
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 124979, 7 pages
http://dx.doi.org/10.1155/2013/124979

Research Article
Iterative Solution to a System of Matrix Equations

Yong Lin1,2 and Qing-Wen Wang1

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
2 School of Mathematics and Statistics, Suzhou University, Suzhou 234000, China

Correspondence should be addressed to Qing-Wen Wang; wqw369@yahoo.com

Received 17 May 2013; Accepted 21 September 2013

Academic Editor: Masoud Hajarian

Copyright © 2013 Y. Lin and Q.-W. Wang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An efficient iterative algorithm is presented to solve a system of linear matrix equations 𝐴
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2
. By this iterative algorithm, the solvability of the system can be determined automatically.

When the system is consistent, for any initial matrices𝑋0
1
and𝑋

0

2
, a solution can be obtained in the absence of roundoff errors, and

the least norm solution can be obtained by choosing a special kind of initial matrix. In addition, the unique optimal approximation
solutions 𝑋

1
and 𝑋

2
to the given matrices 𝑋

1
and 𝑋

2
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. The given numerical example demonstrates that the iterative algorithm is efficient. Especially, when

the numbers of the parameter matrices 𝐴
1
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2
, 𝐵
1
, 𝐵
2
, 𝐶
1
, 𝐶
2
, 𝐷
1
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2
are large, our algorithm is efficient as well.

1. Introduction

Throughout the paper, we denote the set of all 𝑚 × 𝑛 real
matrix by 𝑅𝑚×𝑛, the transpose matrix of𝐴 by𝐴𝑇, the identity
matrix of order 𝑛 by 𝐼

𝑛
, the Kronecker product of 𝐴 and 𝐵 by

𝐴⊗𝐵, the𝑚𝑛×1 vector formed by the vertical concatenation
of the respective columns of a matrix 𝐴 ∈ 𝑅

𝑚×𝑛 by vec(𝐴),
the trace of a matrix𝐴 by tr(𝐴), and the Frobenius norm of a
matrix 𝐴 by ‖𝐴‖ where ‖𝐴‖ = √tr(𝐴𝑇𝐴).

In this paper, we consider the following two problems.

Problem 1. For the given matrices 𝐴
1
∈ 𝑅
𝑝×𝑘, 𝐴

2
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𝑝×𝑚,

𝐵
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2
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(1)

Problem 2. When Problem 1 is consistent, let 𝑆 denote the
solution set of the pair of matrix equation (1). For the given

matrices𝑋
1
∈ 𝑅
𝑘×𝑟, 𝑋

2
∈ 𝑅
𝑚×𝑛, find {𝑋

1
, 𝑋
2
} ∈ 𝑆 such that


𝑋
1
− 𝑋
1



2

+

𝑋
2
− 𝑋
2



2

= min
{𝑋1 ,𝑋2}∈𝑆

(

𝑋
1
− 𝑋
1



2

+

𝑋
2
− 𝑋
2



2

) .

(2)

Problem 2 is to find the optimal approximation solutions
to the given matrices 𝑋

1
, 𝑋
2
in the solution set of Problem 1.

It occurs frequently in experiment design (see, for instance,
[1]). In the recent years, the matrix optimal approximation
problem has been studied extensively (e.g., [2–13]).

The research on solving matrix equation pair has been
actively ongoing for the last 30 years or more. For instance,
Mitra [14] gave conditions for the existence of a solution
and a representation of the general common solution to
𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Shinozaki and Sibuya [15] and van
der Woude [16] discussed conditions for the existence of a
common solution to 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Navarra et al. [5]
derived sufficient and necessary conditions for the existence
of a common solution to 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Yuan [13]
obtained an analytical expression of the least-squares solu-
tions of 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹 by using the generalized
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singular value decomposition (GSVD) of matrices. Dehghan
and Hajarian [17] presented some examples to show a
motivation for studying the general coupledmatrix equations
∑
𝑙

𝑗=1
𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗

= 𝐶
𝑖
, 𝑖 = 1, 2, . . . , 𝑙, and [18] constructed an

iterative algorithm to solve the general coupled matrix equa-
tions ∑𝑝

𝑗=1
𝐴
𝑖𝑗
𝑋
𝑗
𝐵
𝑖𝑗
= 𝑀
𝑖
, 𝑖 = 1, 2, . . . , 𝑝. Wang [19, 20] gave

the centrosymmetric solution to the system of quaternion
matrix equations 𝐴

1
𝑋 = 𝐶

1
, 𝐴
3
𝑋𝐵
3
= 𝐶
3
. Wang [21] also

solved a system of matrix equations over arbitrary regular
rings with identity.

Recently, some finite iterative algorithms have also been
developed to solve matrix equations. Ding et al. [22, 23] and
Xie et al. [24, 25] studied the iterative solutions of matrix
equations 𝐴𝑋𝐵 = 𝐹 and 𝐴

𝑖
𝑋𝐵
𝑖
= 𝐹
𝑖
and generalized Sylv-

ester matrix equations𝐴𝑋𝐵+𝐶𝑋𝐷 = 𝐹 and𝐴𝑋𝐵+𝐶𝑋
𝑇
𝐷 =

𝐹. They presented a gradient based and a least-squares based
iterative algorithms for the solution. Li et al. [26, 27] and
Zhou et al. [28, 29] considered iterative method for some
coupled linear matrix equations. Deng et al. [30] studied the
consistent conditions and the general expressions about the
Hermitian solutions of the matrix equations (𝐴𝑋,𝑋𝐵) =

(𝐶,𝐷) and designed an iterative method for its Hermitian
minimum norm solutions. Li and Wu [31] gave symmetric
and skew-antisymmetric solutions to certain matrix equa-
tions 𝐴

1
𝑋 = 𝐶

1
, 𝑋𝐵
3
= 𝐶
3
over the real quaternion algebra

H. For more studies on iterative algorithms on coupled
matrix equations, we refer to [3, 10–12, 17, 32–37]. Peng
et al. [6] presented iterative methods to obtain the symmetric
solutions of 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹. Sheng and Chen [8]
presented a finite iterative method; when 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 =

𝐹 is consistent. Liao and Lei [38] presented an analytical
expression of the least-squares solution and an algorithm for
𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹 with the minimum norm. Peng et al. [7]
presented an algorithm for the least-squares reflexive solu-
tion. Dehghan and Hajarian [2] presented an iterative algo-
rithm for solving a pair ofmatrix equations𝐴𝑋𝐵 = 𝐸,𝐶𝑋𝐷 =

𝐹 over generalized centrosymmetric matrices. Cai and Chen
[39] presented an iterative algorithm for the least-squares
bisymmetric solutions of the matrix equations 𝐴𝑋𝐵 = 𝐸,
𝐶𝑋𝐷 = 𝐹. Yin and Huang [40] presented an iterative algo-
rithm to solve the least squares generalized reflexive solutions
of the matrix equations 𝐴𝑋𝐵 = 𝐸, 𝐶𝑋𝐷 = 𝐹.

However, to our knowledge, there has been little infor-
mation on finding the solutions to the system (1) by iterative
algorithm. In this paper, an efficient iterative algorithm is
presented to solve the system (1) for any real matrices𝑋

1
, 𝑋
2
.

The suggested iterative algorithm, automatically determines
the solvability of equations pair (1). When the pair of equa-
tions is consistent, then, for any initial matrices 𝑋0

1
and 𝑋

0

2
,

the solution can be obtained in the absence of round errors,
and the least norm solution can be obtained by choosing a
special kind of initial matrix. In addition, the unique optimal
approximation solutions 𝑋

1
and 𝑋

2
to the given matrices

𝑋
1
and 𝑋

2
in Frobenius norm can be obtained by finding

the least norm solution of a new pair of matrix equations
𝐴
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1
𝐵
1
+ 𝐴
2
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2
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2
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= 𝐹, where
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1
𝑋
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1
− 𝐴
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𝑋
2
𝐵
2
, 𝐹 = 𝐹 − 𝐶

1
𝑋
1
𝐷
1
− 𝐶
2
𝑋
2
𝐷
2
.

The given numerical examples demonstrate that our iterative
algorithm is efficient. Especially, when the numbers of the
parameter matrices 𝐴

1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐶
1
, 𝐶
2
, 𝐷
1
, 𝐷
2
are large,

our algorithm is efficient as well while the algorithm of [32]
is not convergent. That is, our algorithm has merits of good
numerical stability and ease to program.

The rest of this paper is outlined as follows. In Section 2,
we first propose an efficient iterative algorithm for solving
Problem 1; then we give some properties of this iterative
algorithm. We show that the algorithm can obtain a solution
group (the least Frobenius norm solution group) for any
(special) initial matrix group in the absence of roundoff
errors. In Section 3, a numerical example is given to illustrate
that our algorithm is quite efficient.

2. Iterative Algorithm for Solving
Problems 1 and 2

In this section, we present the iterative algorithm for the
consistence of the system (1).

Algorithm 3. (1) Input matrices 𝐴
1
∈ 𝑅
𝑝×𝑘, 𝐴

2
∈ 𝑅
𝑝×𝑚, 𝐵

1
∈

𝑅
𝑟×𝑞, 𝐵
2
∈ 𝑅
𝑛×𝑞, 𝐶

1
∈ 𝑅
𝑠×𝑘, 𝐶
2
∈ 𝑅
𝑠×𝑚, 𝐷

1
∈ 𝑅
𝑟×𝑡, 𝐷

2
∈ 𝑅
𝑛×𝑡,

𝐸 ∈ 𝑅
𝑝×𝑞, 𝐹 ∈ 𝑅

𝑠×𝑡,𝑋1
1
∈ 𝑅
𝑘×𝑟, and𝑋

1

2
∈ 𝑅
𝑚×𝑛 (where𝑋1

1
,𝑋1
2

are any initial matrices).
(2) Calculate

𝐸
1
= 𝐸,

𝐹
1
= 𝐹,

𝑃
1

1
= 𝐴
𝑇

1
𝐸
1
𝐵
𝑇

1
+ 𝐶
𝑇

1
𝐹
1
𝐷
𝑇

1
,

𝑃
1

2
= 𝐴
𝑇

2
𝐸
1
𝐵
𝑇

2
+ 𝐶
𝑇

2
𝐹
1
𝐷
𝑇

2
,

𝛽
1
= (tr [(𝐸1)

𝑇

(𝐴
1
𝑃
1

1
𝐵
1
+ 𝐴
2
𝑃
1

2
𝐵
2
)]

+ tr [(𝐹1)
𝑇

(𝐶
1
𝑃
1

1
𝐷
1
+ 𝐶
2
𝑃
1

2
𝐷
2
)])

× (

𝐴
1
𝑃
1

1
𝐵
1
+ 𝐴
2
𝑃
1

2
𝐵
2



2

+

𝐶
1
𝑃
1

1
𝐷
1
+ 𝐶
2
𝑃
1

2
𝐷
2



2

)

−1

,

Δ𝑋
1

1
= 𝛽
1
𝑃
1

1
,

Δ𝑋
1

2
= 𝛽
1
𝑃
1

2
,

𝑘 = 1.

(3)

(3) If Δ𝑋 = diag(Δ𝑋𝑘
1
, Δ𝑋
𝑘

2
) = 0 (𝑘 = 1, 2, . . .), then stop.

Otherwise,

𝑋
𝑘+1

1
= 𝑋
𝑘

1
+ Δ𝑋
𝑘

1
,

𝑋
𝑘+1

2
= 𝑋
𝑘

2
+ Δ𝑋
𝑘

2
.

(4)
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(4) Calculate

𝐸
𝑘+1

= 𝐸
𝑘
− (𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
) ,

𝐹
𝑘+1

= 𝐹
𝑘
− (𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
) ,

𝑃
𝑘+1

1
= 𝐴
𝑇

1
𝐸
𝑘+1

𝐵
𝑇

1
+ 𝐶
𝑇

1
𝐹
𝑘+1

𝐷
𝑇

1
,

𝑃
𝑘+1

2
= 𝐴
𝑇

2
𝐸
𝑘+1

𝐵
𝑇

2
+ 𝐶
𝑇

2
𝐹
𝑘+1

𝐷
𝑇

2
,

𝛽
𝑘+1

= (tr [(𝐸𝑘+1)
𝑇

(𝐴
1
𝑃
𝑘+1

1
𝐵
1
+ 𝐴
2
𝑃
𝑘+1

2
𝐵
2
)]

+ tr [(𝐹𝑘+1)
𝑇

(𝐶
1
𝑃
𝑘+1

1
𝐷
1
+ 𝐶
2
𝑃
𝑘+1

2
𝐷
2
)])

× (

𝐴
1
𝑃
𝑘+1

1
𝐵
1
+ 𝐴
2
𝑃
𝑘+1

2
𝐵
2



2

+

𝐶
1
𝑃
𝑘+1

1
𝐷
1
+ 𝐶
2
𝑃
𝑘+1

2
𝐷
2



2

)

−1

,

Δ𝑋
𝑘+1

1
= 𝛽
𝑘+1

𝑃
𝑘+1

1
,

Δ𝑋
𝑘+1

2
= 𝛽
𝑘+1

𝑃
𝑘+1

2
,

𝑘 = 𝑘 + 1.

(5)

Go to (3).

Lemma 4. In Algorithm 3, the choice of 𝛽𝑘 makes ‖ diag(𝐸𝑘+1,
𝐹
𝑘+1

)‖ reach a minimum and diag(𝐸𝑘+1, 𝐹𝑘+1) and
diag(𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
, 𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
) orthog-

onal to each other.

Proof. From Algorithm 3, we have


diag (𝐸𝑘+1, 𝐹𝑘+1)

2

=

diag (𝐸𝑘 − (𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
) ,

𝐹
𝑘
− (𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
))


2

=

diag (𝐸𝑘 − (𝐴

1
𝛽
𝑘
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝛽
𝑘
𝑃
𝑘

2
𝐵
2
) ,

𝐹
𝑘
− (𝐶
1
𝛽
𝑘
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝛽
𝑘
𝑃
𝑘

2
𝐷
2
))


2

=

𝐸
𝑘
− (𝐴
1
𝛽
𝑘
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝛽
𝑘
𝑃
𝑘

2
𝐵
2
)


2

+

𝐹
𝑘
− (𝐶
1
𝛽
𝑘
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝛽
𝑘
𝑃
𝑘

2
𝐷
2
)


2

=

𝐸
𝑘

2

+

𝐹
𝑘

2

− 2 [tr (𝐸𝑘, 𝐴
1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2
)

+ tr (𝐹𝑘, 𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2
)] 𝛽
𝑘

+ [

𝐴
1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2



2

+

𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2



2

] (𝛽
𝑘
)
2

.

(6)

From the above, the condition of ‖diag(𝐸𝑘+1, 𝐹𝑘+1)‖ reaching
a minimum is

𝛽
𝑘
= (tr (𝐸𝑘, 𝐴

1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2
)

+ tr (𝐹𝑘, 𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2
))

× (

𝐴
1
𝑃
𝑘

1
𝐵
1
+ 𝐴
2
𝑃
𝑘

2
𝐵
2



2

+

𝐶
1
𝑃
𝑘

1
𝐷
1
+ 𝐶
2
𝑃
𝑘

2
𝐷
2



2

)

−1

.

(7)

On the other hand, if the choice of 𝛽𝑘 makes diag(𝐸𝑘+1,
𝐹
𝑘+1

) and diag(𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+𝐴
2
Δ𝑋
𝑘

2
𝐵
2
, 𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)

orthogonal to each other, that is, tr[diag(𝐸𝑘+1,
𝐹
𝑘+1

)
𝑇 diag(𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+𝐴
2
Δ𝑋
𝑘

2
𝐵
2
, 𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)] =

0, we can have the same 𝛽𝑘 as (7).

Theorem 5. Algorithm 3 is bound to be convergent.

Proof. From Algorithm 3 and Lemma 4 we have

diag (𝐸𝑘, 𝐹𝑘) = diag (𝐸𝑘+1, 𝐹𝑘+1)

+ diag (𝐴
1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
,

𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
) ,

⇐⇒

diag (𝐸𝑘, 𝐹𝑘)

2

=

diag (𝐸𝑘+1, 𝐹𝑘+1) + diag (𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
,

𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)


2

=

diag (𝐸𝑘+1, 𝐹𝑘+1)

2

+

diag (𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
,

𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)


2

(8)

such that

diag (𝐸𝑘+1, 𝐹𝑘+1)

2

=

diag (𝐸𝑘, 𝐹𝑘)

2

−

diag (𝐴

1
Δ𝑋
𝑘

1
𝐵
1
+ 𝐴
2
Δ𝑋
𝑘

2
𝐵
2
,

𝐶
1
Δ𝑋
𝑘

1
𝐷
1
+ 𝐶
2
Δ𝑋
𝑘

2
𝐷
2
)


2

≤

diag (𝐸𝑘, 𝐹𝑘)

2

.

(9)

From (9), we know that Algorithm 3 is convergent.

Lemma 6 (see [41]). Suppose that the consistent system of
linear equations 𝑀𝑦 = 𝑏 has a solution 𝑦

0
∈ 𝑅(𝑀

𝑇
); then

𝑦
0
is the least Frobenius norm solution of the system of linear

equations.
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Theorem 7. Assume that the system (1) is consistent. Let𝑋1
1
=

𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
, 𝑋1
2
= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
be initial matrices

where𝑌 ∈ 𝑅
𝑝×𝑞,𝑍 ∈ 𝑅

𝑠×𝑡 are any initialmatrices, or, especially,
𝑋
1

1
= 0, 𝑋1

2
= 0; then the solution generated by Algorithm 3 is

the least Frobenius norm solution to (1).

Proof. If (1) is consistent, from𝑋
1

1
= 𝐴
𝑇

1
𝑌𝐵
𝑇

1
+𝐶
𝑇

1
𝑍𝐷
𝑇

1
,𝑋1
2
=

𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
, using Algorithm 3, we have the iterative

solution pair𝑋𝑘
1
, 𝑋
𝑘

2
of (1) as the following:

𝑋
𝑘

1
= 𝑋
𝑘−1

1
+ Δ𝑋
𝑘−1

1

= 𝑋
1

1
+ Δ𝑋
1

1
+ ⋅ ⋅ ⋅ + Δ𝑋

𝑘−1

1

= 𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1

+ 𝐴
𝑇

1
[𝛽
1
𝐸
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐸
𝑘−1

] 𝐵
𝑇

1

+ 𝐶
𝑇

1
[𝛽
1
𝐹
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐹
𝑘−1

]𝐷
𝑇

1

= 𝐴
𝑇

1
𝑀𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑁𝐷
𝑇

1
,

𝑋
𝑘

2
= 𝑋
𝑘−1

2
+ Δ𝑋
𝑘−1

2

= 𝑋
1

2
+ Δ𝑋
1

2
+ ⋅ ⋅ ⋅ + Δ𝑋

𝑘−1

1

= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2

+ 𝐴
𝑇

2
[𝛽
1
𝐸
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐸
𝑘−1

] 𝐵
𝑇

2

+ 𝐶
𝑇

2
[𝛽
1
𝐹
1
+ ⋅ ⋅ ⋅ + 𝛽

𝑘−1
𝐹
𝑘−1

]𝐷
𝑇

2

= 𝐴
𝑇

2
𝑀𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑁𝐷
𝑇

2
.

(10)

We know that (1) is equivalent to the system

(

𝐵
𝑇

1
⊗ 𝐴
1

𝐵
𝑇

2
⊗ 𝐴
2

𝐷
𝑇

1
⊗ 𝐶
1

𝐷
𝑇

2
⊗ 𝐶
2

)(

vec (𝑋
1
)

vec (𝑋
2
)
) = (

vec (𝐸)
vec (𝐹)

) . (11)

From (10) and (11) we have

(

vec (𝐴𝑇
1
𝑀𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑁𝐷
𝑇

1
)

vec (𝐴𝑇
2
𝑀𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑁𝐷
𝑇

2
)

)

= (

𝐵
1
⊗ 𝐴
𝑇

1
𝐷
1
⊗ 𝐶
𝑇

1

𝐵
2
⊗ 𝐴
𝑇

2
𝐷
2
⊗ 𝐶
𝑇

2

)(

vec (𝑀)

vec (𝑁)
)

= (

𝐵
𝑇

1
⊗ 𝐴
1

𝐵
𝑇

2
⊗ 𝐴
2

𝐷
𝑇

1
⊗ 𝐶
1

𝐷
𝑇

2
⊗ 𝐶
2

)

𝑇

× (

vec (𝑀)

vec (𝑁)
) ∈ 𝑅((

𝐵
𝑇

1
⊗ 𝐴
1

𝐵
𝑇

2
⊗ 𝐴
2

𝐷
𝑇

1
⊗ 𝐶
1

𝐷
𝑇

2
⊗ 𝐶
2

)

𝑇

) ,

(12)

where 𝑅(∗) is the column space of matrix ∗.
Considering Lemma 6, with the initial matrices 𝑋

1

1
=

𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
, 𝑋1
2
= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2
, where 𝑌 ∈ 𝑅

𝑝×𝑞,

𝑍 ∈ 𝑅
𝑠×𝑡 are arbitrary, or, especially,𝑋1

1
= 0 and𝑋

1

2
= 0, then

the solution pair𝑋𝑘
1
, 𝑋
𝑘

2
generated by Algorithm 3 is the least

Frobenius norm solution of the matrix equations (1).

Suppose that Problem 1 is consistent. Obviously the
solution set 𝑆 of (1) is nonempty. For given matrices pair
𝑋
1
∈ 𝑅
𝑘×𝑟,𝑋

2
∈ 𝑅
𝑚×𝑛, we can write

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

⇐⇒

{{{{

{{{{

{

𝐴
1
(𝑋
1
− 𝑋
1
) 𝐵
1
+ 𝐴
2
(𝑋
2
− 𝑋
2
) 𝐵
2

= 𝐸 − 𝐴
1
𝑋
1
𝐵
1
− 𝐴
2
𝑋
2
𝐵
2
,

𝐶
1
(𝑋
1
− 𝑋
1
)𝐷
1
+ 𝐶
2
(𝑋
2
− 𝑋
2
)𝐷
2

= 𝐹 − 𝐶
1
𝑋
1
𝐷
1
− 𝐶
2
𝑋
2
𝐷
2
.

(13)

Let𝑋
1
= 𝑋
1
−𝑋
1
,𝑋
2
= 𝑋
2
−𝑋
2
, 𝐸 = 𝐸−𝐴

1
𝑋
1
𝐵
1
−𝐴
2
𝑋
2
𝐵
2
,

and𝐹 = 𝐹−𝐶
1
𝑋
1
𝐷
1
−𝐶
2
𝑋
2
𝐷
2
.Then Problem 2 is equivalent

to find the least Frobenius norm solution pair of the system

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(14)

which can be obtained using Algorithm 3 with the initial
matrix pair 𝑋1

1
= 𝐴
𝑇

1
𝑌𝐵
𝑇

1
+ 𝐶
𝑇

1
𝑍𝐷
𝑇

1
, 𝑋1
2
= 𝐴
𝑇

2
𝑌𝐵
𝑇

2
+ 𝐶
𝑇

2
𝑍𝐷
𝑇

2

where 𝑌 ∈ 𝑅
𝑝×𝑞 and 𝑍 ∈ 𝑅

𝑠×𝑡 are arbitrary, or especially,
𝑋
1

1
= 0, 𝑋1

2
= 0, and the solution of the matrix optimal

approximationProblem2 can be represented as𝑋
1
= 𝑋
𝑘

1
+𝑋
1
,

𝑋
2
= 𝑋
𝑘

2
+ 𝑋
2
.

3. An Example

In this section, we show a numerical example to illustrate the
efficiency of Algorithm 3. All computations are performed by
MATLAB 7. For the influence of the error of calculation, we
consider the matrix 𝑅 as a zero matrix if ‖𝑅‖ < 10

−10.

Example 1. Consider the solution of the linear matrix equa-
tions

𝐴
1
𝑋
1
𝐵
1
+ 𝐴
2
𝑋
2
𝐵
2
= 𝐸,

𝐶
1
𝑋
1
𝐷
1
+ 𝐶
2
𝑋
2
𝐷
2
= 𝐹,

(15)

where

𝐴
1
= (

139 105 54

124 176 50

159 35 175

191 196 147

) ,

𝐵
1
= (

13 117 103 87 116

198 85 67 45 152
) ,

𝐴
2
= (

27 60

2 132

179 57

40 94

) ,
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𝐵
2
= (

106 76 92 12 83

128 157 114 121 61

42 136 159 10 175

) ,

𝐶
1
= (

3 88 192

154 100 145

194 43 82

198 129 149

158 64 54

),

𝐷
1
= (

88 31 140

71 135 146
) ,

𝐶
2
= (

4 63

115 3

90 77

9 137

5 19

),

𝐷
2
= (

96 90 55

111 143 51

24 179 173

) ,

𝐸 = (

8433077 7598166 7137224 3600960 9942247

11267058 9622068 9126164 4374104 12443246

14871294 16123511 15980470 6538271 20550138

16234322 14317981 13168541 7214805 18956522

) ,

𝐹 = (

8104691 10054438 13979223

8672308 12546367 16384832

7666584 11382258 13330665

10613517 13831240 17573398

4111503 5032847 7285952

).

(16)

In this example, the numbers of the parameter matrices
𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, 𝐶
1
, 𝐶
2
, 𝐷
1
, 𝐷
2
are larger than the numbers of

the parameter matrices in the example of [32]. It can be
verified that these matrix equations are consistent and have
the solution as

𝑋
1
= (

53 48

32 129

175 193

) , 𝑋
2
= (

133 2 164

174 27 86
) . (17)

Let

𝑋
0

1
= (

0 0

0 0

0 0

) , 𝑋
0

2
= (

0 0 0

0 0 0
) . (18)

(1) Using Algorithm 3 and iterate 10309 steps, we obtain
the least Frobenius norm solution pair of the matrix equation
in Example 1 as follows:

𝑋
1
= (

53.0000 48.0000

32.0000 129.0000

175.0000 193.0000

) ,

𝑋
2
= (

133.0000 2.0000 164.0000

174.0000 27.0000 86.0000
) .

(19)

The obtained sequence ‖Δ𝑋‖ are presented in Figure 1.
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Figure 1: The obtained sequence ‖Δ𝑋‖ by Algorithm 3 for
Example 1.
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Figure 2: The relative error of the solution and the residual by the
algorithm of [32] for Example 1.

(2) Using the algorithm of [32], to this example, the iter-
ation is not convergent. The obtained result is presented in
Figure 2.

This numerical example demonstrates that our algorithm
has merits of good numerical stability and ease to program.
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