (𝑟𝑥 + 𝑠𝑦) + 𝑓 (𝑟𝑥 − 𝑠𝑦) = 2𝑟 (𝑟 + 𝑠) 𝑓 (𝑥)

− 𝑟𝑠 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

(9)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑦 by 𝑟𝑦 in (9) and using (8), we get

𝑟𝑓 (𝑥 + 𝑠𝑦) + 𝑟𝑓 (𝑥 − 𝑠𝑦) = 2 (𝑟 + 𝑠) 𝑓 (𝑥)

− 𝑠 [𝑓 (𝑥 + 𝑟𝑦) + 𝑓 (𝑥 − 𝑟𝑦)]

(10)

for all 𝑥, 𝑦 ∈ 𝑋. Again if we replace 𝑥 by 𝑠𝑥 in (10) and use
(8), we get

𝑟 (2𝑟 + 𝑠) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

= 2 (𝑟 + 𝑠) (2𝑟 + 𝑠) 𝑓 (𝑥) − [𝑓 (𝑠𝑥 + 𝑟𝑦) + 𝑓 (𝑠𝑥 − 𝑟𝑦)]
(11)

for all 𝑥, 𝑦 ∈ 𝑋. Exchanging 𝑥 for 𝑦 in (6) and using the
oddness of 𝑓, we have

𝑓 (𝑠𝑥 + 𝑟𝑦) = (𝑟 + 𝑠) [𝑟𝑓 (𝑦) + 𝑠𝑓 (𝑥)] + 𝑟𝑠𝑓 (𝑥 − 𝑦) (12)
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for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑦 by −𝑦 in (12) and adding the
obtained functional equation to (12), we get

𝑓 (𝑠𝑥 + 𝑟𝑦) + 𝑓 (𝑠𝑥 − 𝑟𝑦) = 2𝑠 (𝑟 + 𝑠) 𝑓 (𝑥)

+ 𝑟𝑠 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

(13)

for all 𝑥, 𝑦 ∈ 𝑋. So it follows from (11) and (13) that

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) (14)

for all 𝑥, 𝑦 ∈ 𝑋. It easily follows from (14) that 𝑓 is additive;
that is, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Since 𝑟 is a
rational number, 𝑓(𝑟𝑥) = 𝑟𝑓(𝑥) for all 𝑥 ∈ 𝑋. Therefore, it
follows from (8) that 𝑟(𝑟 − 1)𝑓(𝑥) = 0 for all 𝑥 ∈ 𝑋. Since 𝑟, 𝑠
are nonzero, we infer that 𝑓 ≡ 0 if 𝑟 ̸= 1.

If 𝑟 = 1, then 𝑠 ̸= 0, −1, and thus we see easily that 𝑓 ≡ 0
by the similar argument above.

Lemma 7. Let 𝑋 and 𝑌 be vector spaces and 𝑓 : 𝑋 → 𝑌 an
even function satisfying (6). Then 𝑓 is quadratic.

Proof. Putting 𝑥 = 𝑦 = 0 in (6), we get 𝑓(0) = 0 since 𝑟2 +
𝑟𝑠 + 𝑠2 − 1 ̸= 0. Replacing 𝑥 by 𝑥 + 𝑦 in (6), we obtain

𝑓 (𝑟𝑥 + (𝑟 + 𝑠) 𝑦) = (𝑟 + 𝑠) [𝑟𝑓 (𝑥 + 𝑦) + 𝑠𝑓 (𝑦)] − 𝑟𝑠𝑓 (𝑥)
(15)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑦 by −𝑦 in (15) and using the
evenness of 𝑓, we get

𝑓 (𝑟𝑥 − (𝑟 + 𝑠) 𝑦) = (𝑟 + 𝑠) [𝑟𝑓 (𝑥 − 𝑦) + 𝑠𝑓 (𝑦)] − 𝑟𝑠𝑓 (𝑥)
(16)

for all 𝑥, 𝑦 ∈ 𝑋. Adding (15) and (16), we get

𝑓 (𝑟𝑥 + (𝑟 + 𝑠) 𝑦) + 𝑓 (𝑟𝑥 − (𝑟 + 𝑠) 𝑦)

= 𝑟 (𝑟 + 𝑠) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

− 2𝑠 [𝑟𝑓 (𝑥) − (𝑟 + 𝑠) 𝑓 (𝑦)]

(17)

for all 𝑥, 𝑦 ∈ 𝑋. Thus (17) can be rewritten by

𝑓 (𝑘𝑥 + 𝑙𝑦) + 𝑓 (𝑘𝑥 − 𝑙𝑦) = 𝑘𝑙 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

+ 2 (𝑘 − 𝑙) [𝑘𝑓 (𝑥) − 𝑙𝑓 (𝑦)] ,

(18)

where 𝑘 := 𝑟, 𝑙 := 𝑟 + 𝑠 for all 𝑥, 𝑦 ∈ 𝑋. Therefore, it follows
from Lemma 5 that 𝑓 is quadratic.

Theorem 8. Let 𝑓 : 𝑋 → 𝑌 be a function between vector
spaces𝑋 and𝑌.Then𝑓 satisfies (6) if and only if𝑓 is quadratic.

Proof. Let 𝑓
𝑜
and 𝑓

𝑒
be the odd and the even parts of 𝑓.

Suppose that 𝑓 satisfies (6). It is clear that 𝑓
𝑜
and 𝑓

𝑒
satisfy

(6). By Lemmas 6 and 7, 𝑓
𝑜
≡ 0 and 𝑓

𝑒
is quadratic. Since

𝑓 = 𝑓
𝑜
+ 𝑓
𝑒
, we conclude that 𝑓 is quadratic.

Conversely, if a mapping 𝑓 is quadratic, then it is easy to
see that 𝑓 satisfies (6).

3. Stability of (6) by Direct Method

Throughout this paper, we assume that 𝑋 is a linear space,
(𝑌,𝑁) is a fuzzy Banach space, and (𝑍,𝑁󸀠) is a fuzzy normed
space.

For notational convenience, given amapping𝑓 : 𝑋 → 𝑌,
we define a difference operator𝐷

𝑟𝑠
𝑓 : 𝑋2 → 𝑌 of (6) by

𝐷
𝑟𝑠
𝑓 (𝑥, 𝑦) := 𝑓 (𝑟𝑥 + 𝑠𝑦) + 𝑟𝑠𝑓 (𝑥 − 𝑦)

− (𝑟 + 𝑠) [𝑟𝑓 (𝑥) + 𝑠𝑓 (𝑦)]
(19)

for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 9. Assume that a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) =
0 satisfies the inequality

𝑁(𝐷
𝑟𝑠
𝑓 (𝑥, 𝑦) , 𝑡) ≥ 𝑁󸀠 (𝜑 (𝑥, 𝑦) , 𝑡) , (20)

and 𝜑 : 𝑋2 → 𝑍 is a mapping for which there is a constant
𝑐 ∈ R satisfying 0 < |𝑐| < (𝑟 + 𝑠)2 such that

𝑁󸀠 (𝜑 ((𝑟 + 𝑠) 𝑥, (𝑟 + 𝑠) 𝑦) , 𝑡) ≥ 𝑁
󸀠 (𝑐𝜑 (𝑥, 𝑦) , 𝑡) (21)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Then one can find a unique
Euler-Lagrange quadratic mapping 𝑄 : 𝑋 → 𝑌 satisfying the
equation𝐷

𝑟𝑠
𝑄(𝑥, 𝑦) = 0 and the inequality

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (

𝜑 (𝑥, 𝑥)

(𝑟 + 𝑠)2 − |𝑐|
, 𝑡) , 𝑡 > 0,

(22)

for all 𝑥 ∈ 𝑋.

Proof. We observe from (21) that

𝑁󸀠 (𝜑 ((𝑟 + 𝑠)
𝑛𝑥, (𝑟 + 𝑠)

𝑛𝑦) , 𝑡)

≥ 𝑁󸀠 (𝑐𝑛𝜑 (𝑥, 𝑦) , 𝑡)

= 𝑁󸀠 (𝜑 (𝑥, 𝑦) ,
𝑡

|𝑐|𝑛
) , 𝑡 > 0,

𝑁󸀠 (𝜑 ((𝑟 + 𝑠)
𝑛𝑥, (𝑟 + 𝑠)

𝑛𝑦) , |𝑐|
𝑛𝑡)

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑦) , 𝑡) , 𝑡 > 0,

(23)

for all 𝑥, 𝑦 ∈ 𝑋. Putting 𝑦 := 𝑥 in (20), we obtain

𝑁(𝑓 ((𝑟 + 𝑠) 𝑥) − (𝑟 + 𝑠)
2𝑓 (𝑥) , 𝑡) ≥ 𝑁

󸀠 (𝜑 (𝑥, 𝑥) , 𝑡) ,

or 𝑁(𝑓 (𝑥) −
𝑓 ((𝑟 + 𝑠) 𝑥)

(𝑟 + 𝑠)2
,
𝑡

(𝑟 + 𝑠)2
) ≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , 𝑡)

(24)

for all 𝑥 ∈ 𝑋. Therefore it follows from (23), (24) that

𝑁(
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
−
𝑓 ((𝑟 + 𝑠)𝑛+1𝑥)

(𝑟 + 𝑠)2(𝑛+1)
,
|𝑐|𝑛𝑡

(𝑟 + 𝑠)2(𝑛+1)
)

≥ 𝑁󸀠 (𝜑 ((𝑟 + 𝑠)
𝑛𝑥, (𝑟 + 𝑠)

𝑛𝑥) , |𝑐|
𝑛𝑡)

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , 𝑡)

(25)
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for all 𝑥 ∈ 𝑋 and any integer 𝑛 ≥ 0. So

𝑁(𝑓 (𝑥) −
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
,
𝑛−1

∑
𝑖=0

|𝑐|𝑖𝑡

(𝑟 + 𝑠)2(𝑖+1)
)

= 𝑁(
𝑛−1

∑
𝑖=0

(
𝑓((𝑟 + 𝑠)𝑖𝑥)

(𝑟 + 𝑠)2𝑖
−
𝑓 ((𝑟 + 𝑠)𝑖+1𝑥)

(𝑟 + 𝑠)2(𝑖+1)
) ,

𝑛−1

∑
𝑖=0

|𝑐|𝑖𝑡

(𝑟 + 𝑠)2(𝑖+1)
)

≥ min
0≤𝑖≤𝑛−1

{𝑁(
𝑓((𝑟 + 𝑠)𝑖𝑥)

(𝑟 + 𝑠)2𝑖
−
𝑓 ((𝑟 + 𝑠)𝑖+1𝑥)

(𝑟 + 𝑠)2(𝑖+1)
,

|𝑐|𝑖𝑡

(𝑟 + 𝑠)2(𝑖+1)
)}

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , 𝑡) , 𝑡 > 0,

(26)

which yields

𝑁(
𝑓 ((𝑟 + 𝑠)𝑚𝑥)

(𝑟 + 𝑠)2𝑚
−
𝑓 ((𝑟 + 𝑠)𝑚+𝑝𝑥)

(𝑟 + 𝑠)2(𝑚+𝑝)
,

𝑚+𝑝−1

∑
𝑖=𝑚

|𝑐|𝑖𝑡

(𝑟 + 𝑠)2(𝑖+1)
)

= 𝑁(

𝑚+𝑝−1

∑
𝑖=𝑚

(
𝑓((𝑟 + 𝑠)𝑖𝑥)

(𝑟 + 𝑠)2𝑖
−
𝑓 ((𝑟 + 𝑠)𝑖+1𝑥)

(𝑟 + 𝑠)2(𝑖+1)
) ,

𝑚+𝑝−1

∑
𝑖=𝑚

|𝑐|𝑖𝑡

(𝑟 + 𝑠)2(𝑖+1)
)

≥ min
𝑚≤𝑖≤𝑚+𝑝−1

{𝑁(
𝑓((𝑟 + 𝑠)𝑖𝑥)

(𝑟 + 𝑠)2𝑖
−
𝑓 ((𝑟 + 𝑠)𝑖+1𝑥)

(𝑟 + 𝑠)2(𝑖+1)
,

|𝑐|𝑖𝑡

(𝑟 + 𝑠)2(𝑖+1)
)}

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , 𝑡) , 𝑡 > 0,

(27)

for all 𝑥 ∈ 𝑋 and any integers 𝑝 > 0, 𝑚 ≥ 0. Hence one
obtains

𝑁(
𝑓 ((𝑟 + 𝑠)𝑚𝑥)

(𝑟 + 𝑠)2𝑚
−
𝑓 ((𝑟 + 𝑠)𝑚+𝑝𝑥)

(𝑟 + 𝑠)2(𝑚+𝑝)
, 𝑡)

≥ 𝑁󸀠(𝜑 (𝑥, 𝑥) ,
𝑡

∑
𝑚+𝑝−1

𝑖=𝑚
(|𝑐|𝑖/(𝑟 + 𝑠)2(𝑖+1))

)

(28)

for all 𝑥 ∈ 𝑋 and any integers 𝑝 > 0, 𝑚 ≥ 0, 𝑡 > 0. Since
∑
𝑚+𝑝−1

𝑖=𝑚
(|𝑐|𝑖/(𝑟+𝑠)2𝑖) is convergent series, we see by taking the

limit 𝑚 → ∞ in the last inequality that a sequence {𝑓((𝑟 +
𝑠)𝑛𝑥)/(𝑟 + 𝑠)2𝑛} is Cauchy in the fuzzy Banach space (𝑌,𝑁)
and so it converges in 𝑌. Therefore a mapping 𝑄 : 𝑋 → 𝑌
defined by

𝑄 (𝑥) := 𝑁 − lim
𝑛→∞

𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
(29)

is well defined for all 𝑥 ∈ 𝑋. It means that lim
𝑛→∞

𝑁(𝑓((𝑟 +

𝑠)𝑛𝑥)/(𝑟 + 𝑠)2𝑛 −𝑄(𝑥), 𝑡) = 1, 𝑡 > 0, for all 𝑥 ∈ 𝑋. In addition,
we see from (26) that

𝑁(𝑓 (𝑥) −
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
, 𝑡)

≥ 𝑁󸀠(𝜑 (𝑥, 𝑥) ,
𝑡

∑
𝑛−1

𝑖=0
(|𝑐|𝑖/(𝑟 + 𝑠)2(𝑖+1))

)

(30)

and so, for any 𝜀 > 0,

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡)

≥ min{𝑁(𝑓 (𝑥) −
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
, (1 − 𝜀) 𝑡) ,

𝑁(
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
− 𝑄 (𝑥) , 𝜀𝑡)}

≥ 𝑁󸀠(𝜑 (𝑥, 𝑥) ,
(1 − 𝜀) 𝑡

∑
𝑛−1

𝑖=0
(|𝑐|𝑖/(𝑟 + 𝑠)2(𝑖+1))

)

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , (1 − 𝜀) ((𝑟 + 𝑠)
2 − |𝑐|) 𝑡) ,

0 < 𝜀 < 1,

(31)

for sufficiently large 𝑛 and for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Since 𝜀
is arbitrary and𝑁󸀠 is left continuous, we obtain

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (𝜑 (𝑥, 𝑥) , ((𝑟 + 𝑠)

2 − |𝑐|) 𝑡) ,

𝑡 > 0,

(32)

for all 𝑥 ∈ 𝑋, which yields the approximation (22).
In addition, it is clear from (20) and (𝑁

5
) that the

following relation

𝑁(
𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

(𝑟 + 𝑠)2𝑛
, 𝑡)

≥ 𝑁󸀠 (𝜑 ((𝑟 + 𝑠)
𝑛𝑥, (𝑟 + 𝑠)

𝑛𝑦) , (𝑟 + 𝑠)
2𝑛𝑡)

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑦) ,
(𝑟 + 𝑠)2𝑛

|𝑐|𝑛
𝑡) 󳨀→ 1 as 𝑛 󳨀→ ∞

(33)

holds for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Therefore, we obtain by
use of

lim
𝑛→∞
𝑁(
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
− 𝑄 (𝑥) , 𝑡) = 1 (𝑡 > 0) (34)
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that

𝑁(𝐷
𝑟𝑠
𝑄 (𝑥, 𝑦) , 𝑡)

≥ min{𝑁(𝐷
𝑟𝑠
𝑄 (𝑥, 𝑦) −

𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

(𝑟 + 𝑠)2𝑛
,
𝑡

2
) ,

𝑁(
𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

(𝑟 + 𝑠)2𝑛
,
𝑡

2
)}

= 𝑁(
𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

𝑟2𝑛
,
𝑡

2
) ,

(for sufficiently large 𝑛)

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑦) ,
(𝑟 + 𝑠)2𝑛

2|𝑐|𝑛
𝑡) , 𝑡 > 0

󳨀→ 1 as 𝑛 󳨀→ ∞
(35)

which implies𝐷
𝑟𝑠
𝑄(𝑥, 𝑦) = 0 by (𝑁

2
). Thus we find that 𝑄 is

an Euler-Lagrange quadratic mapping satisfying (6) and (22)
near the approximate quadratic mapping 𝑓 : 𝑋 → 𝑌.

To prove the aforementioned uniqueness, we assume now
that there is another quadratic mapping 𝑄󸀠 : 𝑋 → 𝑌
which satisfies (22).Then one establishes by using the equality
𝑄󸀠((𝑟 + 𝑠)𝑛𝑥) = (𝑟 + 𝑠)2𝑛𝑄(𝑥) and (22) that

𝑁(𝑄 (𝑥) − 𝑄
󸀠
(𝑥) , 𝑡)

= 𝑁(
𝑄 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
−
𝑄󸀠 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
, 𝑡)

≥ min{𝑁(
𝑄 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
−
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
,
𝑡

2
) ,

𝑁(
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
−
𝑄󸀠 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
,
𝑡

2
)}

≥ 𝑁󸀠(𝜑 ((𝑟 + 𝑠)
𝑛𝑥, (𝑟 + 𝑠)

𝑛𝑥) ,
((𝑟 + 𝑠)2 − |𝑐|) (𝑟 + 𝑠)2𝑛𝑡

2
)

≥𝑁󸀠(𝜑 (𝑥, 𝑥) ,
((𝑟 + 𝑠)2 − |𝑐|) (𝑟 + 𝑠)2𝑛𝑡

2|𝑐|𝑛
) , 𝑡>0, ∀𝑛∈N,

(36)

which tends to 1 as 𝑛 → ∞ by (𝑁
5
). Therefore one obtains

𝑄(𝑥) = 𝑄󸀠(𝑥) for all 𝑥 ∈ 𝑋, completing the proof of
uniqueness.

We remark that, if 𝑟 + 𝑠 = 1 in Theorem 9, then
𝑁󸀠(𝜑(𝑥, 𝑦), 𝑡) ≥ 𝑁󸀠(𝜑(𝑥, 𝑦), 𝑡/|𝑐|𝑛) → 1 as 𝑛 → ∞, and
so 𝜑(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑋. Hence 𝐷

𝑟𝑠
𝑓(𝑥, 𝑦) = 0 for all

𝑥, 𝑦 ∈ 𝑋 and 𝑓 is itself a quadratic mapping.

Theorem 10. Assume that amapping𝑓 : 𝑋 → 𝑌with𝑓(0) =
0 satisfies the inequality

𝑁(𝐷
𝑟𝑠
𝑓 (𝑥, 𝑦) , 𝑡) ≥ 𝑁󸀠 (𝜑 (𝑥, 𝑦) , 𝑡) (37)

and 𝜑 : 𝑋2 → 𝑍 is a mapping for which there is a constant
𝑐 ∈ R satisfying |𝑐| > (𝑟 + 𝑠)2 such that

𝑁󸀠 (𝜑(
𝑥

(𝑟 + 𝑠)
,
𝑦

(𝑟 + 𝑠)
) , 𝑡) ≥ 𝑁󸀠 (

1

𝑐
𝜑 (𝑥, 𝑦) , 𝑡) , 𝑡 > 0,

(38)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Then one can find a unique
Euler-Lagrange quadratic mapping 𝑄 : 𝑋 → 𝑌 satisfying the
equation𝐷

𝑟𝑠
𝑄(𝑥, 𝑦) = 0 and the inequality

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (

𝜑 (𝑥, 𝑥)

|𝑐| − (𝑟 + 𝑠)2
, 𝑡) , 𝑡 > 0,

(39)

for all 𝑥 ∈ 𝑋.

Proof. It follows from (24) and (38) that

𝑁(𝑓 (𝑥) − (𝑟 + 𝑠)
2𝑓(

𝑥

(𝑟 + 𝑠)
) ,
𝑡

|𝑐|
) ≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , 𝑡) ,

𝑡 > 0

(40)

for all 𝑥 ∈ 𝑋. Therefore it follows that

𝑁(𝑓 (𝑥) − (𝑟 + 𝑠)
2𝑛𝑓(

𝑥

(𝑟 + 𝑠)𝑛
) ,
𝑛−1

∑
𝑖=0

(𝑟 + 𝑠)2𝑖

|𝑐|𝑖+1
𝑡)

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , 𝑡) , 𝑡 > 0,

(41)

for all 𝑥 ∈ 𝑋 and any integer 𝑛 > 0. Thus we see from the last
inequality that

𝑁(𝑓 (𝑥) − (𝑟 + 𝑠)
2𝑛𝑓(

𝑥

(𝑟 + 𝑠)𝑛
) , 𝑡)

≥ 𝑁󸀠(𝜑 (𝑥, 𝑥) ,
𝑡

∑
𝑛−1

𝑖=0
((𝑟 + 𝑠)2𝑖/|𝑐|𝑖+1)

)

≥ 𝑁󸀠 (𝜑 (𝑥, 𝑥) , (|𝑐| − (𝑟 + 𝑠)
2) 𝑡) , 𝑡 > 0.

(42)

The remaining assertion goes through by the similar way
to the corresponding part of Theorem 9.

We also observe that, if 𝑟 + 𝑠 = 1 in Theorem 10, then
𝑁󸀠(𝜑(𝑥, 𝑦), 𝑡) ≥ 𝑁󸀠(𝜑(𝑥, 𝑦), |𝑐|𝑛𝑡) → 1 as 𝑛 → ∞, and so
𝜑(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑋. Hence 𝐷

𝑟𝑠
𝑓 = 0 and 𝑓 is itself a

quadratic mapping.

Corollary 11. Let 𝑋 be a normed space and (R, 𝑁󸀠) a fuzzy
normed space. Assume that there exist real numbers 𝜃

1
, 𝜃
2
≥ 0

and 𝑝 is real number such that either 𝑝 < 2 or 𝑝 > 2. If a
mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0 satisfies the inequality

𝑁(𝐷
𝑟𝑠
𝑓 (𝑥, 𝑦) , 𝑡) ≥ 𝑁󸀠 (𝜃

1‖𝑥‖
𝑝 + 𝜃
2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝

, 𝑡) (43)
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for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Then one can find a unique
Euler-Lagrange quadratic mapping 𝑄 : 𝑋 → 𝑌 satisfying the
equation𝐷

𝑟𝑠
𝑄(𝑥, 𝑦) = 0 and the inequality

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡)

≤

{{{{{{
{{{{{{
{

𝑁󸀠 (
(𝜃
1
+ 𝜃
2
) ‖𝑥‖𝑝

(𝑟 + 𝑠)2 − |𝑟 + 𝑠|𝑝
, 𝑡) ,

𝑖𝑓 𝑝 < 2, |𝑟 + 𝑠| > 1,

(𝑝 > 2, |𝑟 + 𝑠| < 1)

𝑁󸀠 (
(𝜃
1
+ 𝜃
2
) ‖𝑥‖𝑝

|𝑟 + 𝑠|𝑝 − (𝑟 + 𝑠)2
, 𝑡) ,

𝑖𝑓 𝑝 > 2, |𝑟 + 𝑠| > 1,

(𝑝 < 2, |𝑟 + 𝑠| < 1)

(44)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

Proof. Taking 𝜑(𝑥, 𝑦) = 𝜃
1
‖𝑥‖𝑝 + 𝜃

2
‖𝑦‖𝑝 and applying

Theorems 9 and 10, we obtain the desired approximation,
respectively.

Corollary 12. Assume that, for 𝑟 + 𝑠 ̸= 1, there exists a real
number 𝜃 ≥ 0 such that a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0
satisfies the inequality

𝑁(𝐷
𝑟𝑠
𝑓 (𝑥, 𝑦) , 𝑡) ≥ 𝑁󸀠 (𝜃, 𝑡) (45)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Then one can find a unique
Euler-Lagrange quadratic mapping 𝑄 : 𝑋 → 𝑌 satisfying the
equation𝐷

𝑟𝑠
𝑄(𝑥, 𝑦) = 0 and the inequality

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠(

𝜃
󵄨󵄨󵄨󵄨󵄨(𝑟 + 𝑠)

2 − 1
󵄨󵄨󵄨󵄨󵄨

, 𝑡) (46)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

We remark that, if 𝜃 = 0, then 𝑁(𝐷
𝑟𝑠
𝑓(𝑥, 𝑦), 𝑡) ≥

𝑁󸀠(0, 𝑡) = 1, and so 𝐷
𝑟𝑠
𝑓(𝑥, 𝑦) = 0. Thus we get that 𝑓 = 𝑄

is itself a quadratic mapping.

4. Stability of (6) by Fixed Point Method

Now, in the next theorem, we are going to consider a stability
problem concerning the stability of (6) by using a fixed
point theorem of the alternative for contraction mappings on
generalized complete metric spaces due toMargolis and Diaz
[25].

Theorem 13. Assume that there exists constant 𝑐 ∈ R with
|𝑐| ̸= 1 and 𝑞 > 0 satisfying 0 < |𝑐|1/𝑞 < (𝑟 + 𝑠)2 such that a
mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0 satisfies the inequality

𝑁(𝐷
𝑟𝑠
𝑓 (𝑥, 𝑦) , 𝑡

1
+ 𝑡
2
) ≥ min {𝑁󸀠 (𝜑 (𝑥) , 𝑡𝑞

1
) ,

𝑁󸀠 (𝜑 (𝑦) , 𝑡
𝑞

2
)}

(47)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡
𝑖
> 0 (𝑖 = 1, 2), and 𝜑 : 𝑋 → 𝑍 is a mapping

satisfying

𝑁󸀠 (𝜑 ((𝑟 + 𝑠) 𝑥) , 𝑡) ≥ 𝑁
󸀠 (𝑐𝜑 (𝑥) , 𝑡) (48)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Then there exists a unique
Euler-Lagrange quadratic mapping 𝑄 : 𝑋 → 𝑌 satisfying the
equation𝐷

𝑟𝑠
𝑄(𝑥, 𝑦) = 0 and the inequality

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠(

2𝑞𝜑 (𝑥)

((𝑟 + 𝑠)2 − |𝑐|1/𝑞)
𝑞
, 𝑡𝑞) (49)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

Proof. We consider the set of functions

Ω := {𝑔 : 𝑋 󳨀→ 𝑌 | 𝑔 (0) = 0} (50)

and define a generalized metric on Ω as follows:

𝑑
Ω
(𝑔, ℎ) := inf {𝐾 ∈ (0,∞) : 𝑁 (𝑔 (𝑥) − ℎ (𝑥) , 𝐾𝑡)

≥ 𝑁󸀠 (𝜑 (𝑥) , 𝑡
𝑞) , ∀𝑥 ∈ 𝑋, ∀𝑡 > 0} .

(51)

Then one can easily see that (Ω, 𝑑
Ω
) is a complete generalized

metric space [33, 34].
Now, we define an operator 𝐽 : Ω → Ω as

𝐽𝑔 (𝑥) =
𝑔 ((𝑟 + 𝑠) 𝑥)

(𝑟 + 𝑠)2
(52)

for all 𝑔 ∈ Ω, 𝑥 ∈ 𝑋.
We first prove that 𝐽 is strictly contractive on Ω. For any

𝑔, ℎ ∈ Ω, let 𝜀 ∈ [0,∞) be any constant with 𝑑
Ω
(𝑔, ℎ) ≤ 𝜀.

Then we deduce from the use of (48) and the definition of
𝑑
Ω
(𝑔, ℎ) that

𝑁(𝑔 (𝑥) − ℎ (𝑥) , 𝜀𝑡) ≥ 𝑁
󸀠 (𝜑 (𝑥) , 𝑡

𝑞) , ∀𝑥 ∈ 𝑋, 𝑡 > 0

󳨐⇒ 𝑁(
𝑔 ((𝑟 + 𝑠) 𝑥)

(𝑟 + 𝑠)2
−
ℎ ((𝑟 + 𝑠) 𝑥)

(𝑟 + 𝑠)2
,
|𝑐|1/𝑞𝜀𝑡

(𝑟 + 𝑠)2
)

≥ 𝑁󸀠 (𝜑 ((𝑟 + 𝑠) 𝑥) , |𝑐| 𝑡
𝑞)

󳨐⇒ 𝑁(𝐽𝑔 (𝑥) − 𝐽ℎ (𝑥) ,
|𝑐|1/𝑞𝜀𝑡

(𝑟 + 𝑠)2
)

≥ 𝑁󸀠 (𝜑 (𝑥) , 𝑡
𝑞) , ∀𝑥 ∈ 𝑋, 𝑡 > 0,

󳨐⇒ 𝑑
Ω
(𝐽𝑔, 𝐽ℎ) ≤

|𝑐|1/𝑞𝜀

(𝑟 + 𝑠)2
.

(53)

Since 𝜀 is arbitrary constant with 𝑑
Ω
(𝑔, ℎ) ≤ 𝜀, we see that, for

any 𝑔, ℎ ∈ Ω,

𝑑
Ω
(𝐽𝑔, 𝐽ℎ) ≤

|𝑐|1/𝑞

(𝑟 + 𝑠)2
𝑑
Ω
(𝑔, ℎ) , (54)

which implies 𝐽 is strictly contractive with constant |𝑐|1/𝑞/(𝑟+
𝑠)2 < 1 onΩ.

We nowwant to show that 𝑑(𝑓, 𝐽𝑓) < ∞. If we put 𝑦 := 𝑥,
𝑡
𝑖
:= 𝑡 (𝑖 = 1, 2) in (47), then we arrive at

𝑁(𝑓 (𝑥) −
𝑓 ((𝑟 + 𝑠) 𝑥)

(𝑟 + 𝑠)2
,
2𝑡

(𝑟 + 𝑠)2
) ≥ 𝑁󸀠 (𝜑 (𝑥) , 𝑡

𝑞) ,

(55)



Abstract and Applied Analysis 7

which yields 𝑑
Ω
(𝑓, 𝐽𝑓) ≤ 2/(𝑟 + 𝑠)2 and so 𝑑

Ω
(𝐽𝑛𝑓, 𝐽𝑛+1𝑓) ≤

𝑑
Ω
(𝑓, 𝐽𝑓) ≤ 2/(𝑟 + 𝑠)2 for all 𝑛 ∈ N.
Using the fixed point theorem of the alternative for

contractions on generalized complete metric spaces due to
Margolis and Diaz [25], we see the following (i), (ii), and (iii).

(i) There is a mapping 𝑄 : 𝑋 → 𝑌 with 𝑄(0) = 0 such
that

𝑑
Ω
(𝑓, 𝑄)≤

1

1 − (|𝑐|1/𝑞/(𝑟 + 𝑠)2)
𝑑
Ω
(𝑓, 𝐽𝑓) ≤

2

(𝑟 + 𝑠)2 − |𝑐|1/𝑞

(56)

and 𝑄 is a fixed point of the operator 𝐽; that is, (1/(𝑟 +
𝑠)2)𝑄((𝑟 + 𝑠)𝑥) = 𝐽𝑄(𝑥) = 𝑄(𝑥) for all 𝑥 ∈ 𝑋. Thus we can
get

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) ,
2𝑡

(𝑟 + 𝑠)2 − |𝑐|1/𝑞
) ≥ 𝑁󸀠 (𝜑 (𝑥) , 𝑡

𝑞) ,

𝑁 (𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠(𝜑 (𝑥) ,

((𝑟 + 𝑠)2 − |𝑐|1/𝑞)
𝑞

2𝑞
𝑡𝑞)

(57)

for all 𝑡 > 0 and all 𝑥 ∈ 𝑋.
(ii) Consider 𝑑

Ω
(𝐽𝑛𝑓,𝑄) → 0 as 𝑛 → ∞. Thus we

obtain

𝑁(
𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
− 𝑄 (𝑥) , 𝑡)

= 𝑁(𝑓 ((𝑟 + 𝑠)
𝑛𝑥) − 𝑄 ((𝑟 + 𝑠)

𝑛𝑥) , (𝑟 + 𝑠)
2𝑛𝑡)

≥ 𝑁󸀠(
2𝑞𝜑 ((𝑟 + 𝑠)𝑛𝑥)

((𝑟 + 𝑠)2 − |𝑐|1/𝑞)
𝑞
, (𝑟 + 𝑠)

2𝑛𝑞𝑡𝑞)

= 𝑁󸀠(
2𝑞𝜑 (𝑥)

((𝑟 + 𝑠)2 − |𝑐|1/𝑞)
𝑞
, (
(𝑟 + 𝑠)2𝑞

|𝑐|
)

𝑛

𝑡𝑞)

󳨀→ 1 as 𝑛 󳨀→ ∞, ((𝑟 + 𝑠)
2𝑞

|𝑐|
> 1)

(58)

for all 𝑡 > 0 and all 𝑥 ∈ 𝑋, that is; the mapping 𝑄 : 𝑋 → 𝑌
given by

𝑁 − lim
𝑛→∞

𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)2𝑛
= 𝑄 (𝑥) (59)

is welldefined for all 𝑥 ∈ 𝑋. In addition, it follows from
conditions (47), (48), and (𝑁

4
) that

𝑁(
𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

(𝑟 + 𝑠)2𝑛
, 𝑡)

≥ 𝑁󸀠 (𝜑 ((𝑟 + 𝑠)
𝑛𝑥) ,
(𝑟 + 𝑠)2𝑛𝑞𝑡𝑞

2𝑞
)

= 𝑁󸀠 (|𝑐|
𝑛𝜑 (𝑥) ,

(𝑟 + 𝑠)2𝑛𝑞𝑡𝑞

2𝑞
)

= 𝑁󸀠 (𝜑 (𝑥) , (
(𝑟 + 𝑠)2𝑞

|𝑐|
)

𝑛

𝑡𝑞

2𝑞
)

󳨀→ 1 as 𝑛 󳨀→ ∞, 𝑡 > 0,

(60)

for all 𝑥 ∈ 𝑋. Therefore we obtain by use of (𝑁
4
), (59), and

(60)

𝑁(𝐷
𝑟𝑠
𝑄 (𝑥, 𝑦) , 𝑡)

≥ min{𝑁(𝐷
𝑟𝑠
𝑄 (𝑥, 𝑦) −

𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

(𝑟 + 𝑠)2𝑛
,
𝑡

2
) ,

𝑁(
𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

(𝑟 + 𝑠)2𝑛
,
𝑡

2
)}

= 𝑁(
𝐷
𝑟𝑠
𝑓 ((𝑟 + 𝑠)𝑛𝑥, (𝑟 + 𝑠)𝑛𝑦)

(𝑟 + 𝑠)2𝑛
,
𝑡

2
)

(for sufficiently large 𝑛)

≥ min{𝑁󸀠 (𝜑 (𝑥) , ((𝑟 + 𝑠)
2𝑞

|𝑐|
)

𝑛

𝑡𝑞

4𝑞
) ,

𝑁󸀠 (𝜑 (𝑦) , (
(𝑟 + 𝑠)2𝑞

|𝑐|
)

𝑛

𝑡𝑞

4𝑞
)}

󳨀→ 1 as 𝑛 󳨀→ ∞, 𝑡 > 0,
(61)

which implies𝐷
𝑟𝑠
𝑄(𝑥, 𝑦) = 0 by (𝑁

2
), and so the mapping𝑄

is quadratic satisfying (6).
(iii)Themapping𝑄 is a unique fixed point of the operator

𝐽 in the set Δ = {𝑔 ∈ Ω | 𝑑
Ω
(𝑓, 𝑔) < ∞}. Thus

if we assume that there exists another Euler-Lagrange type
quadratic mapping 𝑄󸀠 : 𝑋 → 𝑌 satisfying (49), then

𝑄󸀠 (𝑥) =
𝑄󸀠 ((𝑟 + 𝑠) 𝑥)

(𝑟 + 𝑠)2
= 𝐽𝑄󸀠 (𝑥) ,

𝑑
Ω
(𝑓,𝑄󸀠) ≤

2

((𝑟 + 𝑠)2 − |𝑐|1/𝑞)
< ∞,

(62)

and so𝑄󸀠 is a fixed point of the operator 𝐽 and𝑄󸀠 ∈ Δ = {𝑔 ∈
Ω | 𝑑
Ω
(𝑓, 𝑔) < ∞}. By the uniqueness of the fixed point of 𝐽

in Δ, we find that 𝑄 = 𝑄󸀠, which proves the uniqueness of 𝑄
satisfying (49). This ends the proof of the theorem.
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Theorem 14. Assume that there exists constant 𝑐 ∈ R with
|𝑐| ̸= 1 and 𝑞 > 0 satisfying |𝑐|1/𝑞 > (𝑟+𝑠)2 such that a mapping
𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0 satisfies the inequality

𝑁(𝐷
𝑟𝑠
𝑓 (𝑥, 𝑦) , 𝑡

1
+ 𝑡
2
)

≥ min {𝑁󸀠 (𝜑 (𝑥) , 𝑡𝑞
1
) ,𝑁󸀠 (𝜑 (𝑦) , 𝑡

𝑞

2
)}

(63)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡
𝑖
> 0 (𝑖 = 1, 2), and 𝜑 : 𝑋 → 𝑍 is a mapping

satisfying

𝑁󸀠 (𝜑(
𝑥

(𝑟 + 𝑠)
) , 𝑡) ≥ 𝑁󸀠 (

1

𝑐
𝜑 (𝑥) , 𝑡) (64)

for all 𝑥 ∈ 𝑋. Then there exists a unique Euler-Lagrange
quadratic mapping 𝑄 : 𝑋 → 𝑌 satisfying the equation
𝐷
𝑟𝑠
𝑄(𝑥, 𝑦) = 0 and the inequality

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠(

2𝑞𝜑 (𝑥)

(|𝑐|1/𝑞 − (𝑟 + 𝑠)2)
𝑞
, 𝑡𝑞) ,

𝑡 > 0,

(65)

for all 𝑥 ∈ 𝑋.

Proof. The proof of this theorem is similar to that of
Theorem 13.

Remark 15. In a real space with a fuzzy norm 𝑁(𝑥, 𝑡) =
𝑁󸀠(𝑥, 𝑡) = 𝑡/(𝑡 + ‖𝑥‖), the stability result obtained by the
direct method is somewhat different from the stability result
obtained by the fixed point method as follows. Let 𝑋 be a
normed space and 𝑌 a Banach space. Let a mapping 𝑓 : 𝑋 →
𝑌 with 𝑓(0) = 0 satisfy the inequality

󵄩󵄩󵄩󵄩𝐷𝑟𝑠𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜃1‖𝑥‖

𝑝1 + 𝜃
2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝2 (66)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑋 \ {0} if 𝑝
1
, 𝑝
2
< 0. Assume that

there exist real numbers 𝜃
1
, 𝜃
2
≥ 0 and 𝑝

1
, 𝑝
2
such that either

𝑝
1
, 𝑝
2
< 2, |𝑟 + 𝑠| > 1 (𝑝

1
, 𝑝
2
> 2, |𝑟 + 𝑠| < 1, resp.) or

𝑝
1
, 𝑝
2
> 2, |𝑟 + 𝑠| > 1 (𝑝

1
, 𝑝
2
< 2, |𝑟 + 𝑠| < 1, resp.). Then

there exists a unique quadratic function 𝑄 : 𝑋 → 𝑌 which
satisfies the inequality:

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑄 (𝑥)
󵄩󵄩󵄩󵄩

≤

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

𝜃
1‖𝑥‖
𝑝1

(𝑟 + 𝑠)2 − |𝑟 + 𝑠|𝑝1

+
𝜃
2‖𝑥‖
𝑝2

(𝑟 + 𝑠)2 − |𝑟 + 𝑠|𝑝2
, if 𝑝

1
, 𝑝
2
< 2, |𝑟 + 𝑠| > 1,

(𝑝
1
, 𝑝
2
>2, |𝑟 + 𝑠|<1, resp.) ,

𝜃
1‖𝑥‖
𝑝1

|𝑟 + 𝑠|𝑝1 − (𝑟 + 𝑠)2

+
𝜃
2‖𝑥‖
𝑝2

|𝑟 + 𝑠|𝑝2 − (𝑟 + 𝑠)2
, if 𝑝

1
, 𝑝
2
> 2, |𝑟 + 𝑠| > 1

(𝑝
1
, 𝑝
2
<2, |𝑟 + 𝑠|<1, resp.)

(67)

for all𝑥 ∈ 𝑋 and𝑋\{0} if𝑝
1
, 𝑝
2
< 0, which is verified by using

the direct method together with the following inequality

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑓 ((𝑟 + 𝑠)𝑛𝑥)

(𝑟 + 𝑠)𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

(𝑟 + 𝑠)2

𝑛−1

∑
𝑖=0

(
𝜃
1|𝑟 + 𝑠|

𝑝1𝑖‖𝑥‖𝑝1

|𝑟 + 𝑠|2𝑖
+
𝜃
2|𝑟 + 𝑠|

𝑝2𝑖‖𝑥‖𝑝2

|𝑟 + 𝑠|2𝑖
) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) − (𝑟 + 𝑠)

2𝑛𝑓(
𝑥

(𝑟 + 𝑠)𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

(𝑟 + 𝑠)2

𝑛

∑
𝑖=1

(
𝜃
1|𝑟 + 𝑠|

2𝑖‖𝑥‖𝑝1

|𝑟 + 𝑠|𝑝1𝑖
+
𝜃
2|𝑟 + 𝑠|

2𝑖‖𝑥‖𝑝2

|𝑟 + 𝑠|𝑝2𝑖
) ,

(68)

for all 𝑥 ∈ 𝑋.
On the other hand, assume that there exist real numbers

𝜃
1
, 𝜃
2
≥ 0 and 𝑝

1
, 𝑝
2
such that eithermax{𝑝

1
, 𝑝
2
} < 2, |𝑟+𝑠| >

1 (min{𝑝
1
, 𝑝
2
} > 2, |𝑟 + 𝑠| < 1, resp.) or min{𝑝

1
, 𝑝
2
} > 2,

|𝑟 + 𝑠| > 1 (max{𝑝
1
, 𝑝
2
} < 2, |𝑟 + 𝑠| < 1, resp.). Then there

exists a unique quadratic function𝑄 : 𝑋 → 𝑌which satisfies
the inequality

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑄 (𝑥)
󵄩󵄩󵄩󵄩

≤

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

𝜃
1
‖𝑥‖𝑝1 + 𝜃

2
‖𝑥‖𝑝2

(𝑟 + 𝑠)2 − |𝑟 + 𝑠|max{𝑝1 ,𝑝2}
, if max {𝑝

1
, 𝑝
2
} < 2, |𝑟 + 𝑠| > 1,

𝜃
1
‖𝑥‖𝑝1 + 𝜃

2
‖𝑥‖𝑝2

(𝑟 + 𝑠)2 − |𝑟 + 𝑠|min{𝑝1 ,𝑝2}
, if min {𝑝

1
, 𝑝
2
} > 2, |𝑟 + 𝑠| < 1,

𝜃
1
‖𝑥‖𝑝1 + 𝜃

2
‖𝑥‖𝑝2

|𝑟 + 𝑠|min{𝑝1 ,𝑝2} − (𝑟 + 𝑠)2
, if min {𝑝

1
, 𝑝
2
} > 2, |𝑟 + 𝑠| > 1,

𝜃
1
‖𝑥‖𝑝1 + 𝜃

2
‖𝑥‖𝑝2

|𝑟 + 𝑠|max{𝑝1 ,𝑝2} − (𝑟 + 𝑠)2
, if max {𝑝

1
, 𝑝
2
} < 2, |𝑟 + 𝑠| < 1

(69)

for all 𝑥 ∈ 𝑋 and𝑋 \ {0} if 𝑝
1
, 𝑝
2
< 0, which is established by

using the fixed point method together with

𝑐 =

{{{{{{{
{{{{{{{
{

|𝑟 + 𝑠|max{𝑝1,𝑝2}, if max {𝑝
1
, 𝑝
2
} < 2, |𝑟 + 𝑠| > 1,

|𝑟 + 𝑠|min{𝑝1,𝑝2}, if min {𝑝
1
, 𝑝
2
} > 2, |𝑟 + 𝑠| < 1,

|𝑟 + 𝑠|min{𝑝1,𝑝2}, if min {𝑝
1
, 𝑝
2
} > 2, |𝑟 + 𝑠| > 1,

|𝑟 + 𝑠|max{𝑝1,𝑝2}, if max {𝑝
1
, 𝑝
2
} < 2, |𝑟 + 𝑠| < 1.

(70)

Therefore, we observe that the corresponding subsequential
four stability results by the directmethod are sharper than the
corresponding subsequential four stability results obtained by
the fixed point method.
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