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This paper deals with the extinction and nonextinction properties of the fast diffusion equation of homogeneousDirichlet boundary
condition in a bounded domain of 𝑅𝑁 with𝑁 > 2. For 0 < 𝑚 < 1, under appropriate hypotheses, we show that𝑚 = 𝑝 is the critical
exponent of extinction for the weak solution. Furthermore, we prove that the solution either extinct or nonextinct in finite time
depends strongly on the initial data and the first eigenvalue of −Δ with homogeneous Dirichlet boundary.

1. Introduction

In this paper, we deal with the following fast diffusion equa-
tion with gradient absorption terms:

𝑢
𝑡
= Δ𝑢
𝑚
+ 𝜆|∇𝑢|

𝑝
, (𝑥, 𝑡) ∈ Ω × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω × (0,∞) ,

(1)

where 0 < 𝑚 < 1, 𝑝 > 0, 𝜆 > 0, Ω ⊂ 𝑅
𝑁 with 𝑁 > 2 is

an open bounded domain with smooth boundary, and 𝑢
0
∈

𝐿
∞
(Ω) ∩𝑊

1,𝑝

0
(Ω) is a nonzero positive function.

Equation (1) appears in a lot of applications to describe the
evolution of diffusion processes, in particular, fast diffusion
for 0 < 𝑚 < 1. In combustion theory, for instance, the
function 𝑢(𝑥, 𝑡) represents the temperature, the term Δ𝑢

𝑚

represents the thermal diffusion, and 𝜆|∇𝑢|𝑝 is a source.
Extinction and nonextinction are important properties

for solutions of many evolutionary equations, especially for
fast diffusion equations. In 1974, Kalashnikov [1] considered
the Cauchy problem of equation 𝑢

𝑡
= Δ𝑢 − 𝑢

𝑝 and firstly
introduced the definition of extinction for its solution; that
is, there exists a finite time 𝑇 > 0 such that the solution is
nontrivial for 0 < 𝑡 < 𝑇, but 𝑢(𝑥, 𝑡) ≡ 0 for all (𝑥, 𝑡) ∈

Ω × (𝑇,∞). In this case, 𝑇 is called the extinction time.

Since then,many authors became interested in the extinc-
tion and nonextinction of all kinds of evolutionary equations.
For the following homogeneous Dirichlet boundary value
problem:

𝑢
𝑡
= Δ𝑢 − 𝑢

𝑞
, (𝑥, 𝑡) ∈ Ω × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω × (0,∞) .

(2)

Gu [2] obtained that the nontrivial solutions of the problem
(2) vanish identically in a finite time if and only if 0 < 𝑞 < 1,
which implies that strong absorption will cause extinction in
a finite time. More results on the extinction for the problem
(2) have also been obtained by many researchers, and we
can refer to [3–7] and the references therein. Because of the
occurrence of such a phenomenon for a diffusion equation
with a different absorption term, that is, the absorption term
is a nonnegative function of∇𝑢 instead of being a nonnegative
function of 𝑢, Benachour et al. [8, 9] considered the following
Cauchy problem for the viscous Hamilton-Jacobi equation:

𝑢
𝑡
= Δ𝑢 − |∇𝑢|

𝑞
, (𝑥, 𝑡) ∈ 𝑅

𝑁
× (0,∞) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ 𝑅
𝑁
.

(3)

They proved that the nonnegative classical solutions to the
problem (3) are extinct in finite time and have noncompact
support if 0 < 𝑞 < 1.
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Generally, in the problems (2) and (3), there is a com-
parison between the diffusion term and the absorption term,
and the absorption is sufficiently strong to lead any bounded
nonnegative solution to zero in finite time. However, while
both the source −𝑢𝑞 in problem (2) and the source −|∇𝑢|𝑞 in
problem (3) are called the “cool source,” the nonlinear source
+|∇𝑢|

𝑞 in problem (1) is physically called the “hot source.”
As far as we know, the type of “hot source” has complicated
influences on the properties of solutions compared with the
case of “cool source” [10]. Thus, few works are concerned
with extinction property for solutions to the evolutionary
equations with “hot source.” In 2005, Li and Wu [10] gave
some necessary and sufficient conditions of extinction for the
solutions to the following problem with “hot source”:

𝑢
𝑡
= Δ𝑢
𝑚
+ 𝜆𝑢
𝑝
, (𝑥, 𝑡) ∈ Ω × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ≥ 0, 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω × (0,∞) ,

(4)

where 0 < 𝑚 < 1. They proved that if 𝑝 > 𝑚, the solutions
to the problem (4) with small initial data vanished in finite
time and if 𝑝 < 𝑚, the maximal solution to the problem (4) is
positive for all 𝑡 > 0. Recently, Tian and Mu [11] studied the
following 𝑝-Laplacian equation with nonlinear “hot source”:

𝑢
𝑡
= div (|∇𝑢|𝑝−2∇𝑢) + 𝜆𝑢𝑝, (𝑥, 𝑡) ∈ Ω × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω × (0,∞) .

(5)

They obtained that for 1 < 𝑝 < 2, 𝑞 = 𝑝 − 1 is the critical
exponent of extinction for the weak solution to the problem
(5). Also, they show that for 1 < 𝑝 < 2 and 𝑞 = 𝑝 − 1, the
extinction and nonextinction of the solution to the problem
(5) depend strongly on the first eigenvalue of the problem
− div(|∇𝑢|𝑝−2∇𝑢) = 𝜆|𝑢|𝑝−2𝑢 inΩ, 𝑢|

𝜕Ω
= 0. For more results

on the extinction properties of equations with “hot source,”
we can refer to [12, 13] and the references therein.

By replacing the diffusion term 𝑢
𝑝 with the gradient

absorption terms |∇𝑢|𝑝 in (4), in this paper, we devote to
establish the conditions for the extinction of solution to the
problem (1), which involves the “hot source” rather than the
“cool source.”

2. Preliminaries

In this section, we will give some definitions and lemmas
which is useful to the proof of our results in the next section.
For our convenience, we first define some sets as follows:

Ω
𝑇
= Ω × (0, 𝑇) , 𝑇 > 0,

𝐸 = {𝑢
𝑡
∈ 𝐿
2
(Ω
𝑇
) :

𝑢 ∈ 𝐿
2𝑚
(Ω
𝑇
) ⋂𝐿

2
(Ω
𝑇
) ; ∇𝑢 ∈ 𝐿

2𝑝
(Ω
𝑇
)}

𝐸
0
= {𝜑 ∈ Ω

𝑇
: 𝜑
𝑡
, Δ𝜑;

∇𝜑
 ∈ 𝐿
2
(Ω
𝑇
) ; 𝜑|
𝜕Ω𝑇

= 0} .

(6)

It is well known that the problem (1) has no classical solution
in general. We need to consider its weak solutions which is
defined as follows.

Definition 1. For any 𝑇 ≥ 0, a function 𝑢(𝑥, 𝑡) ∈ 𝐸 is called
a weak solution to the problem (1) if the following equalities
hold for any 0 < 𝑡

1
< 𝑡
2
< 𝑇 and 0 ≤ 𝜑 ∈ 𝐸

0
:

∫
Ω

𝑢 (𝑥, 𝑡
2
) 𝜑 (𝑥, 𝑡

2
) 𝑑𝑥 − ∫

Ω

𝑢 (𝑥, 𝑡
1
) 𝜑 (𝑥, 𝑡

1
) 𝑑𝑥

= ∫

𝑡2

𝑡1

∫
Ω

𝑢𝜑
𝑡
+ 𝑢
𝑚
Δ𝜑 + |∇𝑢|

𝑝
𝜑𝑑𝑡 𝑑𝑥,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , a.e. 𝑥 ∈ Ω.

(7)

Remark 2. Similarly, to define a subsolution (resp., superso-
lution) 𝑢(𝑥, 𝑡) (resp., 𝑢(𝑥, 𝑡)) of the problem (1), we need only
to set 𝑢(𝑥, 0) < 𝑢

0
(𝑥) (resp., 𝑢(𝑥, 0) > 𝑢

0
(𝑥)) inΩ, 𝑢(𝑥, 𝑡) ≤ 0

(resp., 𝑢(𝑥, 𝑡) ≥ 0) on 𝜕Ω × (0,∞), and the first equality in
(7) is replaced by ≤ (resp., ≥) for every 𝜑(𝑥) > 0.

As a useful tool in the proof of ourmain results in the next
section, a comparison principle of the following problem is
needed:

𝑢
𝑡
= Δ𝜑 (𝑥, 𝑡, 𝑢) + 𝑓 (𝑥, 𝑡, 𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω × (0, 𝑇) .

(8)

Under the following four hypotheses:

(H1) 𝜑, Δ
𝑥
𝜑 ∈ 𝐶(Ω

𝑇
×𝑅), ∇

𝑥
𝜑 ∈ ∏

𝑁

𝑖=1
𝐶(Ω
𝑇
×𝑅), and 𝜑

𝑢
∈

𝐶(Ω
𝑇
× 𝑅 \ {0}), s.t. 𝜑(𝑥, 𝑡, 0) = 0 and 𝜑

𝑢
(𝑥, 𝑡, 𝑢) > 0

for all (𝑥, 𝑡) ∈ Ω
𝑇
and 𝑢 ̸= 0;

(H2) 𝑓 ∈ 𝐶(Ω
𝑇
× 𝑅) and 𝑓

𝑢
∈ 𝐶(Ω

𝑇
× 𝑅 \ {0}) with

𝑓(𝑥, 𝑡, 0) = 0 for all (𝑥, 𝑡) ∈ Ω
𝑇
;

(H3) 𝑢
0
∈ 𝐿
∞
(Ω) with 𝑢

0
> 0;

(H4) for any constant 𝑎 > 0, if 𝑢 ≥ 0, V ≥ 𝑎 in Ω
𝑇
and

𝑢, V ∈ 𝐿
∞
(Ω
𝑇
), then the functions Φ and 𝐹 defined

almost everywhere inΩ
𝑇
by

Φ (𝑥, 𝑠) ≡ ∫

1

0

𝜑
𝑢 (𝑥, 𝑠, 𝜃𝑢 + (1 − 𝜃) V) 𝑑𝜃,

𝐹 (𝑥, 𝑠) ≡ ∫

1

0

𝜑
𝑓 (𝑥, 𝑠, 𝜃𝑢 + (1 − 𝜃) V) 𝑑𝜃

(9)

belong to 𝐿∞(Ω
𝑇
) and 𝐿∞(𝜕Ω

𝑇
×[0, 𝑇]), respectively,

we have the following lemma on the comparison principle of
the problem (8).

Lemma 3 (see [14]). Assume that the hypotheses (H1)–(H4)
hold. Let 𝑢(𝑥, 𝑡; 𝑢

0
) and V(𝑥, 𝑡; V

0
) be nonnegative solutions of

(8) on Ω
𝑇
with 𝑢

0
≤ V
0
. Assume further that for any 𝑡

1
< 𝑇,

there is a constant 𝑎(𝑡
1
) > 0 such that V(𝑥, 𝑡; V

0
) ≥ 𝑎(𝑡

1
) for all

(𝑥, 𝑡) ∈ Ω × [0, 𝑡
1
]. Then, 𝑢 ≤ V almost everywhere on Ω

𝑇
.
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3. Main Results

In this section, by applying the energy method introduced in
[11] and the comparison result in Lemma 3 of the problem (8),
we give the main results on the extinction and nonextinction
of the solution to the problem (1).

3.1. Extinction of the Solution. In this subsection, we consider
the extinction of the solution to the problem (1) and give the
conditions for the extinction of the solution to the problem
(1).

Theorem 4. Assume that 0 < 𝑚 < 1, and let 𝑢(𝑥, 𝑡) be a weak
solution of the problem (1). If 𝑚 < 𝑝 ≤ 2/(3 − 𝑚), then, for
sufficiently small initial data, there exists a finite time 𝑇, such
that

𝑢 (𝑥, 𝑡) ≡ 0 (10)

for all (𝑥, 𝑡) ∈ Ω × (𝑇, +∞).

Proof. First of all, multiplying the first equation of the
problem (1) by 𝑢𝑠−1 (𝑠 > 1) and integrating over Ω, we can
obtain the following crucial equation to our proof:

1

𝑠

𝑑

𝑑𝑡
∫
Ω

𝑢
𝑠
𝑑𝑥 +

4𝑚 (𝑠 − 1)

(𝑚 + 𝑠 − 1)
2
∫
Ω


∇𝑢
(𝑚+𝑠−1)/2

2

𝑑𝑥

= 𝜆(
𝑚 + 𝑠 − 1

2
)

−𝑝

∫
Ω


∇𝑢
(𝑚+𝑠−1)/2

𝑝

𝑢
((3−𝑠−𝑚)/2)𝑝+𝑠−1

𝑑𝑥.

(11)

Then, we prove the theorem by the following two cases.
First, we consider the case of (𝑁 − 2)/(𝑁 + 2) ≤ 𝑚 < 1.

Let 𝑠 = 1 +𝑚 in (11), and we can get by the Hölder inequality
and Poincare inequality that

‖𝑢 (⋅, 𝑡)‖
𝑚

1+𝑚
≤ |Ω|
(𝑚/(1+𝑚))−((𝑁−2)/2𝑁)𝑢

𝑚
(⋅, 𝑡)

2𝑁/(𝑁−2)

≤ 𝐶
0|Ω|
(𝑚/(1+𝑚))−((𝑁−2)/2𝑁)∇𝑢

𝑚
(⋅, 𝑡)

2
,

(12)

where 𝐶
0
is the Sobolev embedding constant depending only

on 𝑝 and𝑁.
Since 𝑝 ≤ 2/(3 − 𝑚), 0 < 𝑚 < 1, it follows from the

Young’s inequality for any 𝜀 > 0 that

∫
Ω

∇𝑢
𝑚
(⋅, 𝑡)



𝑝
𝑢
𝑝(1−𝑚)+𝑚

𝑑𝑥

≤ 𝜀
∇𝑢
𝑚
(⋅, 𝑡)



2

2
+ 𝑐 (𝜀) ‖𝑢‖

2(𝑝−𝑝𝑚+𝑚)/(2−𝑝)

2(𝑝−𝑝𝑚+𝑚)/(2−𝑝)
.

(13)

Also, since the assumptions 𝑝 ≤ 2/(3 − 𝑚) and 0 < 𝑚 < 1

imply that 2(𝑝 − 𝑝𝑚 + 𝑚)/(2 − 𝑝) ≤ 1 + 𝑚, we can obtain by
the Hölder inequality that

‖𝑢‖
2(𝑝−𝑝𝑚+𝑚)/(2−𝑝)

2(𝑝−𝑝𝑚+𝑚)/(2−𝑝)

≤ 𝐶
1|Ω|
2(𝑝−𝑝𝑚+𝑚)/((1+𝑚)(2−𝑝))

‖𝑢‖
2(𝑝−𝑝𝑚+𝑚)/(2−𝑝)

1+𝑚
.

(14)

Therefore, from the previous inequalities (11)–(14), we can
obtain the following differential inequality:

1

1 + 𝑚

𝑑

𝑑𝑡
‖𝑢‖
1+𝑚

1+𝑚
+ (1 − 𝜆𝑚

−𝑝
𝜀) 𝐶
−2

0

× |Ω|
(𝑚/(1+𝑚))−((𝑁−2)/2𝑁)

‖𝑢‖
2𝑚

1+𝑚

≤ 𝜆𝑚
−𝑝
𝑐 (𝜀) 𝐶1|Ω|

(2+𝑚𝑝−3𝑝)/((2−𝑝)(1+𝑚))

× ‖𝑢‖
2(𝑝−𝑝𝑚+𝑚)/(2−𝑝)

1+𝑚
.

(15)

Choose 𝜀 sufficiently small such that 1−𝜆𝑚−𝑝𝜀 > 0 and initial
data ‖𝑢

0
‖ sufficiently small such that

𝑢0


2(𝑝−𝑚)/(2−𝑝)

1+𝑚

< 𝜆
−1
𝑚
𝑝
𝑐(𝜀)
−1
𝐶
−1

1
(1 − 𝜆𝑚

−𝑝
𝜀) 𝐶
−2

0

× |Ω|
(𝑚/(1+𝑚))−((𝑁−2)/2𝑁)−((2+𝑚𝑝−3𝑝)/((2−𝑝)(1+𝑚)))

.

(16)

Thus, we can obtain that

1

1 + 𝑚

𝑑

𝑑𝑡
‖𝑢‖
1+𝑚

1+𝑚
+ 𝐶
3‖𝑢‖
2𝑚

1+𝑚
≤ 0, (17)

where 𝐶
2
= (1 − 𝜆𝑚

−𝑝
𝜀)𝐶
−2

0
|Ω|
((𝑛−2)/2𝑛)−(𝑚/(1+𝑚))

− 𝜆𝑚
−𝑝
𝑐(𝜀)

𝐶
1
|Ω|
((2+𝑚𝑝−3𝑝)/((2−𝑝)(1+𝑚)))

‖𝑢
0
‖
2(𝑝−𝑚)/(2−𝑝)

1+𝑚
> 0.

By integrating the inequality (17), we can obtain that there
exists a finite time 𝑇 =‖ ‖𝑢

0
‖
1−𝑚

1+𝑚
/(1 − 𝑚)𝐶

2
such that

‖𝑢‖1+𝑚 ≤ (
𝑢0



1−𝑚

1+𝑚
− (1 − 𝑚)𝐶2𝑡)

1/(1−𝑚)

, 𝑡 ∈ (0, 𝑇] ,

‖𝑢‖1+𝑚 = 0, 𝑡 ∈ [𝑇, +∞) ,

(18)

which implies that 𝑢(𝑥, 𝑡) vanishes in finite time 𝑇.
Next, we consider the second case of 0 < 𝑚 < (𝑁−2)/(𝑁+

2) < (𝑁 − 2)/𝑁. Let 𝑠 = (𝑁/2)(1 −𝑚) > 1 in (11), and we can
get by the Poincare inequality that

‖𝑢 (⋅, 𝑡)‖
(𝑚+𝑠−1)/2

𝑠
=

𝑢
(𝑚+𝑠−1)/2

(⋅, 𝑡)
2𝑁/(𝑁−2)

≤ 𝐶
3


∇𝑢
(𝑚+𝑠−1)/2

(⋅, 𝑡)
2
,

(19)

where 𝐶
3
is the Sobolev embedding constant depending only

on𝑁,𝑚, and 𝑠. Also, by the similar calculations as the proof
in the first case, we can get from the Young’s inequality for any
𝜂 > 0 that

∫
Ω


∇𝑢
(𝑚+𝑠−1)/2

𝑝

𝑢
((3−𝑠−𝑚)/2)𝑝+𝑠−1

𝑑𝑥

≤ 𝜂

∇𝑢
(𝑚+𝑠−1)/2

2

2
+ 𝑐 (𝜂) |Ω|

(2+𝑝𝑚−3𝑝)/(2−𝑝)𝑠

× ‖𝑢‖
((3−𝑠−𝑚)𝑝+2𝑠−2)/(2−𝑝)

𝑠
.

(20)
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Choose 𝜂 sufficiently small such that 4𝑚(𝑠 − 1)/(𝑚 + 𝑠 −

1)
2
− 𝜆(((1 + 𝑚)((𝑁/2) − 1))/2)

−𝑝
𝜂 > 0 and initial data ‖𝑢

0
‖

sufficiently small such that

𝑢0


2(𝑝−𝑚)/(2−𝑝)

𝑠

< 𝜆
−1
𝑐(𝜂)
−1
𝐶
−2

3
(
(1 + 𝑚) ((𝑁/2) − 1)

2
)

−𝑝

× |Ω|
(2+𝑝𝑚−3𝑝)/(2−𝑝)𝑠

× (
4𝑚 (𝑠 − 1)

(𝑚 + 𝑠 − 1)
2
− 𝜆(

(1 + 𝑚) ((𝑁/2) − 1)

2
)

−𝑝

𝜂) .

(21)

Then, it follows from the inequalities (11) and (19)–(21) that

1

𝑠

𝑑

𝑑𝑡
‖𝑢‖
𝑠

𝑠
+ 𝐶
4‖𝑢‖
𝑚+𝑠−1

𝑠
≤ 0, (22)

where𝐶
4
= 𝐶
−2

3
((4𝑚(𝑠−1)/(𝑚+𝑠−1)

2
)−𝜆(((1+𝑚)((𝑁/2)−

1))/2)
−𝑝
𝜂) − 𝜆𝑐(𝜂)|Ω|

(2+𝑝𝑚−3𝑝)/(𝑝−2)𝑠
‖𝑢
0
‖
2(𝑝−𝑚)/(2−𝑝)

𝑠
.

By integrating the inequality (22), we can obtain that there
exists a finite time 𝑇 = ‖𝑢

0
‖
1−𝑚

𝑠
/(1 − 𝑚)𝐶

4
such that

‖𝑢‖𝑠 ≤ (
𝑢0



1−𝑚

𝑠
− (1 − 𝑚)𝐶4𝑡)

1/(1−𝑚)

, 𝑡 ∈ (0, 𝑇] ,

‖𝑢‖𝑠 = 0, 𝑡 ∈ [𝑇, +∞) ,

(23)

which implies that 𝑢(𝑥, 𝑡) vanishes in finite time 𝑇. This
completes the proof of Theorem 4.

Theorem 5. If𝑚 = 𝑝 ≤ 2/(3 −𝑚), the solution to the problem
(1) vanishes in finite time for 𝜆 sufficiently small.

Proof. When 𝑝 = 𝑚, we note that the left sides of the inequal-
ities (16) and (21) always equal 1. Thus, by a similar argument
in the proof ofTheorem 4, we can choose 𝜆 sufficiently small
such that the inequalities (16) and (21) hold, which imply that
there exist 𝑇 < +∞ such that 𝑢(𝑥, 𝑡) vanishes identically for
all (𝑥, 𝑡) ∈ Ω

𝑇
. This completes the proof of Theorem 5.

3.2. Nonextinction of the Solution. In this subsection, we
investigate the conditions under which the solution 𝑢(𝑥, 𝑡) of
the problem (1) cannot become extinct.

Theorem 6. If 𝑝 < 𝑚, the weak solution 𝑢(𝑥, 𝑡) of (1) cannot
vanish in finite time for any nonnegative initial date 𝑢

0
with 𝜆

being sufficiently large.

Proof. In order to proveTheorem 6, we first define two useful
functions as follows. The first function 𝜙(𝑥) ∈ 𝐻

1

0
(Ω)

satisfying max
𝑥∈Ω

𝜙(𝑥) = 1 is the associated eigenfunction
with the principal eigenvalue 𝜆

1
of the following problem:

−Δ𝜙 = 𝜆
1
𝜙, 𝑥 ∈ Ω,

𝜙|
𝜕Ω

= 0.

(24)

For 𝑝 < 𝑚, we define the second useful function as follows:

𝑔 (𝑡) = (
𝑎

𝑏
)

1/(𝑚−𝑝)

(1 − exp (−𝐶𝑡))1/(1−𝑝), (25)

where 𝑎 < 𝑏 and 𝐶 ∈ (0, (𝑚 − 𝑝)(𝑎
1−𝑝

/𝑏
1−𝑚

)
1/(1−𝑝)

). It
follows from [11] that the function 𝑔(𝑡) satisfies the following
properties:

𝑔

(𝑡) ≤ −𝑎𝑔

𝑚
(𝑡) + 𝑏𝑔

𝑝
(𝑡) ,

𝑔 (0) = 0,

0 < 𝑔 (𝑡) < 1, for 𝑡 > 0.

(26)

Now, let V(𝑥, 𝑡) = 𝑔(𝑡)𝜙(𝑥)1/𝑚 be a functionΩ×(0,∞). Next,
we will show that V(𝑥, 𝑡) is a subsolution of the problem (1).
In fact, from the definitions of functions 𝑔(𝑡), V(𝑥, 𝑡) and the
properties (26) of the function 𝑔(𝑡), we have that

𝐿 (V (𝑥, 𝑡))

= ∫

𝑡

0

∫
Ω

V
𝑡 (𝑥, 𝑠) 𝜑 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

+ ∫

𝑡

0

∫
Ω

∇𝑢
𝑚
⋅ ∇𝜑 − 𝜆|∇V|

𝑝
𝜑 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

= ∫

𝑡

0

∫
Ω

(V
𝑡 (𝑥, 𝑠) − ΔV

𝑚
− |∇V|

𝑝
) 𝜑 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

= ∫

𝑡

0

∫
Ω

[𝑔

(𝑡) 𝜙(𝑥)

1/𝑚
+ 𝜆
1
𝑔
𝑚
(𝑡) 𝜙 (𝑥)

−𝜆𝑔
𝑝
(𝑡) (𝑚

−𝑝
𝜙(𝑥)
((1−𝑚)𝑝)/𝑚∇𝜙



𝑝
)]

× 𝜑 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

≤ ∫

𝑡

0

∫
Ω

{ − 𝑎𝑔
𝑚
(𝑡) 𝜙(𝑥)

1/𝑚
− 𝜆𝑔
𝑝
(𝑡)

× [𝑚
−𝑝
𝜙(𝑥)
((1−𝑚)𝑝)/𝑚∇𝜙



𝑝

−
𝑏

𝜆
𝜙(𝑥)
1/𝑚

−
𝜆
1

𝜆
𝑔
𝑚−𝑝

(𝑡) 𝜙 (𝑥)]}

× 𝜑 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

≤ ∫

𝑡

0

∫
Ω

−𝜆𝑔
𝑝
(𝑡) [𝑚

−𝑝
𝜙(𝑥)
((1−𝑚)𝑝)/𝑚∇𝜙



𝑝

−
𝑏

𝜆
𝜙(𝑥)
1/𝑚

−
𝜆
1

𝜆
𝑔
𝑚−𝑝

(𝑡) 𝜙 (𝑥)]

× 𝜑 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠
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≤ ∫

𝑡

0

∫
Ω

−𝜆𝑔
𝑝
(𝑡) 𝜙(𝑥)

((1−𝑚)𝑝)/𝑚

× [𝑚
−𝑝∇𝜙



𝑝
−
𝑏

𝜆
𝜙(𝑥)
(1−𝑝+𝑝𝑚)/𝑚

−
𝜆
1

𝜆
𝑔
𝑚−𝑝

(𝑡) 𝜙(𝑥)
(𝑚−𝑝+𝑝𝑚)/𝑚

]𝜑 (𝑥, 𝑠) 𝑑𝑥 𝑑𝑠.

(27)

In order to prove that 𝐿(V(𝑥, 𝑡)) < 0which implies that V(𝑥, 𝑡)
is a subsolution of the problem (1), we only show that

∫
Ω

𝑚
−𝑝∇𝜙



𝑝
−
𝑏

𝜆
𝜙(𝑥)
(1−𝑝+𝑝𝑚)/𝑚

−
𝜆
1

𝜆
𝑔
𝑚−𝑝

(𝑡) 𝜙(𝑥)
(𝑚−𝑝+𝑝𝑚)/𝑚

𝑑𝑥 ≥ 0.

(28)

Since 0 < 𝑔(𝑡) < 1 and𝑚 > 𝑝, we have that

𝑔
𝑚−𝑝

(𝑡) < 1,

𝜙(𝑥)
(1−𝑝+𝑝𝑚)/𝑚

< 𝜙(𝑥)
(𝑚−𝑝+𝑝𝑚)/𝑚

.

(29)

By choosing 𝜆 ≥ 𝑚𝑝(𝑏+𝜆
1
)(‖ 𝜙‖

(𝑚−𝑝+𝑝𝑚)/𝑚

(𝑚−𝑝+𝑝𝑚)/𝑚
/ ‖ ∇𝜙‖

𝑝

𝑝
), we can

get that

∫
Ω

𝑚
−𝑝∇𝜙



𝑝
−
𝑏 + 𝜆
1

𝜆
𝜙(𝑥)
(𝑚−𝑝+𝑝𝑚)/𝑚

𝑑𝑥 ≥ 0, (30)

which together with (29) implies that (28) holds. Therefore,
V(𝑥, 𝑡) is a subsolution of the problem (1). Moreover, since
V(𝑥, 0) = 𝑔(0)𝜙(𝑥) = 0 ≤ 𝑢

0
in Ω and V|

(𝜕Ω)𝑡
= 0, we can

obtain by the comparison principle that 𝑢(𝑥, 𝑡) ≥ V(𝑥, 𝑡) > 0

in Ω × (0, +∞), which implies that the weak solution 𝑢(𝑥, 𝑡)
of (1) cannot vanish in finite time. This completes the proof
of Theorem 6.

Remark 7. FromTheorems 4–6, we observe that 𝑞 = 𝑚 is the
critical exponent of extinction for the solution to the problem
(1).
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