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We investigate the tailed asymptotic behavior of the randomly weighted sums with increments with convolution-equivalent
distributions. Our obtained result can be directly applied to a discrete-time insurance risk model with insurance and financial
risks and derive the asymptotics for the finite-time probability of the above risk model.

1. Introduction and Main Result

Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of independent and identically

distributed (i.i.d.) real-valued random variables with com-
mon distribution 𝐹, and let {𝑌

𝑛
, 𝑛 ≥ 1} be another sequence

of i.i.d. nonnegative r.v.s with common distribution 𝐺 and
right endpoint 𝑥

𝐺
= sup{𝑥 : P(𝑌

1
≤ 𝑥) < 1}. Assume that

{𝑋
𝑛
, 𝑛 ≥ 1} are independent of {𝑌

𝑛
, 𝑛 ≥ 1}. In this paper, we

are interested in the randomly weighted sum

𝑆
𝑌

𝑛
=

𝑛

∑
𝑖=1

𝑋
𝑖

𝑖

∏
𝑗=1

𝑌
𝑗
, 𝑛 ≥ 1. (1)

This is because the study for the tail probability P(𝑆
𝑌

𝑛
> 𝑥)

can be directly applied to risk theory. Consider a discrete-
time insurance risk model. Within period 𝑖, 𝑖 ≥ 1, the net
insurance loss is denoted by a real-valued (r.v.)𝑋

𝑖
.The insurer

makes both risk-free and risky investments, leading to an
overall stochastic discounted factor𝑌

𝑖
from time 𝑖 to time 𝑖−1.

In the terminology of Norberg [1], the sequences {𝑋
𝑛
, 𝑛 ≥

1} and {𝑌
𝑛
, 𝑛 ≥ 1} are called the insurance and financial

risks, respectively. Then, the randomly weighted sum 𝑆
𝑌

𝑛
in

(1) represents the stochastic discounted value of aggregate net

losses up to time 𝑛, 𝑛 ≥ 1. As usual, the probability of ruin by
time 𝑛 can be defined by

Ψ (𝑥, 𝑛) = P(max
1≤𝑚≤𝑛

𝑚

∑
𝑖=1

𝑋
𝑖

𝑖

∏
𝑗=1

𝑌
𝑗
> 𝑥) , 𝑛 ≥ 1, (2)

where 𝑥 ≥ 0 is interpreted as the initial capital reserve of an
insurance company. Clearly, for each 𝑛 ≥ 1,

P (𝑆
𝑌

𝑛
> 𝑥) ≤ Ψ (𝑥, 𝑛) ≤ P(

𝑛

∑
𝑖=1

𝑋
+

𝑖

𝑖

∏
𝑗=1

𝑌
𝑗
> 𝑥) , (3)

where 𝑋
+

𝑖
= 𝑋
𝑖
1
{𝑋𝑖≥0}

denotes the positive part of 𝑋
𝑖
, 𝑖 ≥

1. If we can establish an asymptotic formula for P(𝑆
𝑌

𝑛
> 𝑥)

while doing so does not require 𝐹(0−) > 0, then the same
asymptotic formula should hold for the right-hand side of (3)
as well. In this way the ruin probability Ψ(𝑥, 𝑛) has the same
asymptotic behavior as that of the tail probability P(𝑆

𝑌

𝑛
> 𝑥)

as 𝑥 tends to infinity.
There has been a vast amount of literature studying the

asymptotic behavior of the tail probability of the randomly
weighted sum 𝑆

𝑌

𝑛
. Many works have considered the heavy-

tailed case; that is, the distribution 𝐹 of 𝑋 belongs to
some classes of heavy-tailed distributions, even under some
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dependence structures. For example, one can refer to Tang
and Tsitsiashvili [2, 3], Wang and Tang [4], Zhang et al. [5],
Shen et al. [6], Chen and Yuen [7], Gao and Wang [8], and
Yi et al. [9] among others for some details in this direction,
where the distribution 𝐹 is heavily heavy tailed; as for some
lightly heavy-tailed distribution 𝐹, some related results were
obtained by Tang and Tsitsiashvili [3, 10], Chen and Su [11],
Hashorva et al. [12], Yang et al. [13], Yang and Hashorva
[14], and Yang and Wang [15] among others. We pointed
out that Tang and Tsitsiashvili [3] achieved some interesting
results on the asymptotics for the tail probability P(𝑆

𝑌

𝑛
> 𝑥)

in some cases where 𝐹 belongs to the intersection between
the subexponential distribution class and the rapidly varying
distribution class.

In this paper, we aim to consider the light-tailed case,
more exactly, to investigate the asymptotic behavior of the tail
probability of the randomly weighted sums with increments
with convolution-equivalent distributions.

Hereafter, all the limit relationships hold for 𝑥 tending
to infinity. For two positive functions 𝑎(𝑥) and 𝑏(𝑥), we
write 𝑎(𝑥) ∼ 𝑏(𝑥) if lim 𝑎(𝑥)/𝑏(𝑥) = 1; write 𝑎(𝑥) =

𝑜(𝑏(𝑥)) if lim 𝑎(𝑥)/𝑏(𝑥) = 0; and write 𝑎(𝑥) = 𝑂(𝑏(𝑥)) if
lim sup 𝑎(𝑥)/𝑏(𝑥) < ∞.

Firstly we introduce some definitions on some classes
of convolution-equivalent distributions. A distribution 𝑉

on [0,∞) belongs to the class of convolution-equivalent
distributions, denoted by S(𝛾), 𝛾 ≥ 0, if for any 𝑦 ∈ R,

lim
𝑉 (𝑥 − 𝑦)

𝑉 (𝑥)
= 𝑒
𝛾𝑦

, (4)

lim 𝑉∗2 (𝑥)

𝑉 (𝑥)
= 2∫
∞

0

𝑒
𝛾𝑢

𝑉 (𝑑𝑢) < ∞, (5)

where 𝑉
∗2 denotes the convolution of 𝑉 with itself. More

generally, a distribution𝑉 onR belongs to the classS(𝛾), 𝛾 ≥

0, if and only if its right-handdistribution𝑉
+

(𝑥) = 𝑉(𝑥)1
{𝑥≥0}

belongs to this class; see Corollary 2.1 of Pakes [16]. The class
S := S(0) is called the class of subexponential distributions.
A distribution 𝑉 on R belongs to the class L(𝛾), 𝛾 ≥ 0

if only relation (4) holds. In the case 𝛾 = 0, we say that
L := L(0) is the class of long-tailed distributions. Similarly,
a positive function 𝑓(⋅) is said to be long tailed if lim𝑓(𝑥 −

𝑦)/𝑓(𝑥) = 1 for any 𝑦 ∈ R. Clearly, if a distribution 𝑉 ∈ L,
then its tail probability 𝑉(𝑥) is long tailed. Closely related is
the class A, which was introduced by Konstantinides et al.
[17]. A distribution 𝑉 on R belongs to the class A if 𝑉 is
subexponential, and, for some 𝑦 > 1,

lim sup
𝑉 (𝑥𝑦)

𝑉 (𝑥)
< 1. (6)

Clearly, all distributions in the classesA,S, andL are heavy
tailed. A distribution 𝑉 of r.v. 𝜉 is said to be heavy tailed if
E𝑒𝑠𝜉 = ∞ for any 𝑠 > 0; otherwise it is said to be light tailed.

For each 𝑛 ≥ 1, denote the distribution of 𝑋
𝑛
∏
𝑛

𝑗=1
𝑌
𝑗
by

𝐻
𝑛
, by convention,𝐻 = 𝐻

1
. Now we state our main result as

follows.

Theorem 1. If 𝐹 ∈ S(𝛾) for some 𝛾 > 0, 𝑥
𝐺

= ∞, and, for all
𝑢 > 0,

𝐺 (𝑢𝑥) = 𝑜 (𝐻 (𝑥)) , (7)

then, for each 𝑛 ≥ 1,

P (𝑆
𝑌

𝑛
> 𝑥) ∼ 𝐻

𝑛
(𝑥) . (8)

Remark 2. We remark that Tang [18] considered a similar
result for 0 < 𝑥

𝐺
< ∞, whereas Theorem 1 deals with the

case with 𝑥
𝐺
= ∞ for a complement.

Remark 3. In Theorem 1, relation (7) is a mild condition.
According to Corollary 1.1 of Tang [19], relation (7) can be
further implied by either

(a) 𝐺(V𝑥) = 𝑜(𝐺(𝑥)) for some V > 1 or
(b) 𝐺(V𝑥) = 𝑜(𝐹(𝑥)) for some V > 0.

2. Proof of the Main Result

We start this section by a series of lemmas. The first two
lemmas are due to Lemma 3.2 andTheorem 2.1 of Tang [20].

Lemma 4. For two distributions 𝐺 and 𝐻 with 𝐺(𝑥) > 0 and
𝐻(𝑥) > 0 for all 𝑥 ≥ 0, relation (7) holds for each 𝑢 > 0, if and
only if there is a nonnegative function 𝑎(⋅) such that

𝑎 (𝑥) ↗ ∞,
𝑎 (𝑥)

𝑥
↘ 0, 𝐺 (𝑎 (𝑥)) = 𝑜 (𝐻 (𝑥)) .

(9)

Lemma 5. Consider the product𝑋𝑌.The distribution𝐻 of the
product belongs to the classA if and only if 𝐹 ∈ A and relation
(7) holds for all 𝑢 > 0.

Tang [19] obtained an interesting result to show that a
light-tailed random variable can be transferred into a heavy-
tailed one through multiplier.

Lemma 6. Consider the product 𝑋𝑌 with 𝐹 ∈ S(𝛾) for some
𝛾 > 0 and 𝑥

𝐺
= ∞. If relation (7) holds for all 𝑢 > 0, then

𝐻 ∈ S.

The last lemma can be found in, for example, Theorem
3.14 of Foss et al. [21].

Lemma 7. Let a reference distribution 𝑉 on R belong to the
classS. Assume that distributions 𝑉

1
, . . . , 𝑉

𝑛
onR satisfy that,

for each 𝑖 = 1, . . . , 𝑛, the function 𝑉 + 𝑉
𝑖
is long tailed and

𝑉
𝑖
(𝑥) = 𝑂(𝑉(𝑥)). Then, it holds that

𝑉
1
∗ ⋅ ⋅ ⋅ ∗ 𝑉

𝑛
(𝑥) = 𝑉

1
(𝑥) + ⋅ ⋅ ⋅ + 𝑉

𝑛
(𝑥) + 𝑜 (𝑉 (𝑥)) . (10)

Proof of Theorem 1. Nowwe begin to prove the main result of
Theorem 1.

For each 𝑛 ≥ 1, write

𝑇
𝑛
:=

𝑛

∑
𝑖=1

𝑋
𝑖

𝑛

∏
𝑗=𝑖

𝑌
𝑗

𝑑

= 𝑆
𝑌

𝑛
, (11)
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where 𝑑= stands for equality in distribution. Since 𝐹 ∈ S(𝛾) ⊂

L(𝛾), 𝛾 > 0, its tail distribution 𝐹 is rapidly varying in the
sense that

lim
𝐹 (𝑥𝑦)

𝐹 (𝑥)
= 0, ∀𝑦 > 1. (12)

By Lemma 6, we get that 𝐻 ∈ S. Further, by Lemma 4, there
exists a nonnegative function 𝑎(⋅) such that (9) holds. Thus,
by (9) and (12), for any 𝑦 > 1,

lim sup
𝐻+ (𝑥𝑦)

𝐻+ (𝑥)

= lim sup
(∫
𝑎(𝑥)

0

+∫
∞

𝑎(𝑥)

) 𝐹 (𝑥𝑦/𝑢)𝐺 (d𝑢)

𝐻+ (𝑥)

≤ lim sup
∫
𝑎(𝑥)

0

𝐹 (𝑥𝑦/𝑢)𝐺 (d𝑢)

∫
𝑎(𝑥)

0

𝐹 (𝑥/𝑢) 𝐺 (d𝑢)
+ lim sup 𝐺 (𝑎 (𝑥))

𝐻+ (𝑥)

≤ lim sup sup
0≤𝑢≤𝑎(𝑥)

𝐹 (𝑥𝑦/𝑢)

𝐹 (𝑥/𝑢)

= lim sup
𝐹 (𝑥𝑦)

𝐹 (𝑥)
= 0 < 1,

(13)

which, together with𝐻 ∈ S, implies that𝐻 ∈ A.
We proceed to prove relation (8) by induction on 𝑛.

Trivially, the distribution 𝐻
1
= 𝐻 of 𝑇

1
or 𝑆
1
belongs to the

classA, and relation (8) holds for 𝑛 = 1. Assume that𝐻
𝑛
∈ A

and (8) holds for 𝑛. We aim to prove that 𝐻
𝑛+1

∈ A and (8)
holds for 𝑛 + 1, which, by (11), is equivalent to

P (𝑇
𝑛+1

> 𝑥) ∼ 𝐻
𝑛+1

(𝑥) . (14)

First of all, according to Lemma 2.17 of Foss et al. [21] and
𝐻
𝑛
∈ A ⊂ L, we have, that for any 𝑠 > 0,

lim𝐻
𝑛
(𝑥) 𝑒
𝑠𝑥

= ∞, (15)

which, together with 𝐹 ∈ S(𝛾), 𝛾 > 0, implies that

𝐹 (𝑥) = 𝑜 (𝐻
𝑛
(𝑥)) . (16)

By (16) and𝐻
𝑛
∈ A ⊂ L, we have that for any 𝑦 ∈ R,

lim
𝐻
𝑛
(𝑥 − 𝑦) + 𝐹 (𝑥 − 𝑦)

𝐻
𝑛
(𝑥) + 𝐹 (𝑥)

= lim((
𝐻
𝑛
(𝑥 − 𝑦)

𝐻
𝑛
(𝑥)

) + (
𝐹 (𝑥 − 𝑦)

𝐻
𝑛
(𝑥 − 𝑦)

)

⋅ (
𝐻
𝑛
(𝑥 − 𝑦)

𝐻
𝑛
(𝑥)

)) × (1 + (
𝐹 (𝑥)

𝐻
𝑛
(𝑥)

))

−1

= 1,

(17)

which shows that the function 𝐻
𝑛
(𝑥) + 𝐹(𝑥) is long tailed.

Since 𝑇
𝑛
and 𝑋

𝑛+1
are independent of each other, thus, by

𝐻
𝑛

∈ A ⊂ S, we can apply Lemma 7 to derive from the
induction assumption and (16) that

P (𝑇
𝑛
+ 𝑋
𝑛+1

> 𝑥) = 𝐻
𝑛
(𝑥) + 𝐹 (𝑥) + 𝑜 (𝐻

𝑛
(𝑥))

= (1 + 𝑜 (1))𝐻
𝑛
(𝑥) .

(18)

For the above-mentioned nonnegative function 𝑎(⋅), from (9)
and (18), we obtain that

P (𝑇
𝑛+1

> 𝑥)

= P ((𝑇
𝑛
+ 𝑋
𝑛+1

) 𝑌
𝑛+1

> 𝑥)

= (∫
𝑎(𝑥)

0

+∫
∞

𝑎(𝑥)

)P(𝑇
𝑛
+ 𝑋
𝑛+1

>
𝑥

𝑢
)𝐺 (d𝑢)

= (1 + 𝑜 (1)) ∫
𝑎(𝑥)

0

𝐻
𝑛
(
𝑥

𝑢
)𝐺 (d𝑢) + 𝑜 (𝐻 (𝑥))

= (1 + 𝑜 (1))𝐻
𝑛+1

(𝑥) ,

(19)

where the last step used the fact that 𝐻(𝑥) = 𝑂(𝐻
𝑛+1

(𝑥)),
because, for any 𝑥 ≥ 0,

𝐻
𝑛+1

(𝑥) ≥ P(𝑋
𝑛+1

𝑛+1

∏
𝑗=1

𝑌
𝑗
> 𝑥, 𝑌

1
> 1, . . . , 𝑌

𝑛
> 1)

≥ 𝐻 (𝑥) (𝐺 (1))
𝑛

,

(20)

and𝐺(1) > 0 by 𝑥
𝐺
= ∞. Relation (19) means that (14) holds.

Finally, by (9) and (20), we have that

𝐺 (𝑎 (𝑥)) = 𝑜 (𝐻
𝑛+1

(𝑥)) , (21)

from which and𝐻
𝑛
∈ A, Lemma 5 gives that𝐻

𝑛+1
∈ A.

This completes the proof of Theorem 1.
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