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An iterative method to compute the least-squares solutions of the matrix 𝐴𝑋𝐵 = 𝐶 over the norm inequality constraint is
proposed. For thismethod, without the error of calculation, a desired solution can be obtainedwith finitely iterative step. Numerical
experiments are performed to illustrate the efficiency and real application of the algorithm.

1. Introduction

Throughout this paper, 𝑅𝑚×𝑛 denotes the set of all 𝑚 × 𝑛

real matrices. 𝐼 represents the identity matrix of size implied
by context. 𝐴𝑇, ‖𝐴‖ denote, respectively, the transpose and
the Frobenius norm of the matrix 𝐴. For the matrices 𝐴 =

(𝑎
𝑖𝑗
) ∈ 𝑅

𝑚×𝑛

, 𝐵 = (𝑏
𝑖𝑗
) ∈ 𝑅

𝑝×𝑞, 𝐴 ⊗ 𝐵 represents the
Kronecker production of the matrices 𝐴 and 𝐵 defined as
𝐴 ⊗ 𝐵 = (𝑎

𝑖𝑗
𝐵) ∈ 𝑅

𝑚𝑝×𝑛𝑞. The inner product in the matrix
set space 𝑅

𝑚×𝑛 is defined as ⟨𝐴, 𝐵⟩ = trace(𝐵𝑇𝐴) for all the
matrices 𝐴, 𝐵 ∈ 𝑅

𝑚×𝑛. Obviously, 𝑅𝑚×𝑛 is a Hilbert inner
product space and the norm of a matrix generated by this
inner product space is the Frobenius norm.

Solutions 𝑋 to the well-known linear matrix equation
𝐴𝑋𝐵 = 𝐶 with special structures have been widely stud-
ied. See, for example, [1–5] for symmetric solutions, skew-
symmetric solutions, centro-symmetric solutions, symmetric
R-symmetric solutions, or (R,S)-symmetric solutions. To the
best of our knowledge, the solutions to the matrix equation
𝐴𝑋𝐵 = 𝐶 subject to the norm inequality constraint, however,
have not been studied directly in the literature. In this
paper we consider the solutions to the following least-squares
problem over the norm inequality constraint:

min
𝑋∈𝑅
𝑚×𝑛

1

2
‖𝐴𝑋𝐵 − 𝐶‖

2 subject to ‖𝑋‖ ≤ Δ, (1)

where 𝐴 ∈ 𝑅
𝑝×𝑚, 𝐵 ∈ 𝑅

𝑛×𝑞, 𝐶 ∈ 𝑅
𝑝×𝑞 and Δ is a nonnegative

real number.

Problem (1) can be regarded as a natural generalization
of the unconstrained least-squares problem of the matrix
equation 𝐴𝑋𝐵 = 𝐶. In fact, when we let Δ be big enough, the
problem will turn out to be the unconstrained least-squares
problem of the matrix equation 𝐴𝑋𝐵 = 𝐶. According to
[6], moreover, the problem (1) is equivalent to the classical
Tikhonov regulation approach of thematrix equation𝐴𝑋𝐵 =

𝐶

min
𝑋∈𝑅
𝑚×𝑛

1

2
‖𝐴𝑋𝐵 − 𝐶‖

2

+ 𝜁‖𝑋‖
2

, (2)

where 𝜁 > 0 is the regularization parameter. While Tikhonov
regularization involves the computation of a parameter that
does not necessarily have a physical meaning in most
problems, the problem (1) has the advantage that, in some
applications, the physical properties of the problem either
determine or make it easy to estimate an optimal value for
the norm constraint Δ. This is the case, for example, in image
restoration where Δ represents the energy of the target image
[7].

In this paper, an iterative method is proposed to compute
the solutions of the problem (1). We will use the generalized
Lanczos trust region algorithm (GLTR) [8], which is based
on Steihaug-Toint algorithm [9, 10], as the frame method for
deriving this iterative method. The basic idea is as follows.
First, by using the Kronecker production of matrices, we
transform the least-squares problem (1) into the trust-region
subproblem in vector form which can be solved by the GLTR
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algorithm. Then, we transform the vector iterative method
intomatrix form. In the end, numerical experiments are given
to illustrate the efficiency and real application of the proposed
iteration algorithm.

2. Iteration Methods to Solve Problem (1)
In this section we first give the necessary and sufficient
conditions for the problem (1) to have a solution. Then we
propose an iteration method to compute the solution to the
problem. And some properties of this algorithm are also
given.

Obviously, problem (1) is equivalent to the following
problem

min
𝑋∈𝑅
𝑚×𝑛

1

2
⟨𝐴𝑋𝐵,𝐴𝑋𝐵⟩ − ⟨𝐴𝑋𝐵, 𝐶⟩ subject to ‖𝑋‖ ≤ Δ.

(3)

This equivalent form of the problem (1) makes us more
convenient to prove the following theorem.

Theorem 1. Matrix 𝑋
∗ is a solution of the problem (3) if and

only if there is a scalar 𝜆∗ ≥ 0 such that the following conditions
are satisfied:

𝐴
𝑇

𝐴𝑋
∗

𝐵𝐵
𝑇

+ 𝜆
∗

𝑋
∗

= 𝐴
𝑇

𝐶𝐵
𝑇

, 𝜆
∗

(
󵄩󵄩󵄩󵄩𝑋
∗󵄩󵄩󵄩󵄩 − Δ) = 0. (4)

Proof. Assume that there is a scalar 𝜆
∗

≥ 0 such that the
conditions (4) are satisfied. Let

𝜑 (𝑋) =
1

2
⟨𝐴𝑋𝐵,𝐴𝑋𝐵⟩ − ⟨𝐴𝑋𝐵, 𝐶⟩ ,

∧

𝜑 (𝑋) =
1

2
⟨𝐴𝑋𝐵,𝐴𝑋𝐵⟩ +

1

2
𝜆
∗

⟨𝑋,𝑋⟩ − ⟨𝐴𝑋𝐵, 𝐶⟩

= 𝜑 (𝑋) +
1

2
𝜆
∗

⟨𝑋,𝑋⟩ .

(5)

For any matrix𝑊 ∈ 𝑅
𝑚×𝑛, we have

∧

𝜑 (𝑋
∗

+ 𝑊)

=
1

2
⟨𝐴 (𝑋

∗

+ 𝑊)𝐵,𝐴 (𝑋
∗

+ 𝑊)𝐵⟩

+
1

2
𝜆
∗

⟨(𝑋
∗

+ 𝑊) , (𝑋
∗

+ 𝑊)⟩

− ⟨𝐴 (𝑋
∗

+ 𝑊)𝐵, 𝐶⟩

= (
1

2
⟨𝐴𝑋
∗

𝐵,𝐴𝑋
∗

𝐵⟩

+
1

2
𝜆
∗

⟨𝑋
∗

, 𝑋
∗

⟩ − ⟨𝐴𝑋
∗

𝐵, 𝐶⟩)

+ ⟨𝐴𝑊𝐵,𝐴𝑋
∗

𝐵⟩ + 𝜆
∗

⟨𝑊,𝑋
∗

⟩

− ⟨𝐴𝑊𝐵,𝐶⟩ +
1

2
⟨𝐴𝑊𝐵,𝐴𝑊𝐵⟩ +

1

2
𝜆
∗

⟨𝑊,𝑊⟩

=
∧

𝜑 (𝑋
∗

) + ⟨𝑊, (𝐴
𝑇

𝐴𝑋
∗

𝐵𝐵
𝑇

+ 𝜆
∗

𝑋
∗

− 𝐴
𝑇

𝐶𝐵
𝑇

)⟩

+
1

2
⟨𝐴𝑊𝐵,𝐴𝑊𝐵⟩ +

1

2
𝜆
∗

⟨𝑊,𝑊⟩

=
∧

𝜑 (𝑋
∗

) +
1

2
⟨𝐴𝑊𝐵,𝐴𝑊𝐵⟩ +

1

2
𝜆
∗

⟨𝑊,𝑊⟩ ≥
∧

𝜑 (𝑋
∗

) .

(6)

This implies that 𝑋∗ is a global minimizer of the function
∧

𝜑

(𝑋). Since
∧

𝜑 (𝑋) ≥
∧

𝜑 (𝑋
∗

) for all𝑋 ∈ 𝑅
𝑚×𝑛, we have

𝜑 (𝑋) ≥ 𝜑 (𝑋
∗

) +
1

2
𝜆
∗

(⟨𝑋
∗

, 𝑋
∗

⟩ − ⟨𝑋,𝑋⟩) . (7)

The equality 𝜆
∗

(‖𝑋
∗

‖ − Δ) = 0 implies that 𝜆∗(⟨𝑋∗, 𝑋∗⟩ −

Δ
2

) = 0. Consequently, the following inequality always holds:

𝜑 (𝑋) ≥ 𝜑 (𝑋
∗

) +
1

2
𝜆
∗

(Δ
2

− ⟨𝑋,𝑋⟩) . (8)

Hence, from 𝜆
∗

≥ 0, we have 𝜑(𝑋) ≥ 𝜑(𝑋
∗

) for all𝑋 ∈ 𝑅
𝑚×𝑛

with ‖𝑋‖ ≤ Δ. And so𝑋
∗ is a global minimizer of (3).

Conversely, assuming that 𝑋∗ is a global solution of the
problem (3), we show that there is a nonnegative 𝜆

∗ such
that satisfies conditions (4). For this purpose we consider two
cases: ‖𝑋∗‖ < Δ and ‖𝑋

∗

‖ = Δ.
In case ‖𝑋

∗

‖ < Δ, 𝑋∗ is certainly an unconstrained
minimizer of 𝜑(𝑋). So 𝑋

∗ satisfies the stationary point
condition ∇𝜑(𝑋

∗

) = 0; that is, 𝐴𝑇𝐴𝑋
∗

𝐵𝐵
𝑇

− 𝐴
𝑇

𝐶𝐵
𝑇

= 0.
This implies that the properties (4) hold for 𝜆∗ = 0. In the
case ‖𝑋

∗

‖ = Δ, the second equality is immediately satisfied,
and𝑋

∗ also solves the constrained problem

min
𝑋∈𝑅
𝑚×𝑛

𝜑 (𝑋) subject to ‖𝑋‖ = Δ. (9)

By applying optimality conditions for constrained optimiza-
tion to this problem, we know that there exists a scalar 𝜆

∗

such that the Lagrangian function defined by

𝜁 (𝑋, 𝜆) = 𝜑 (𝑋) +
1

2
𝜆 (⟨𝑋,𝑋⟩ − Δ

2

) (10)

has a stationary point at 𝑋∗. By setting ∇
𝑋
𝜁(𝑋
∗

, 𝜆
∗

) to zero,
we obtain

𝐴
𝑇

𝐴𝑋
∗

𝐵𝐵
𝑇

− 𝐴
𝑇

𝐶𝐵
𝑇

+ 𝜆
∗

𝑋
∗

= 0. (11)

Now the proof is concluded by showing that 𝜆∗ ≥ 0. Since the
equality (11) holds, then𝑋

∗ minimizes
∧

𝜑 (𝑋), and so we have

𝜑 (𝑋) ≥ 𝜑 (𝑋
∗

) +
1

2
𝜆
∗

(⟨𝑋
∗

, 𝑋
∗

⟩ − ⟨𝑋,𝑋⟩) (12)

for all 𝑋 ∈ 𝑅
𝑚×𝑛. Suppose that there are only negative values

of 𝜆∗ that satisfy (11). Then we have from (12) that

𝜑 (𝑋) ≥ 𝜑 (𝑋
∗

) whenever ‖𝑋‖ ≥
󵄩󵄩󵄩󵄩𝑋
∗󵄩󵄩󵄩󵄩 = Δ. (13)

Since we already know that𝑋∗ minimizes 𝜑(𝑋) for ‖𝑋‖ ≤ Δ,
it follows that𝑋∗ is in fact a global, unconstrained minimize
of 𝜑(𝑋). Therefore conditions (11) hold when 𝜆

∗

= 0, which
contradicts our assumption that only negative values of 𝜆∗
can satisfy condition (11). The proof is completed.
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We give an iteration method to solve problem (1) as in
Algorithm 2.

Algorithm 2. (i) Given matrices 𝑋
0
= 0, 𝑄

−1
= 0 and a small

tolerance 𝜀 > 0. Compute

𝑅
0

= −𝐴
𝑇

𝐶𝐵
𝑇

, 𝑡
0

= −𝐴
𝑇

𝐶𝐵
𝑇

, 𝛾
0

= ‖𝑅
0
‖, 𝑃
0

=

−𝑅
0
, 𝑇
−1

= [].
Set 𝑘 ← 0.

(ii) Computing 𝑄
𝑘

= 𝑡
𝑘
/𝛾
𝑘
, 𝛿
𝑘

= ‖𝐴𝑄
𝑘
𝐵‖
2, 𝑡
𝑘+1

=

𝐴
𝑇

𝐴𝑄
𝑘
𝐵𝐵
𝑇

− 𝛿
𝑘
𝑄
𝑘
− 𝛾
𝑘
𝑄
𝑘−1

, 𝛾
𝑘+1

= ‖𝑡
𝑘+1

‖

𝑇
𝑘
= [
𝑇
𝑘−1
Γ
𝑘

Γ
𝑇

𝑘
𝛿
𝑘

], where Γ
𝑘
= (0, . . . , 0, 𝛾

𝑘
)
𝑇

∈ 𝑅
𝑘.

(iii) If 𝐴𝑃
𝑘
𝐵 ̸= 0, compute 𝛼

𝑘
= ‖𝑅
𝑘
‖
2

/‖𝐴𝑃
𝑘
𝐵‖
2.

If ‖𝑋
𝑘
+ 𝛼
𝑘
𝑃
𝑘
‖ ≤ Δ, computing 𝑅

𝑘+1
= 𝑅
𝑘
+

𝛼
𝑘
𝐴
𝑇

𝐴𝑃
𝑘
𝐵𝐵
𝑇, 𝛽
𝑘

= ‖𝑅
𝑘+1

‖
2

/‖𝑅
𝑘
‖
2, 𝑋
𝑘+1

= 𝑋
𝑘
+

𝛼
𝑘
𝑃
𝑘
, 𝑃
𝑘+1

= −𝑅
𝑘+1

+ 𝛽
𝑘
𝑃
𝑘
, else, go to Step 4.

If ‖𝑅
𝑘+1

‖ < 𝜀, stop, else set 𝑘 ← 𝑘 + 1 and go to Step
2.

(iv) Find the solution ℎ
𝑘
to the following optimization

problem:

min
ℎ∈𝑅
𝑘+1

1

2
ℎ
𝑇

𝑇
𝑘
ℎ + 𝛾
0
ℎ
𝑇

𝑒
1

subject to ‖ℎ‖ ≤ Δ. (14)

(v) If 𝛾
𝑘+1

|⟨𝑒
𝑘+1

, ℎ
𝑘
⟩| < 𝜀 (here 𝑒

𝑘+1
represents the last

column of identity matrix 𝐼), set
𝑋
𝑘
= (𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
)(ℎ
𝑘
⊗ 𝐼) and then stop, else set 𝑘 ←

𝑘 + 1 and go to Step 2.

The basic iteration route of Algorithm 2 to solve problem
(1) includes two cases: First, using CG method (Step 3) to
compute the solution of problem (1) in feasible region. When
the first case is failure, the solution of problem (1) in feasible
region cannot be obtained by using CGmethod, and then the
solution of problem (1) on the boundary can be obtained by
solving the optimization problem (14). The properties about
Algorithm 2 are given as follows.

Theorem 3. Assume that the sequences {𝑅
𝑖
}, {𝑃
𝑖
}, and {𝐴𝑃

𝑖
𝐵}

are generated by Algorithm 2; then the following equalities hold
for all 𝑖 ̸= 𝑗, 0 ≤ 𝑖, 𝑗 ≤ 𝑘:

⟨𝑅
𝑖
, 𝑅
𝑗
⟩ = 0, ⟨𝑃

𝑖
, 𝑅
𝑗
⟩ = 0, ⟨𝐴𝑃

𝑖
𝐵, 𝐴𝑃
𝑗
𝐵⟩ = 0.

(15)

Proof. Since ⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ holds for all matrices 𝐴 and 𝐵,
we only need to prove that the conclusion holds for all 0 ≤ 𝑖 <

𝑗 ≤ 𝑘. Using induction and two steps are required.

Step 1. Show that ⟨𝑅
𝑖
, 𝑅
𝑖+1

⟩ = 0, ⟨𝑃
𝑖
, 𝑅
𝑖+1

⟩ = 0 and
⟨𝐴𝑃
𝑖
𝐵, 𝐴𝑃
𝑖+1

𝐵⟩ = 0 hold for all 𝑖 = 0, 1, 2, . . . 𝑘. We also

use the principle of mathematical induction to prove these
conclusions. When 𝑖 = 0, we have

⟨𝑅
0
, 𝑅
1
⟩ = ⟨𝑅

0
, 𝑅
0
+ 𝛼
0
𝐴
𝑇

𝐴𝑃
0
𝐵𝐵
𝑇

⟩

= ⟨𝑅
0
, 𝑅
0
⟩

+
⟨𝑅
0
, 𝑅
0
⟩

⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩

⟨𝑅
0
, 𝐴
𝑇

𝐴𝑃
0
𝐵𝐵
𝑇

⟩

= ⟨𝑅
0
, 𝑅
0
⟩

+
⟨𝑅
0
, 𝑅
0
⟩

⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩

⟨𝐴𝑅
0
𝐵, 𝐴𝑃
0
𝐵⟩ = 0,

⟨𝑃
0
, 𝑅
1
⟩ = ⟨𝑃

0
, 𝑅
0
+ 𝛼
0
𝐴
𝑇

𝐴𝑃
0
𝐵𝐵
𝑇

⟩

= ⟨𝑃
0
, 𝑅
0
⟩

+
⟨𝑅
0
, 𝑅
0
⟩

⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩

⟨𝑃
0
, 𝐴
𝑇

𝐴𝑃
0
𝐵𝐵
𝑇

⟩

= ⟨𝑃
0
, 𝑅
0
⟩

+
⟨𝑅
0
, 𝑅
0
⟩

⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩

⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩ = 0,

⟨𝐴𝑃
0
𝐵,𝐴𝑃
1
𝐵⟩ = ⟨𝐴𝑃

0
𝐵,𝐴 (−𝑅

1
+ 𝛽
0
𝑃
0
) 𝐵⟩

= − ⟨𝐴𝑃
0
𝐵, 𝐴𝑅

1
𝐵⟩

+
⟨𝑅
1
, 𝑅
1
⟩

⟨𝑅
0
, 𝑅
0
⟩
⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩

= − ⟨𝐴
𝑇

𝐴𝑃
0
𝐵𝐵
𝑇

, 𝑅
1
⟩

+
⟨𝑅
1
, 𝑅
1
⟩

⟨𝑅
0
, 𝑅
0
⟩
⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩

= −
⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩

⟨𝑅
0
, 𝑅
0
⟩

⟨𝑅
1
− 𝑅
0
, 𝑅
1
⟩

+
⟨𝑅
1
, 𝑅
1
⟩

⟨𝑅
0
, 𝑅
0
⟩
⟨𝐴𝑃
0
𝐵, 𝐴𝑃
0
𝐵⟩ = 0.

(16)

Assume that conclusion holds for all 𝑖 ≤ 𝑠 (0 < 𝑠 < 𝑘); then

⟨𝑅
𝑠
, 𝑅
𝑠+1

⟩ = ⟨𝑅
𝑠
, 𝑅
𝑠
+ 𝛼
𝑠
𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩

= ⟨𝑅
𝑠
, 𝑅
𝑠
⟩ +

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩

⟨𝑅
𝑠
, 𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩

= ⟨𝑅
𝑠
, 𝑅
𝑠
⟩ +

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩

× ⟨(−𝑃
𝑠
+ 𝛽
𝑠−1

𝑃
𝑠−1

) , 𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩
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= ⟨𝑅
𝑠
, 𝑅
𝑠
⟩ +

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵,𝐴𝑃
𝑠
𝐵⟩

× (⟨−𝑃
𝑠
, 𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩

+⟨𝛽
𝑠−1

𝑃
𝑠−1

, 𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩)

= ⟨𝑅
𝑠
, 𝑅
𝑠
⟩ +

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵,𝐴𝑃
𝑠
𝐵⟩

⟨−𝑃
𝑠
, 𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩

= 0,

⟨𝑃
𝑠
, 𝑅
𝑠+1

⟩ = ⟨𝑃
𝑠
, 𝑅
𝑠
+ 𝛼
𝑠
𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩

= ⟨𝑃
𝑠
, 𝑅
𝑠
⟩ +

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩

⟨𝑃
𝑠
, 𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

⟩

= ⟨−𝑅
𝑠
+ 𝛽
𝑠−1

𝑃
𝑠−1

, 𝑅
𝑠
⟩

+
⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩ = 0,

⟨𝐴𝑃
𝑠
𝐵,𝐴𝑃
𝑠+1

𝐵⟩ = ⟨𝐴𝑃
𝑠
𝐵,𝐴 (−𝑅

𝑠+1
+ 𝛽
𝑠
𝑃
𝑠
) 𝐵⟩

= − ⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑅

𝑠+1
𝐵⟩

+
⟨𝑅
𝑠+1

, 𝑅
𝑠+1

⟩

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩

= −⟨𝐴
𝑇

𝐴𝑃
𝑠
𝐵𝐵
𝑇

, 𝑅
𝑠+1

⟩

+
⟨𝑅
𝑠+1

, 𝑅
𝑠+1

⟩

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩

= −
⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝑅
𝑠+1

− 𝑅
𝑠
, 𝑅
𝑠+1

⟩

+
⟨𝑅
𝑠+1

, 𝑅
𝑠+1

⟩

⟨𝑅
𝑠
, 𝑅
𝑠
⟩

⟨𝐴𝑃
𝑠
𝐵, 𝐴𝑃
𝑠
𝐵⟩ = 0.

(17)

By the principle of induction, ⟨𝑃
𝑖
, 𝑅
𝑖+1

⟩ = 0, ⟨𝑅
𝑖
, 𝑅
𝑖+1

⟩ = 0,
and ⟨𝐴𝑃

𝑖
𝐵, 𝐴𝑃
𝑖+1

𝐵⟩ = 0 hold for all 𝑖 = 0, 1, 2, . . . 𝑘.

Step 2. Assume that ⟨𝑃
𝑖
, 𝑅
𝑖+𝑙
⟩ = 0, ⟨𝐴𝑃

𝑖
𝐵, 𝐴𝑃
𝑖+𝑙
𝐵⟩ = 0, and

⟨𝑅
𝑖
, 𝑅
𝑖+𝑙
⟩ = 0 for all 0 ≤ 𝑖 ≤ 𝑘 and 1 < 𝑙 < 𝑘, show that

⟨𝑃
𝑖
, 𝑅
𝑖+𝑙+1

⟩ = 0, ⟨𝐴𝑃
𝑖
𝐵,𝐴𝑃
𝑖+𝑙+1

𝐵⟩ = 0, and ⟨𝑅
𝑖
, 𝑅
𝑖+𝑙+1

⟩ = 0.
The proof is as follows:

⟨𝑃
𝑖
, 𝑅
𝑖+𝑙+1

⟩

= ⟨𝑃
𝑖
, 𝑅
𝑖+𝑙

+ 𝛼
𝑖+𝑙
𝐴
𝑇

𝐴𝑃
𝑖+𝑙
𝐵𝐵
𝑇

⟩

= ⟨𝑃
𝑖
, 𝑅
𝑖+𝑙
⟩ + 𝛼
𝑖+𝑙

⟨𝑃
𝑖
, 𝐴
𝑇

𝐴𝑃
𝑖+𝑙
𝐵𝐵
𝑇

⟩

= 0 + 𝛼
𝑖+𝑙

⟨𝐴𝑃
𝑖
𝐵,𝐴𝑃
𝑖+𝑙
𝐵⟩ = 0,

⟨𝐴𝑃
𝑖
𝐵,𝐴𝑃
𝑖+𝑙+1

𝐵⟩

= ⟨𝑃
𝑖
, 𝐴
𝑇

𝐴𝑃
𝑖+𝑙+1

𝐵𝐵
𝑇

⟩

=
1

𝛼
𝑖+𝑙

⟨𝑃
𝑖
, 𝑅
𝑖+𝑙+1

− 𝑅
𝑖+𝑙
⟩ = 0,

⟨𝑅
𝑖
, 𝑅
𝑖+𝑙+1

⟩

= ⟨𝑅
𝑖
, 𝑅
𝑖+𝑙

+ 𝛼
𝑖+𝑙
𝐴
𝑇

𝐴𝑃
𝑖+𝑙
𝐵𝐵
𝑇

⟩

= 𝛼
𝑖+𝑙

⟨𝑅
𝑖
, 𝐴
𝑇

𝐴𝑃
𝑖+𝑙
𝐵𝐵
𝑇

⟩

= 𝛼
𝑖+𝑙

⟨(−𝑃
𝑖
+ 𝛽
𝑖−1

𝑃
𝑖−1

) , 𝐴
𝑇

𝐴𝑃
𝑖+𝑙
𝐵𝐵
𝑇

⟩

= 𝛼
𝑖+𝑙

(⟨−𝐴𝑃
𝑖
𝐵,𝐴𝑃
𝑖+𝑙
𝐵⟩ + 𝛽

𝑖−1
⟨𝐴𝑃
𝑖−1

𝐵,𝐴𝑃
𝑖+𝑙
𝐵⟩) = 0.

(18)

From Steps 1 and 2, we have by principle induction that
⟨𝑅
𝑖
, 𝑅
𝑗
⟩ = 0, ⟨𝑃

𝑖
, 𝑅
𝑗
⟩ = 0, ⟨𝐴𝑃

𝑖
𝐵,𝐴𝑃
𝑗
𝐵⟩ = 0 hold for

0 ≤ 𝑖 < 𝑗 ≤ 𝑘.

Theorem 4. Assume that the sequence {𝑄
𝑖
} is generated by

Algorithm 2; then the following equalities hold:

⟨𝑄
𝑖
, 𝑄
𝑗
⟩ = {

1, 𝑖 = 𝑗 = 0, 1, 2, . . . ,

0, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 0, 1, 2, . . . .
(19)

Proof. By the definition of 𝑄
𝑖
, we immediately know that

⟨𝑄
𝑖
, 𝑄
𝑖
⟩ = 1 (𝑖 = 0, 1, 2, . . .). Similar to the proof of

Theorem 3, we also use the principle of mathematical induc-
tion to prove this conclusion with the two following cases.

Step 1. Show that ⟨𝑄
𝑖
, 𝑄
𝑖+1

⟩ = 0 for all 𝑖 = 0, 1, 2, . . . 𝑘.
When 𝑖 = 0, we have
⟨𝑄
0
, 𝑄
1
⟩

=
1

𝛾
1

⟨𝑄
0
, 𝐴
𝑇

𝐴𝑄
0
𝐵𝐵
𝑇

− 𝛿
0
𝑄
0
⟩

=
1

𝛾
1

(⟨𝑄
0
, 𝐴
𝑇

𝐴𝑄
0
𝐵𝐵
𝑇

⟩ − ⟨𝑄
0
, 𝛿
0
𝑄
0
⟩)

=
1

𝛾
1

(⟨𝐴𝑄
0
𝐵,𝐴𝑄

0
𝐵⟩ − ⟨𝐴𝑄

0
𝐵, 𝐴𝑄

0
𝐵⟩ ⟨𝑄

0
, 𝑄
0
⟩)

= 0.

(20)

Assume that conclusion holds for all 𝑖 ≤ 𝑠 (0 < 𝑠 < 𝑘); then

⟨𝑄
𝑠
, 𝑄
𝑠+1

⟩

=
1

𝛾
𝑠+1

⟨𝑄
𝑠
, 𝐴
𝑇

𝐴𝑄
𝑠
𝐵𝐵
𝑇

− 𝛿
𝑠
𝑄
𝑠
− 𝛾
𝑠
𝑄
𝑠−1

⟩

=
1

𝛾
𝑠+1

(⟨𝑄
𝑠
, 𝐴
𝑇

𝐴𝑄
𝑠
𝐵𝐵
𝑇

⟩ − ⟨𝑄
𝑠
, 𝛿
𝑠
𝑄
𝑠
⟩ − ⟨𝑄

𝑠
, 𝛾
𝑠
𝑄
𝑠−1

⟩)

=
1

𝛾
𝑠+1

(⟨𝐴𝑄
𝑠
𝐵, 𝐴𝑄

𝑠
𝐵⟩ − ⟨𝐴𝑄

𝑠
𝐵,𝐴𝑄

𝑠
𝐵⟩

× ⟨𝑄
𝑠
, 𝑄
𝑠
⟩ − 𝛾
𝑠
⟨𝑄
𝑠
, 𝑄
𝑠−1

⟩) = 0.

(21)

By the principle of induction, ⟨𝑄
𝑖
, 𝑄
𝑖+1

⟩ = 0 holds for all 𝑖 =
0, 1, 2, . . . 𝑘.
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Step 2. Assume that ⟨𝑄
𝑖
, 𝑄
𝑖+𝑙
⟩ = 0 for all 0 ≤ 𝑖 ≤ 𝑘 and 1 <

𝑙 < 𝑘 show that ⟨𝑄
𝑖
, 𝑄
𝑖+𝑙+1

⟩ = 0. The proof is as follows:

⟨𝑄
𝑖
, 𝑄
𝑖+𝑙+1

⟩

=
1

𝛾
𝑖+𝑙+1

⟨𝑄
𝑖
, 𝐴
𝑇

𝐴𝑄
𝑖+𝑙
𝐵𝐵
𝑇

− 𝛿
𝑖+𝑙
𝑄
𝑖+𝑙

− 𝛾
𝑖+𝑙
𝑄
𝑖+𝑙−1

⟩

=
1

𝛾
𝑖+𝑙+1

(⟨𝐴𝑄
𝑖
𝐵,𝐴𝑄

𝑖+𝑙
𝐵⟩ − ⟨𝑄

𝑖
, 𝛿
𝑖+𝑙
𝑄
𝑖+𝑙
⟩

− ⟨𝑄
𝑖
, 𝛾
𝑖+𝑙
𝑄
𝑖+𝑙−1

⟩)

=
1

𝛾
𝑖+𝑙+1

(⟨𝐴
𝑇

𝐴𝑄
𝑖
𝐵𝐵
𝑇

, 𝑄
𝑖+𝑙
⟩ − 0 − 0)

=
1

𝛾
𝑖+𝑙+1

⟨−𝛾
𝑖+1

𝑄
𝑖+1

− 𝛿
𝑖
𝑄
𝑖
− 𝛾
𝑖
𝑄
𝑖−1

, 𝑄
𝑖+𝑙
⟩ = 0.

(22)

From steps 1 and 2, we have by the principle of mathematical
induction that ⟨𝑄

𝑖
, 𝑄
𝑗
⟩ = 0 hold for all 𝑖, 𝑗 = 0, 1, 2, . . . 𝑘,

𝑖 ̸= 𝑗.

Theorem5. Assume that the sequences {𝛾
𝑘
}, {𝑇
𝑘
}, and {𝑄

𝑖
} are

generated by Algorithm 2. Let

𝑋 = 𝑄
0
ℎ
0

+ 𝑄
1
ℎ
1

+ ⋅ ⋅ ⋅ + 𝑄
𝑘
ℎ
𝑘

= (𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼) ,

ℎ = (ℎ
0

, ℎ
1

, . . . , ℎ
𝑘

)
𝑇

∈ 𝑅
𝑘+1

.

(23)

Then the following equality holds:

1

2
⟨𝐴𝑋𝐵,𝐴𝑋𝐵⟩ − ⟨𝐴𝑋𝐵, 𝐶⟩ =

1

2
ℎ
𝑇

𝑇
𝑘
ℎ + 𝛾
0
ℎ
𝑇

𝑒
1
, (24)

where 𝑒
1
represents the first column of identity matrix 𝐼.

Proof. By the definition of𝑇
𝑘
and𝑄

𝑘
(𝑘 = 0, 1, 2, . . .), we have

(𝐴
𝑇

𝐴𝑄
0
𝐵𝐵
𝑇

, 𝐴
𝑇

𝐴𝑄
1
𝐵𝐵
𝑇

, . . . , 𝐴
𝑇

𝐴𝑄
𝑘
𝐵𝐵
𝑇

)

= (𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (𝑇
𝑘
⊗ 𝐼) + (0, . . . , 0, 𝛾

𝑘+1
𝑄
𝑘+1

) .

(25)

Hence, we have

1

2
⟨𝐴𝑋𝐵,𝐴𝑋𝐵⟩ − ⟨𝐴𝑋𝐵, 𝐶⟩

=
1

2
⟨𝑋,𝐴

𝑇

𝐴𝑋𝐵𝐵
𝑇

⟩ − ⟨𝑋,𝐴
𝑇

𝐶𝐵
𝑇

⟩

=
1

2
⟨ (𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼) ,

𝐴
𝑇

𝐴(𝑄
0
ℎ
0

+ 𝑄
1
ℎ
1

+ ⋅ ⋅ ⋅ + 𝑄
𝑘
ℎ
𝑘

) 𝐵𝐵
𝑇

⟩

− ⟨(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼) , 𝛾

0
𝑄
0
⟩

=
1

2
⟨(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼) , 𝐴

𝑇

𝐴𝑄
0
𝐵𝐵
𝑇

ℎ
0

+𝐴
𝑇

𝐴𝑄
1
𝐵𝐵
𝑇

ℎ
1

+ ⋅ ⋅ ⋅ + 𝐴
𝑇

𝐴𝑄
𝑘
𝐵𝐵
𝑇

ℎ
𝑘

⟩

+ 𝛾
0
trace (ℎ0𝑄𝑇

0
𝑄
0
)

=
1

2
⟨(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼) ,

(𝐴
𝑇

𝐴𝑄
0
𝐵𝐵
𝑇

, 𝐴
𝑇

𝐴𝑄
1
𝐵𝐵
𝑇

, . . . , 𝐴
𝑇

𝐴𝑄
𝑘
𝐵𝐵
𝑇

)

× (ℎ ⊗ 𝐼) ⟩ + 𝛾
0
ℎ
0

=
1

2
⟨(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼) , (𝑄

0
, 𝑄
1
, . . . , 𝑄

𝑘
)

× [(𝑇
𝑘
⊗ 𝐼) + (0, . . . , 0, 𝛾

𝑘+1
𝑄
𝑘+1

)]

× (ℎ ⊗ 𝐼) ⟩ − 𝛾
0
ℎ
𝑇

𝑒
1

=
1

2
⟨(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼) ,

(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (𝑇
𝑘
⊗ 𝐼) (ℎ ⊗ 𝐼) ⟩ − 𝛾

0
ℎ
𝑇

𝑒
1

=
1

2
trace [(ℎ𝑇𝑇

𝑘
⊗ 𝐼) (𝑄

0
, 𝑄
1
, . . . , 𝑄

𝑘
)
𝑇

× (𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
) (ℎ ⊗ 𝐼)] + 𝛾

0
ℎ
𝑇

𝑒
1

=
1

2
ℎ
𝑇

𝑇
𝑘
ℎ + 𝛾
0
ℎ
𝑇

𝑒
1
.

(26)

So the equality (24) holds. In addition, from above equality,
we have ℎ

𝑇

𝑇
𝑘
ℎ = ⟨𝐴𝑋𝐵,𝐴𝑋𝐵⟩ for all ℎ ∈ 𝑅

𝑘+1. So 𝑇
𝑘
is

positive semi-definite. The proof is completed.

Theorem 6. Assume that the sequences {𝑄
𝑘
}, {𝑅
𝑘
}, {𝛾
𝑘
}, {𝛿
𝑘
},

{𝛼
𝑘
}, and {𝛽

𝑖
} are generated by Algorithm 2, then the following

equalities hold for all 𝑘 = 0, 1, 2, . . . :

𝑄
𝑘
= (−1)

𝑘
𝑅
𝑘

󵄩󵄩󵄩󵄩𝑅𝑘
󵄩󵄩󵄩󵄩

, 𝛿
𝑘
=

{{{{

{{{{

{

1

𝛼
𝑘

, 𝑘 = 0,

1

𝛼
𝑘

+
𝛽
𝑘−1

𝛼
𝑘−1

, 𝑘 > 0,

𝛾
𝑘
=

√𝛽
𝑘−1

𝛼
𝑘−1

.

(27)

Proof. (the proof of the first equality in (27)). By the definition
of 𝑄
𝑘
and 𝑅

𝑘
, we have

𝑄
𝑘
= 𝑎
𝑘
(𝐴
𝑇

𝐴)
𝑘

(𝐴
𝑇

𝐶𝐵
𝑇

) (𝐵𝐵
𝑇

)
𝑘

+ 𝑎
𝑘−1

(𝐴
𝑇

𝐴)
𝑘−1

(𝐴
𝑇

𝐶𝐵
𝑇

) (𝐵𝐵
𝑇

)
𝑘−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝐴
𝑇

𝐶𝐵
𝑇

) ,



6 Abstract and Applied Analysis

𝑅
𝑘
= (−1)

𝑘

𝑏
𝑘
(𝐴
𝑇

𝐴)
𝑘

(𝐴
𝑇

𝐶𝐵
𝑇

) (𝐵𝐵
𝑇

)
𝑘

+ 𝑏
𝑘−1

(𝐴
𝑇

𝐴)
𝑘−1

(𝐴
𝑇

𝐶𝐵
𝑇

) (𝐵𝐵
𝑇

)
𝑘−1

+ ⋅ ⋅ ⋅ + 𝑏
0
(𝐴
𝑇

𝐶𝐵
𝑇

) ,

(28)

where 𝑎
𝑖
, 𝑏
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑘) are positive numbers. These

equalities imply that 𝑄
𝑘
and 𝑅

𝑘
belong to the same space

𝐾
𝑘
= span {(𝐴

𝑇

𝐴)
𝑘

(𝐴
𝑇

𝐶𝐵
𝑇

) (𝐵𝐵
𝑇

)
𝑘

,

(𝐴
𝑇

𝐴)
𝑘−1

(𝐴
𝑇

𝐶𝐵
𝑇

) (𝐵𝐵
𝑇

)
𝑘−1

, . . . ,(𝐴
𝑇

𝐶𝐵
𝑇

)} .

(29)

And furthermore we can have

span {𝑄
𝑘−1

, 𝑄
𝑘−2

, . . . , 𝑄
0
}

= 𝐾
𝑘−1

= span {𝑅
𝑘−1

, 𝑅
𝑘−2

, . . . , 𝑅
0
} .

(30)

By Theorems 3 and 4, we have 𝑄
𝑘
⊥ 𝐾
𝑘−1

and 𝑅
𝑘
⊥ 𝐾
𝑘−1

.
Hence 𝑄

𝑘
and 𝑅

𝑘
must be linear correlation, so there exists a

real number 𝑐
𝑘
such that𝑄

𝑘
= 𝑐
𝑘
𝑅
𝑘
. Noting that ‖𝑄

𝑘
‖ = 1, we

have by (28) that 𝑄
𝑘
= (−1)

𝑘

𝑅
𝑘
/‖𝑅
𝑘
‖.

(The proof of the second equality in (27)). Noting that the
first equality in (27) holds, then, when 𝑘 = 0, we have

𝛿
0

= ⟨𝐴𝑄
0
𝐵,𝐴𝑄

0
𝐵⟩

=
⟨𝐴𝑅
0
𝐵,𝐴𝑅

0
𝐵⟩

⟨𝑅
0
, 𝑅
0
⟩

=
⟨𝐴𝑃
0
𝐵,𝐴𝑃
0
𝐵⟩

⟨𝑅
0
, 𝑅
0
⟩

=
1

𝛼
0

.

(31)

When 𝑘 > 0, we have

𝛿
𝑘
= ⟨𝐴𝑄

𝑘
𝐵, 𝐴𝑄

𝑘
𝐵⟩

=
⟨𝐴𝑅
𝑘
𝐵, 𝐴𝑅

𝑘
𝐵⟩

⟨𝑅
𝑘
, 𝑅
𝑘
⟩

=
⟨𝐴 (−𝑃

𝑘
+ 𝛽
𝑘−1

𝑃
𝑘−1

) 𝐵, 𝐴 (−𝑃
𝑘
+ 𝛽
𝑘−1

𝑃
𝑘−1

) 𝐵⟩

⟨𝑅
𝑘
, 𝑅
𝑘
⟩

=
1

𝛼
𝑘

+
𝛽
2

𝑘−1
⟨𝐴𝑃
𝑘−1

𝐵, 𝐴𝑃
𝑘−1

𝐵⟩

⟨𝑅
𝑘
, 𝑅
𝑘
⟩

=
1

𝛼
𝑘

+
𝛽
𝑘−1

⟨𝐴𝑃
𝑘−1

𝐵, 𝐴𝑃
𝑘−1

𝐵⟩

⟨𝑅
𝑘−1

, 𝑅
𝑘−1

⟩

=
1

𝛼
𝑘

+
𝛽
𝑘−1

𝛼
𝑘−1

.

(32)

(The proof of the third equality in (27)). By the definition of
𝛾
𝑘
, we have

𝛾
2

𝑘
= ⟨𝑡
𝑘
, 𝑡
𝑘
⟩

= ⟨𝐴
𝑇

𝐴𝑄
𝑘−1

𝐵𝐵
𝑇

− 𝛿
𝑘−1

𝑄
𝑘−1

− 𝛾
𝑘−1

𝑄
𝑘−2

, 𝛾
𝑘−1

𝑄
𝑘
⟩

= 𝛾
𝑘
⟨𝐴
𝑇

𝐴𝑄
𝑘−1

𝐵𝐵
𝑇

, 𝑄
𝑘
⟩

= −

𝛾
𝑘
⟨𝐴
𝑇

𝐴𝑅
𝑘−1

𝐵𝐵
𝑇

, 𝑅
𝑘
⟩

(
󵄩󵄩󵄩󵄩𝑅𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑅𝑘

󵄩󵄩󵄩󵄩)

= −

𝛾
𝑘
⟨𝐴
𝑇

𝐴 (−𝑃
𝑘−1

+ 𝛽
𝑘−2

𝑃
𝑘−2

) 𝐵𝐵
𝑇

, 𝑅
𝑘
⟩

(
󵄩󵄩󵄩󵄩𝑅𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑅𝑘

󵄩󵄩󵄩󵄩)

= −𝛾
𝑘
⟨

(𝑅
𝑘−1

− 𝑅
𝑘
)

𝛼
𝑘−1

+(
𝛽
𝑘−2

𝛼
𝑘−2

) (𝑅
𝑘−1

− 𝑅
𝑘−2

) , 𝑅
𝑘
⟩

× (
󵄩󵄩󵄩󵄩𝑅𝑘−1

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑅𝑘

󵄩󵄩󵄩󵄩)
−1

= 𝛾
𝑘

√𝛽
𝑘−1

𝛼
𝑘−1

.

(33)

Hence the third equality in (27) holds.Theproof is completed.

Remark 7. This theorem shows the relationship between the
sequences {𝑄

𝑘
}, {𝑅
𝑘
}, {𝛾
𝑘
}, {𝛿
𝑘
}, {𝛼
𝑘
}, and {𝛽

𝑖
} to lower down

the cost of calculation.

3. The Main Results and Improvement of
the Iteration Method

We will show that the solution of the problem (1) can be
obtained within finite iteration steps in the absence of round-
off errors. And we give the detail to solve the problem (14)
in order to complete Algorithm 2. By discussing the char-
acterization of the proposed iteration method, the further
optimization method for the proposed iteration method is
given at the end of this section.

Theorem 8. Assume that the sequences {𝑋
𝑘
}, {𝑅
𝑘
} are gener-

ated by Algorithm 2. Then the following equalities hold for all
𝑘 = 0, 1, 2, . . .:

𝐴
𝑇

𝐴𝑋
𝑘
𝐵𝐵
𝑇

− 𝐴
𝑇

𝐶𝐵
𝑇

= 𝑅
𝑘
. (34)

Proof. We use the principle of mathematical induction to
prove this conclusion. When 𝑘 = 0, obviously, the conclusion
holds. Assume that the conclusion holds for 𝑘 − 1; then

𝐴
𝑇

𝐴𝑋
𝑘
𝐵𝐵
𝑇

− 𝐴
𝑇

𝐶𝐵
𝑇

= 𝐴
𝑇

𝐴 (𝑋
𝑘−1

+ 𝛼
𝑘−1

𝑃
𝑘−1

) 𝐵𝐵
𝑇

− 𝐴
𝑇

𝐶𝐵
𝑇

= 𝐴
𝑇

𝐴𝑋
𝑘−1

𝐵𝐵
𝑇

− 𝐴
𝑇

𝐶𝐵
𝑇

+ 𝛼
𝑘−1

𝐴
𝑇

𝐴𝑃
𝑘−1

𝐵𝐵
𝑇

= 𝑅
𝑘−1

+ 𝛼
𝑘−1

𝐴
𝑇

𝐴𝑃
𝑘−1

𝐵𝐵
𝑇

= 𝑅
𝑘
.

(35)

This implies that the conclusion holds for 𝑘. By the principle
of mathematical induction, we know that the conclusion
holds for all 𝑘 = 0, 1, 2, . . ..
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(a) (b) (c)

Figure 1: (a) The original image. (b) The noisy image. (c) The recovered image.

Remark 9. For Theorem 3, the sequences 𝑅
0
, 𝑅
1
, 𝑅
2
, . . . are

orthogonal to each other in the finite dimensionmatrix space
𝑅
𝑛×𝑛; it is certain that there exists a positive number 𝑘+1 ≤ 𝑛

2

such that 𝑅
𝑘+1

= 0. So without the error of calculation, the
first stopping criterion in the algorithm will perform with
finite steps. FromTheorem 8,we get𝐴𝑇𝐴𝑋

𝑘+1
𝐵𝐵
𝑇

−𝐴
𝑇

𝐶𝐵
𝑇

=

0. According to Theorem 1, when we set 𝜆∗ = 0, 𝑋
𝑘+1

is a
solution of the problem (3).

Theorem 10. Assume that the sequences {𝑄
𝑘
}, {𝛾
𝑘
}, and {ℎ

𝑘
}

are generated by Algorithm 2. Let

𝑋
𝑘
= 𝑄
0
ℎ
0

𝑘
+ 𝑄
1
ℎ
1

𝑘
+ ⋅ ⋅ ⋅ + 𝑄

𝑘
ℎ
𝑘

𝑘
, ℎ
𝑘
= (ℎ
0

𝑘
, ℎ
1

𝑘
, . . . , ℎ

𝑘

𝑘
) .

(36)

Then, for all 𝑘 = 0, 1, 2, . . ., there exists a nonnegative number
𝜆
𝑘
such that

𝐴
𝑇

𝐴𝑋
𝑘
𝐵𝐵
𝑇

+ 𝜆
𝑘
𝑋
𝑘
− 𝐴
𝑇

𝐶𝐵
𝑇

= 𝑄
𝑘+1

𝛾
𝑘+1

ℎ
𝑘

𝑘
, 𝜆
𝑘
(
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

󵄩󵄩󵄩󵄩󵄩
− Δ) = 0.

(37)

Proof. Assume that ℎ
𝑘
is the solution of optimization problem

(14); then there exists a nonnegative number 𝜆
𝑘
such that the

following optimality Karush-Kuhn-Tucker (KKT) conditions
are satisfied:

(𝑇
𝑘
+ 𝜆
𝑘
𝐼) ℎ
𝑘
= −𝛾
0
𝑒
1
, 𝜆
𝑘
(
󵄩󵄩󵄩󵄩ℎ𝑘

󵄩󵄩󵄩󵄩 − Δ) = 0. (38)

Noting that ‖𝑋
𝑘
‖ = ‖ℎ

𝑘
‖ and the second equality in (38) hold,

we know that the second equality in (37) holds.
Since the first equality in (38) can be rewritten as

(𝑇
𝑘
⊗ 𝐼) (ℎ

0

𝑘
𝐼, ℎ
1

𝑘
𝐼, . . . , ℎ

𝑘

𝑘
𝐼)
𝑇

+ 𝜆
𝑘
(ℎ
0

𝑘
𝐼, ℎ
1

𝑘
𝐼, . . . , ℎ

𝑘

𝑘
𝐼)
𝑇

+ (𝛾
0
𝐼, 0, . . . , 0)

𝑇

= 0,

(39)

so we have

(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
)

× [(𝑇
𝑘
⊗ 𝐼) (ℎ

0

𝑘
𝐼, ℎ
1

𝑘
𝐼, . . . , ℎ

𝑘

𝑘
𝐼)
𝑇

+𝜆
𝑘
(ℎ
0

𝑘
𝐼, ℎ
1

𝑘
𝐼, . . . , ℎ

𝑘

𝑘
𝐼)
𝑇

+ (𝛾
0
𝐼, 0, . . . , 0)

𝑇

] = 0.

(40)

Hence, we have

𝐴
𝑇

𝐴𝑋
𝑘
𝐵𝐵
𝑇

+ 𝜆
𝑘
𝑋
𝑘
− 𝐴
𝑇

𝐶𝐵
𝑇

− 𝛾
𝑘+1

ℎ
𝑘

𝑘
𝑄
𝑘+1

= 0. (41)

The proof is completed.

Theorem 11. Assume that 𝛾
0
, 𝛾
1
, . . . , 𝛾

𝑘
̸= 0, and 𝛾

𝑘+1
= 0.

Then 𝑋
𝑘

= 𝑄
0
ℎ
0

𝑘
+ 𝑄
1
ℎ
1

𝑘
+ ⋅ ⋅ ⋅ + 𝑄

𝑘
ℎ
𝑘

𝑘
is the solution of the

problem (1).

Proof. Since 𝛾
𝑘+1

= 0 and𝑋
𝑘
= 𝑄
0
ℎ
0

𝑘
+𝑄
1
ℎ
1

𝑘
+ ⋅ ⋅ ⋅ + 𝑄

𝑘
ℎ
𝑘

𝑘
, we

have byTheorem 10 that

𝐴
𝑇

𝐴𝑋
𝑘
𝐵𝐵
𝑇

+ 𝜆
𝑘
𝑋
𝑘
= 𝐴
𝑇

𝐶𝐵
𝑇

, 𝜆
𝑘
(
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

󵄩󵄩󵄩󵄩󵄩
− Δ) = 0,

(42)

which implies that𝑋
𝑘
is the solution of the problem (1).

Remark 12. According to Theorem 4, the sequences 𝑄
0
, 𝑄
1
,

𝑄
2
, . . . are orthogonal each other in the finite dimension

matrix space 𝑅
𝑛×𝑛; it is certain that there exists a positive

number 𝑘 ≤ 𝑛
2 such that 𝑄

𝑘
= 0. Since 𝑡

𝑘
= 𝛾
𝑘
𝑄
𝑘

= 0,
then 𝛾

𝑘
= √⟨𝑡

𝑘
, 𝑡
𝑘
⟩ = 0. So without the error of calculation,

the second stopping criterion in the algorithm also performs
with finite steps.

Remark 13. According to Remarks 9 and 12, we have that,
without the error of calculation, a desired solution can be
obtained with finitely iterative step by Algorithm 2.
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Theorem 14. The solution ℎ
𝑘
of the problem (14) obtained

by Algorithm 2 is on the boundary. In other words, ℎ
𝑘
is the

solution of the following optimization problem:

min
ℎ∈𝑅
𝑘+1

1

2
ℎ
𝑇

𝑇
𝑘
ℎ + ℎ
𝑇

(𝛾
0
𝑒
1
) subject to ‖ℎ‖ = Δ. (43)

Proof. Assuming that the solution ℎ
𝑘
of the problem (14)

obtained by Algorithm 2 is inside the boundary, we have by
(38) that 𝑇

𝑘
ℎ
𝑘

= −𝛾
0
𝑒
1
. By Theorem 5, we know 𝑇

𝑘
is a

positive semidefinite matrix. If 𝑇
𝑘
is positive definite, then

ℎ
𝑘

= −𝑇
−1

𝑘
(𝛾
0
𝑒
1
) with ‖ℎ

𝑘
‖ < Δ is a unique solution of

the problem (14). Hence, we have by Theorem 5 that 𝑋 =

(𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
)(ℎ
𝑘
⊗ 𝐼) with ‖𝑋‖ = ‖ℎ

𝑘
‖ < Δ is a unique

solution of the problem (1). In this case, the step of solving
the problem (14) in Algorithm 2 cannot be implemented. If
𝑇
𝑘
is positive semidefinite and not positive definite, then there

exists a matrix𝑍 such that 𝑇
𝑘
(ℎ
𝑘
+𝑍) = −𝛾

0
𝑒
1
and ‖ℎ

𝑘
+𝑍‖ =

Δ which implies that ℎ
𝑘
+ 𝑍 is a solution to the problem (1)

on the boundary. This contradicts our assumption.

Now we use the following Algorithm 15, which was
proposed by More and Sorensen in paper [11], to solve the
problem (43).

Algorithm 15. (I) Let a suitable starting value 𝜆0
𝑘
and Δ > 0 be

given.

(II) For 𝑖 = 0, 1, . . . until convergence.

(a) Factorize 𝑇
𝑘
+ 𝜆
𝑖

𝑘
𝐼 = 𝑄Λ𝑄

𝑇, where 𝑄 and Λ are unit
bidiagonal and diagonal matrix, respectively.

(b) Solve 𝑄Λ𝑄
𝑇

ℎ = −𝛾
0
𝑒
1
.

(c) Solve 𝑄𝑤 = ℎ.

(d) Set 𝜆𝑖+1
𝑘

= 𝜆
𝑖+1

𝑘
+ ((‖ℎ‖ − Δ)/Δ)(‖ℎ‖

2

/⟨𝑤, Λ
−1

𝑤⟩).

In the implementation of Algorithm 15, the initial secular
𝜆
0

𝑘
can be chosen by the following principles: If ‖ℎ

𝑘
(𝜆
𝑘−1

)‖ ≥

Δ, let 𝜆0
𝑘
= 𝜆
𝑘−1

; else let 𝜆0
𝑘
= 0, where 𝜆

𝑘−1
is obtained by the

(𝑘−1)th iterative steps of Algorithm 2. The stopping criteria
can be used as |𝜆𝑖+1

𝑘
− 𝜆
𝑖

𝑘
| ≤ 𝜀, where 𝜀 is a small tolerance.

By fully using the result of Theorem 6, Algorithm 2 can
be optimized as in Algorithm 16.

Algorithm 16. (i) Given matrices𝑋
0
= 0,𝑄

−1
= 0 and a small

tolerance 𝜀 > 0.
Computing 𝑅

0
= −𝐴
𝑇

𝐶𝐵
𝑇

, 𝑡
0
= −𝐴
𝑇

𝐶𝐵
𝑇.

Set 𝛾
0
= ‖𝑅
0
‖, 𝑃
0
= −𝑅
0
, 𝑇
−1

= [], and 𝑘 ← 0.

(ii) If 𝐴𝑃
𝑘
𝐵 ̸= 0, compute

𝑄
𝑘
=

(−1)
𝑘

𝑅
𝑘

󵄩󵄩󵄩󵄩𝑅𝑘
󵄩󵄩󵄩󵄩

, 𝛼
𝑘
=

󵄩󵄩󵄩󵄩𝑅𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝐴𝑃
𝑘
𝐵
󵄩󵄩󵄩󵄩

2
,

𝑅
𝑘+1

= 𝑅
𝑘
+ 𝛼
𝑘
𝐴
𝑇

𝐴𝑃
𝑘
𝐵𝐵
𝑇

,

𝛽
𝑘
=

󵄩󵄩󵄩󵄩𝑅𝑘+1
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑅𝑘
󵄩󵄩󵄩󵄩

2
, 𝛿

𝑘
=

{{{{

{{{{

{

1

𝛼
𝑘

, 𝑘 = 0,

1

𝛼
𝑘

+
𝛽
𝑘−1

𝛼
𝑘−1

, 𝑘 > 0,

𝛾
𝑘+1

=
√𝛽
𝑘

𝛼
𝑘

, 𝑇
𝑘
= [

[

𝑇
𝑘−1

Γ
𝑘

Γ
𝑇

𝑘
𝛿
𝑘

]

]

,

(44)

where Γ
𝑘
= (0, . . . , 0, 𝛾

𝑘
)
𝑇

∈ 𝑅
𝑘.

Else, computing 𝑄
𝑘
= 𝑡
𝑘
/𝛾
𝑘
(the first one 𝑄

𝑘
= (−1)

𝑘

𝑅
𝑘
/

‖𝑅
𝑘
‖),

𝛿
𝑘
=
󵄩󵄩󵄩󵄩𝐴𝑄
𝑘
𝐵
󵄩󵄩󵄩󵄩

2

, 𝑡
𝑘+1

= 𝐴
𝑇

𝐴𝑄
𝑘
𝐵𝐵
𝑇

− 𝛿
𝑘
𝑄
𝑘
− 𝛾
𝑘
𝑄
𝑘−1

,

𝛾
𝑘+1

=
󵄩󵄩󵄩󵄩𝑡𝑘+1

󵄩󵄩󵄩󵄩 , 𝑇
𝑘
= [

𝑇
𝑘−1

Γ
𝑘

Γ
𝑇

𝑘
𝛿
𝑘

] .

(45)

(iii) If ‖𝑋
𝑘+1

+ 𝛼
𝑘+1

𝑃
𝑘+1

‖ ≤ Δ, computing 𝑋
𝑘+1

= 𝑋
𝑘
+

𝛼
𝑘
𝑃
𝑘
, 𝑃
𝑘+1

= −𝑅
𝑘
+ 𝛽
𝑘
𝑃
𝑘
.

If ‖𝑅
𝑘+1

‖ ≤ 𝜀, stop. Else, setting 𝑘 ← 𝑘 + 1 and go to Step
2.

Else, go to Step 4.

(iv) Using Algorithm 15 to compute the solution ℎ
𝑘
of the

problem (43).

(v) If 𝛾
𝑘+1

|⟨𝑒
𝑘+1

, ℎ
𝑘
⟩| < 𝜀, setting 𝑋

𝑘
= (𝑄
0
, 𝑄
1
, . . . , 𝑄

𝑘
)

(ℎ
𝑘
⊗ 𝐼), then stop.
Else, setting 𝑘 ← 𝑘 + 1 and go to step 2.

4. Numerical Experiments

In this section, we present numerical examples to illustrate
the availability and the real application of the proposed itera-
tion method. All tests are performed using MATLAB 7.1 with
a 32-bit Windows XP operating system. Our experiments
are performed on an FOUNFER computer of mode E520
with 2.8GHz CPU and 3.25 G RAM. Because of the error of
calculation, the iterationwill not stopwith finite steps. Hence,
we regard the approximation solution 𝑋

𝑘
as the solution of

problem (1) if the 𝑡(𝑘) ≤ 10
−10, where

𝑡 (𝑘) = {

󵄩󵄩󵄩󵄩𝑅𝑘+1
󵄩󵄩󵄩󵄩𝐹

,
󵄩󵄩󵄩󵄩𝑋𝑘 + 𝛼

𝑘
𝑃
𝑘

󵄩󵄩󵄩󵄩𝐹
< Δ

𝛾
𝑘+1

󵄨󵄨󵄨󵄨⟨𝑒𝑘+1, ℎ𝑘⟩
󵄨󵄨󵄨󵄨 ,
󵄩󵄩󵄩󵄩𝑋𝑘

󵄩󵄩󵄩󵄩𝐹
= Δ.

(46)

Example 17. Given the matrices 𝐴, 𝐵, 𝐶 as follows:
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𝐴 = (

2.1133 −2.3711 −1.5741 −1.0450 −2.3090 2.0660 −1.4522

3.6855 −3.5974 0.6188 −1.4764 2.8853 3.1969 0.0771

3.9125 −2.0298 3.0998 −1.2121 −0.4192 −2.5485 0.2237

1.5758 −1.8922 0.8742 0.7832 0.6938 −4.2669 0.7283

−2.3402 2.1912 −1.0682 0.1450 3.9923 0.7929 −2.2801

) ,

𝐵 = (

1.8289 −0.0255 −0.1382 2.8240 0.8011 1.2860

0.4890 −0.1238 −0.0766 −0.1251 −0.8981 1.5505

0.2457 0.4984 2.4399 2.7879 −1.5069 −2.2386

−1.6603 −0.3753 0.6156 −1.2884 −1.4745 −1.9062

2.2008 0.1921 −3.3952 −4.9563 −2.0966 −0.4614

),

𝐶 = (

−141.9226 −7.5851 25.3523 34.6519 236.6062 80.9125

167.3048 8.9417 −29.8864 −40.8493 −278.9222 −95.3833

31.8605 1.7028 −5.6914 −7.7791 −53.1162 −18.1642

−46.6795 −2.4948 8.3386 11.3973 77.8216 26.6127

44.4786 2.3772 −7.9454 −10.8599 −74.1526 −25.3580

) .

(47)

When Δ = 40, using Algorithm 16 and iterate 43 steps, we
obtain the approximation solution

𝑋
43
=
(
(
(

(

0.7719 0.5678 0.3693 0.8218 0.4608

1.5239 2.7487 3.6039 1.2870 3.0918

6.9566 10.1669 12.3533 6.3478 11.0186

−1.1825 −1.4474 −1.5816 −1.1406 −1.4763

8.2491 9.7388 10.4905 8.0180 9.9019

4.9148 7.0460 8.5558 4.5000 7.6635

5.9892 9.6690 12.3730 5.2551 10.8217

)
)
)

)

.

(48)

When Δ = 10, using the Algorithm 16 and iterative 23
steps, we obtain the approximation solution

𝑋
23
=
(
(
(

(

0.2809 0.4183 0.9499 0.2019 0.8336

−0.2275 −0.1577 −0.1726 0.0837 0.2434

0.1417 0.7532 2.2683 0.8422 3.1792

−0.1560 −0.2950 −0.7358 −0.1975 −0.7844

1.0118 1.8727 5.1484 1.3685 5.5155

0.2703 0.7496 1.9622 0.6375 2.4602

−0.1769 0.2915 1.0417 0.5770 2.0664

)
)
)

)

.

(49)

Given a nonnegative real number Δ = 1000, with iterate
45 steps, we obtain the approximation solution

𝑋
45
=
(
(
(

(

0.4349 0.4349 0.4349 0.4349 0.4349

3.1780 3.1780 3.1780 3.1780 3.1780

11.2373 11.2373 11.2373 11.2373 11.2373

−1.4841 −1.4841 −1.4841 −1.4841 −1.4841

9.9547 9.9547 9.9547 9.9547 9.9547

7.8212 7.8212 7.8212 7.8212 7.8212

11.1143 11.1143 11.1143 11.1143 11.1143

)
)
)

)

.

(50)

Example 18. Wework with a 2D first-kind Fredholm integral
equation of the generic form

∬

1

0

𝜅 (𝑥 − 𝑥
󸀠

) 𝜔 (𝑦 − 𝑦
󸀠

) 𝑓 (𝑥
󸀠

, 𝑦
󸀠

) 𝑑𝑥
󸀠

𝑑𝑦
󸀠

= 𝑔 (𝑥, 𝑦) , (51)

where 𝜅 and 𝜔 are function. Based on [12], we have that the
discretization of the problem (51) leads to the linear relation
𝐴𝐹𝐴
𝑇

= 𝐺 between the discrete solution 𝐹 and the discrete
data 𝐺, where

𝐴
𝑖𝑘
= 𝑚
−1

𝜅 (𝑥
𝑖
− 𝑥
󸀠

𝑘
) , 𝐴

𝑗𝑙
= 𝑛
−1

𝜔 (𝑦
𝑗
− 𝑦
󸀠

𝑙
)

𝐹
𝑘𝑙
= 𝑓 (𝑥

󸀠

𝑘
, 𝑦
󸀠

𝑘
) , 𝐺

𝑖𝑗
= 𝑔 (𝑥

𝑖
, 𝑦
𝑗
) ,

𝑖, 𝑘 = 1, 2, . . . , 𝑚, 𝑗, 𝑙 = 1, 2, . . . , 𝑛.

(52)

An example of such problem is image denoising with a
Gaussian point spread function:

𝜅 (𝑡) = 𝜔 (𝑡) =
1

√2𝜋𝜎
exp(−

1

2
(
𝑡

𝜎
)

2

) , (53)

which is used as a model for out-of-focus as well as atmo-
spheric turbulence blur [13]. In Figure 1(a), the original image
is the standard test image of Lena with size 256 × 256,
which is also a 256 × 256 matrix 𝐹

󸀠. After the image
was blurred by Gaussian kernel (53) with 𝜎 = 0.01, we
get Figure 1(b); that is the matrix 𝐺 = 𝐴𝐹

󸀠

𝐴
𝑇. In image

denoising, our target is to get the solution of 𝐴𝐹𝐴
𝑇

= 𝐺.
Tikhonov regularization is needed to treat this problem in
order to control the effect of the noise on the solution. As we
have said in Section 1, Tikhonov regularization is equivalent
to over the norm inequality constraint matrix equation

min
𝐹∈𝑅
𝑚×𝑛

1

2

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝐹𝐴
𝑇

− 𝐺
󵄩󵄩󵄩󵄩󵄩󵄩

2

subject to ‖𝐹‖ ≤ Δ. (54)
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Based on [7], Δ represents the energy of the target
image, so we get Δ = ‖𝐹

󸀠

‖. Solving the above problem by
Algorithm 16, we get the recovered image 𝐹

∗ in Figure 1(c).
It means our algorithm is suitable for image denoising.
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