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We get the exponential G-martingale theorem with the Kazamaki condition and tell a distinct difference between the Kazamaki’s
and Novikov’s criteria with an example.

1. Introduction and Main Result

Motivated by various types of uncertainty and financial
problems, Peng [1] has introduced a new notion of nonlinear
expectation, the so-called 𝐺-expectation (see also Peng [2]),
which is associated with the following nonlinear heat equa-
tion:

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) = 𝐺 (Δ𝑢) , (𝑡, 𝑥) ∈ [0, +∞) × R,

𝑢 (0, 𝑥) = 𝜑 (𝑥) ,

(1)

where Δ is Laplacian and the sublinear function 𝐺 is defined
by

𝐺 (𝛼) =
1

2
(𝜎

2
𝛼
+
− 𝜎

2
𝛼
−
) , 𝛼 ∈ R, (2)

with two given constants 0 < 𝜎 < 𝜎. Together with the
notion of 𝐺-expectations, Peng also introduced the related
𝐺-normal distribution, the 𝐺-Brownian motion, and related
stochastic calculus under 𝐺-expectation, and moreover an
Itô’s formula for the 𝐺-Brownian motion was established.
𝐺-Brownian motion has a very rich and interesting new
structure which nontrivially generalizes the classical one.
Briefly speaking, a 𝐺-Brownian motion 𝐵 is a continuous
process with independent stationary increments 𝐵

𝑡+𝑠
− 𝐵

𝑡

being 𝐺-normally distributed under a given sublinear expec-
tation Ê. A very interesting new phenomenon of𝐺-Brownian
motion 𝐵 is that its quadratic process ⟨𝐵⟩ is a continuous
process with independent and stationary increments, but not
a deterministic process.

Recently, Xu et al. [3] got an exponential martingale the-
orem under 𝐺-framework with an assumption of Novikov’s
type. In this note, we will introduce the sublinear version of
the classical Kazamaki condition. The main objective is to
explain and prove the following theorem.

Theorem 1. If there exists an 𝜀
0
> 0 such that

Ê [exp{(
1

2
+ 𝜀

0
)∫

𝑇

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}] < ∞, (3)

then

E (𝐵
𝑡
) := exp{∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
−

1

2
∫

𝑡

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}

(4)

is a symmetric martingale under Ê.

Under the classical case, the result is called Kazamaki’s
condition, and it can be recalled as follows, for any classical
continuous martingale 𝑀, if

𝐸 exp (
1

2
𝑀

∞
) < ∞, (5)

then the martingale

exp {𝑀
𝑡
−

1

2
⟨𝑀⟩

𝑡
} , 0 ≤ 𝑡 ≤ ∞, (6)

is uniformly integrable. Clearly, the Kazamaki principle is
weaker than the Novikov condition.
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This note is organized as follows. In Section 2, we present
some standard concepts and notations about 𝐺-Brownian
motion and 𝐺-Expectation. In Section 3 we prove the above
theorem and discuss some examples.

2. Preliminaries

In this section, we recall some concepts under the 𝐺-frame-
work which are needed in our analysis. For more details, one
can see Peng [1].

LetΩ ̸= 0 be a given set and letH be a linear space of real
valued functions defined on Ω such that 1 ∈ H and |𝑋| ∈ H
for all 𝑋 ∈ H.

Definition 2. A sublinear expectation Ê onH is a functional
with the following properties, for all 𝑋,𝑌 ∈ H, one has

(i) monotonicity: if 𝑋 ≥ 𝑌, then Ê[𝑋] ≥ Ê[𝑌];
(ii) constant preserving: Ê[𝑐] = 𝑐, for all 𝑐 ∈ R;
(iii) subadditivity: Ê[𝑋] − Ê[𝑌] ≤ Ê[𝑋 − 𝑌];
(iv) positive homogeneity: Ê[𝜆𝑋] = 𝜆Ê[𝑋], for all 𝜆 ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space,
andH is considered as the space of random variables on Ω.

It is important to note that one can suppose that

𝜑 (𝑋
1
, . . . , 𝑋

𝑑
) ∈ H (7)

if 𝑋
𝑖

∈ H, 𝑖 = 1, . . . , 𝑑, for all 𝜑 ∈ 𝐶
𝑏,Lip(R

𝑑
), where

𝐶
𝑏,Lip(R

𝑑
) denotes the space of all bounded and Lipschitz

functions on R𝑑. In a sublinear expectation space (Ω,H, Ê),
a random vector 𝑌 = (𝑌

1
, . . . , 𝑌

𝑛
), 𝑌

𝑖
∈ H, is said to be

independent under Ê from another random vector 𝑋 =

(𝑋
1
, . . . , 𝑋

𝑚
), 𝑋

𝑖
∈ H, if for each test function 𝜑 ∈

𝐶
𝑏,Lip(R

𝑚+𝑛
), one has

Ê [𝜑 (𝑋, 𝑌)] = Ê [Ê[𝜑 (𝑥, 𝑌)]
𝑥=𝑋

] . (8)

Two 𝑛-dimensional random vectors𝑋 and𝑌 defined, respec-
tively, in the sublinear expectation spaces (Ω

1
,H

1
, Ê

1
) and

(Ω
2
,H

2
, Ê

2
) are called identically distributed, denoted by

𝑋 ∼ 𝑌, if

Ê
1
[𝜑 (𝑋)] = Ê

2
[𝜑 (𝑌)] , (9)

for all 𝜑 ∈ 𝐶
𝑏,Lip(R

𝑛
).

Let 𝜎 and 𝜎 be two real numbers with 0 < 𝜎 < 𝜎. A
random variable 𝜉 in a sublinear expectation space (Ω,H, Ê)

is called𝐺-normal distributed, denoted by 𝜉 ∼ 𝑁(0, [𝜎
2
, 𝜎

2
]),

if for each 𝜑 ∈ 𝐶
𝑏,Lip(R), the function defined by

𝑢 (𝑡, 𝑥) := Ê [𝜑 (𝑥 + √𝑡𝜉)] , (𝑡, 𝑥) ∈ [0,∞) × R, (10)

is the unique viscosity solution of the following nonlinear
heat equation:

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) = 𝐺 (Δ𝑢) , (𝑡, 𝑥) ∈ [0, +∞) × R,

𝑢 (0, 𝑥) = 𝜑 (𝑥) ,

(11)

where Δ is Laplacian and the sublinear function 𝐺 is defined
by

𝐺 (𝛼) =
1

2
(𝜎

2
𝛼
+
− 𝜎

2
𝛼
−
) , 𝛼 ∈ R. (12)

Example 3 (Peng [2]). Let 𝜉 ∼ 𝑁(0, [𝜎
2
, 𝜎

2
]). We then have

Ê [𝜑 (𝜉)] =
1

√2𝜋𝜎
∫
R

𝜑 (𝑥) 𝑒
(−1/2𝜎

2
)𝑥
2

𝑑𝑥 (13)

for all convex functions 𝜑 and

Ê [𝜓 (𝜉)] =
1

√2𝜋𝜎
∫
R

𝜑 (𝑥) 𝑒
(−1/2𝜎

2
)𝑥
2

𝑑𝑥 (14)

for all concave functions 𝜓.

Let now Ω = 𝐶
0
(R+

) be the space of all real valued
continuous functions on [0,∞)with initial value 0, equipped
with the distance

𝜌 (𝜔
1
, 𝜔

2
) =

∞

∑

𝑖=1

2
−𝑖

[(max
𝑡∈[0,𝑖]


𝜔
1

𝑡
− 𝜔

2

𝑡


) ∧ 1] , 𝜔

1
, 𝜔

2
∈ Ω.

(15)

We denote byB(Ω) the Borel-algebra on Ω. We also denote,
for each 𝑡 ∈ [0,∞),

Ω
𝑡
= {𝜔

⋅∧𝑡
, 𝜔 ∈ Ω} (16)

and F
𝑡
= B(Ω

𝑡
), where 𝑥 ∧ 𝑦 = min{𝑥, 𝑦}. We also denote

the following:

(i) 𝐿
0
(Ω): the space of all B(Ω)-measurable real valued

functions on Ω;

(ii) 𝐿
0
(Ω

𝑡
): the space of allB(Ω

𝑡
)-measurable real valued

functions on Ω
𝑡
;

(iii) 𝐿
𝑏
(Ω): the space of all bounded elements in 𝐿

0
(Ω);

(iv) 𝐿
𝑏
(Ω

𝑡
): the space of all bounded elements in 𝐿

0
(Ω

𝑡
).

Let L𝑝
𝐺
(Ω) be the closure ofH with respect to the norm

‖𝑋‖𝑝 = Ê[|𝑋|
𝑝
]
1/𝑝 (17)

with 𝑝 ∈ [1,∞). Clearly, the space L𝑝
𝐺
(Ω) is a Banach space

and the space 𝐶
𝑏
(Ω) of bounded continuous functions on Ω

is a subset ofL1
𝐺
(Ω), and,moreover, for the sublinear expecta-

tion space (Ω,L
𝑝

𝐺
(Ω), Ê), there exists aweakly compact family

P of probability measures on (Ω,B(Ω)) such that

Ê = sup
𝑃∈P

𝐸
𝑃
. (18)

So we can introduce the Choquet capacity 𝐶 by taking

𝐶 (𝐴) = sup
𝑃∈P

𝑃 (𝐴) , 𝐴 ∈ B (Ω) . (19)

Definition 4. A set 𝐴 ⊂ Ω is called polar if 𝐶(𝐴) = 0. A
property is said to hold “quasi-surely” (q.s.) if it holds outside
a polar set.
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By using the above family of probability measures 𝑃, one
can characterize the space L𝑝

𝐺
(Ω) as

L
𝑝

𝐺
(Ω) = {𝐿

0
(Ω) ∋ 𝑋 is continuous, q.s.,

sup
𝑃∈P

𝐸
𝑃
[|𝑋|

𝑝
] < ∞}

≡ {𝐿
0
(Ω) ∋ 𝑋 is continuous, q.s.,

lim
𝑛→∞

sup
𝑃∈P

𝐸
𝑃
[|𝑋|

𝑝
1
{|𝑋|>𝑛}

] = 0} .

(20)

The following three results can be consulted in Denis et al. [4]
and Hu and Peng [5].

Lemma5 (Denis et al. [4] andHu and Peng [5]). Let {𝑋
𝑛
, 𝑛 =

1, 2, . . .} be amonotonically decreasing sequence of nonnegative
random variances in 𝐶

𝑏
(Ω). If 𝑋

𝑛
converges to zero q.s. on Ω,

then one has
lim
𝑛→0

Ê [𝑋
𝑛
] = 0. (21)

Moreover, if 𝑋
𝑛

↑ 𝑋 and Ê[𝑋] and Ê[𝑋
𝑛
] are finite for all

𝑛 = 1, 2, . . ., one then has

lim
𝑛→0

Ê [𝑋
𝑛
] = Ê [𝑋] . (22)

Lemma 6 (Denis et al. [4] and Hu and Peng [5]). Let 1 ≤ 𝑝 <

∞. Consider the sets L𝑝
𝐺
(Ω) and L𝑝 = L𝑝

/N, where

L
𝑝
= {𝑋 ∈ 𝐿

0
(Ω) : Ê (|𝑋|

𝑝
) = sup

𝑃∈P

𝐸
𝑃
[|𝑋|

𝑝
] < ∞} ,

N = {𝑋 ∈ 𝐿
0
(Ω) : 𝑋 = 0 q.s.} .

(23)

Then,
(i) L𝑝 is a Banach space with respect to the norm ‖ ⋅ ‖

𝑝
;

(ii) L𝑝
𝐺
is the completion of 𝐶

𝑏
(Ω) with respect to the norm

‖ ⋅ ‖
𝑝
.

Lemma 7 (Denis et al. [4] and Hu and Peng [5]). For a given
𝑝 ∈ (0, +∞], if the sequence L𝑝 ⊃ {𝑋

𝑛
} converges to 𝑋 in L𝑝,

then there exists a subsequence {𝑋
𝑛
𝑘

} such that 𝑋
𝑛
𝑘

converges
to 𝑋 quasi-surely.

Wedenote byL𝑝
∗
(Ω) the completion of𝐿

𝑏
(Ω)with respect

to the norm ‖ ⋅ ‖
𝑝
.

Definition 8 (𝐺-Brownian motion). A process 𝐵 = {𝐵
𝑡
, 𝑡 ≥

0} ⊂ H in a sublinear expectation space (Ω,H, Ê) is called a
𝐺-Brownian motion if the following properties are satisfied:

(i) 𝐵
0
= 0;

(ii) for each 𝑡, 𝑠 ≥ 0, the increment 𝐵
𝑡+𝑠

− 𝐵
𝑡
is

𝑁(0, [𝜎
2
𝑠, 𝜎

2
𝑠])-distributed and is independent from

(𝐵
𝑡
1

, . . . , 𝐵
𝑡
𝑛

), for all 𝑛 = 0, 1, 2, . . . and 0 ≤ 𝑡
1
≤ 𝑡

2
≤

⋅ ⋅ ⋅ ≤ 𝑡
𝑛
≤ 𝑡.

The 𝐺-Brownian motion 𝐵 has the following properties:

(1) for all 𝜉 ∈ L2(Ω
𝑡
), one has Ê[𝜉(𝐵

𝑇
− 𝐵

𝑡
)] = 0 with

0 ≤ 𝑡 ≤ 𝑇;
(2) for allB(Ω

𝑡
)-measurable real valued, bounded func-

tions 𝜉, one has

Ê [𝜉
2
(𝐵

𝑇
− 𝐵

𝑡
)
2

] ≤ 𝜎
2
(𝑇 − 𝑡) Ê [𝜉

2
] , 0 ≤ 𝑡 ≤ 𝑇; (24)

(3) for all 𝑡 ≥ 0, one has Ê[𝐵
𝑡
] = Ê[−𝐵

𝑡
] = 0;

(4) 𝑡 → 𝐵
𝑡
is Hölder continuous of order 𝛿 < 1/2, quasi-

surely.

In Li and Peng [6], a generalized Itô integral and a gener-
alized Itô formula with respect to the𝐺-Brownianmotion are
introduced. For arbitrarily fixed 𝑝 ≥ 1 and 𝑇 ∈ R

+
, one

denotes by 𝑀
𝑝,0

𝑏
([0, 𝑇]) the set of step processes as follows:

𝜂
𝑡
(𝜔) =

𝑁

∑

𝑗=1

𝜉
𝑗
(𝜔) 1

[𝑡
𝑗−1
,𝑡
𝑗
)
(𝑡) , 𝜉

𝑗
∈ 𝐿

𝑏
(Ω

𝑡
𝑗−1

) (25)

with 0 = 𝑡
0
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑇. For the process of the form (25)

one defines the related Bochner integral as follows:

𝑇

∫

0

𝜂
𝑡
𝑑𝑡 =

𝑁

∑

𝑗=1

𝜉
𝑗
(𝑡
𝑗
− 𝑡

𝑗−1
) . (26)

For every 𝜂 ∈ 𝑀
𝑝,0

𝑏
([0, 𝑇]), one sets

Ê
𝑇
(𝜂) :=

1

𝑇
Ê∫

𝑇

0

𝜂
𝑡
𝑑𝑡. (27)

Then Ê
𝑇
forms a sublinear expectation. Moreover, one deno-

tes by 𝑀
𝑝

∗
([0, 𝑇]) the completion of 𝑀

𝑝,0

𝑏
([0, 𝑇]) under the

norm

𝜂
𝑀
𝑝

∗([0,𝑇])
= (Ê [∫

𝑇

0

𝜂𝑠


𝑝

𝑑𝑠] )

1/𝑝

. (28)

Definition 9. For every 𝜂 ∈ 𝑀
𝑝,0

𝑏
([0, 𝑇]) of the form (25),

one defines the Itô integral of 𝜂 with respect to 𝐺-Brownian
motion 𝐵 by

𝐼 (𝜂) := ∫

𝑇

0

𝜂
𝑠
𝑑𝐵

𝑠
=

𝑁

∑

𝑗=1

𝜉
𝑗
(𝐵

𝑡
𝑗

− 𝐵
𝑡
𝑗−1

) . (29)

The mapping 𝐼 : 𝑀
𝑝,0

𝑏
([0, 𝑇]) → L2

∗
(Ω

𝑇
) is a linear con-

tinuous mapping and thus can be continuously extended to
𝐼 : 𝑀

2

∗
([0, 𝑇]) → L2

∗
(Ω

𝑇
), which is called the Itô integral of

𝜂 ∈ 𝑀
2

∗
([0, 𝑇]) with respect to 𝐺-Brownian motion 𝐵, and

define

∫

𝑡

0

𝜂
𝑠
𝑑𝐵

𝑠
= ∫

𝑇

0

1
{0≤𝑠≤𝑡}

𝜂
𝑠
𝑑𝐵

𝑠
(30)
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for all 𝜂 ∈ 𝑀
2

∗
([0, 𝑇]) and 𝑡 ∈ [0, 𝑇]. One has

Ê(∫

𝑇

0

𝜂
𝑠
𝑑𝐵

𝑠
) = 0,

Ê[(∫

𝑇

0

𝜂
𝑠
𝑑𝐵

𝑠
)

2

] ≤ 𝜎
2
Ê [∫

𝑇

0

𝜂
2

𝑠
𝑑𝑠]

(31)

for all 𝜂 ∈ 𝑀
2

∗
([0, 𝑇]). Moreover, the process {∫

𝑡

0
𝜂
𝑠
𝑑𝐵

𝑠
, 𝑡 ∈

[0, 𝑇]} is continuous in 𝑡 quasi-surely and

∫

⋅

0

𝜂
𝑠
𝑑𝐵

𝑠
∈ 𝑀

2

∗
([0, 𝑇]) (32)

for all 𝜂 ∈ 𝑀
2

∗
([0, 𝑇]).

Definition 10 (quadratic variation). Let 𝜋𝑁
𝑡

= {0 = 𝑡
𝑁

0
< 𝑡

𝑁

1
<

⋅ ⋅ ⋅ < 𝑡
𝑁

𝑁−1
= 𝑡} be a partition of [0, 𝑡] for 𝑡 > 0, such that

𝜇(𝜋
𝑁

𝑡
) := max

𝑗
{𝑡
𝑗
− 𝑡

𝑗−1
} → 0 as 𝑁 → ∞. The quadratic

variation of 𝐺-Brownian motion 𝐵 is defined by

⟨𝐵⟩𝑡 = lim
𝜇(𝜋𝑁𝑡 )→0

𝑁−1

∑

𝑘=0

(𝐵
𝑡
𝑁

𝑘+1

− 𝐵
𝑡
𝑁

𝑘

)
2

= 𝐵
2

𝑡
− 2∫

𝑡

0

𝐵
𝑠
𝑑𝐵

𝑠
(33)

in L2
𝐺
(Ω).

The function 𝑡 → ⟨𝐵⟩
𝑡
is continuous and increasing out-

side a polar set. One can define the integral

∫

𝑇

0

𝜂
𝑡
𝑑⟨𝐵⟩𝑡 :=

𝑁

∑

𝑗=1

𝜉
𝑗
(⟨𝐵⟩𝑡

𝑗

− ⟨𝐵⟩𝑡
𝑗−1

) (34)

as a map from 𝑀
1,0

𝑏
([0, 𝑇]) into L1

∗
(Ω

𝑇
), and the map is

linear and continuous, and it can be extended continuously
to 𝑀

1

∗
([0, 𝑇]).

Definition 11. A process (𝑀
𝑡
)
𝑡⩾0

is called a 𝐺-martingale if,
for each 𝑡 ∈ [0,∞), 𝑀

𝑡
∈ L1

𝐺
(F

𝑡
) and, for each 𝑠 ∈ [0, 𝑡], one

has

Ê [𝑀
𝑡
| F

𝑠
] = 𝑀

𝑠
. (35)

If both (𝑀
𝑡
)
𝑡⩾0

and (−𝑀
𝑡
)
𝑡⩾0

are 𝐺-martingales, (𝑀
𝑡
)
𝑡⩾0

is
called a 𝐺-symmetric martingale.

One can easily prove that the process

𝑀
𝑡
:= Ê [𝑋 | F

𝑡
] , 𝑡 ≥ 0, (36)

is a 𝐺-martingale for each 𝑋 ∈ L1
𝐺
(F), and, moreover, the

process

𝑀
𝑡
:= 𝑀

0
+ ∫

𝑡

0

𝜑
𝑢
𝑑𝐵

𝑢
+ ∫

𝑡

0

𝜂𝑑⟨𝐵⟩𝑢

− ∫

𝑡

0

2𝐺 (𝜂
𝑢
) 𝑑𝑢, ∀𝑡 ∈ [0, 𝑇]

(37)

also is a 𝐺-martingale for all 𝑀
0

∈ R, 𝜑 ∈ 𝑀
2

𝑏
[0, 𝑇], 𝜂 ∈

𝑀
1

𝑏
[0, 𝑇].

3. Proof of Theorem 1

Theorem 12. If there exists an 𝜖 > 0 such that

Ê [exp{(
1

2
+ 𝜖

0
)∫

𝑇

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}] < ∞, (38)

then

E (𝐵
𝑡
) := exp{∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
−

1

2
∫

𝑡

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}

(39)

is a symmetric martingale under Ê, and, for all 𝑡 ∈ [0, 𝑇],
E(𝐵

𝑡
) ∈ L1

𝐺
(F

𝑡
).

Proof. Since 𝐵
𝑡
is a mean-square integrable martingale under

each 𝑃] and

𝐸
𝑃]

[exp{
1

2
∫

𝑇

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}]

⩽ 𝐸
1/(1+2𝜖

0
)

𝑃]
[exp{(

1

2
+ 𝜖

0
)∫

𝑇

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}]

⩽ Ê
1/(1+2𝜖

0
)
[exp{(

1

2
+ 𝜖

0
)∫

𝑇

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}] < ∞,

(40)

it follows from Kazamaki’s condition that E(𝐵
𝑡
) is a martin-

gale under each 𝑃], and 𝐸
𝑃]
[E(𝐵

𝑡
)] = 1. Thus, Ê[E(𝐵

𝑡
)] = 1,

and E(𝐵
𝑡
) is symmetric.

We now claim that E(𝐵
𝑡
) ∈ L1

𝐺
(F

𝑡
). By Lemma 5, it

suffices to prove

lim
𝑛→∞

Ê [E (𝐵
𝑡
) 𝐼

{E(𝐵
𝑡
)>𝑛}

] = 0. (41)

Now,

Ê [E1+𝑘
(𝐵

𝑡
)]

= Ê [exp{(1 + 𝑘) ∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
−

1 + 𝑘

2
∫

𝑡

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}]

= Ê[exp{
√1 + 𝑘

√1 + 𝑠
∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
−

1 + 𝑘

2
∫

𝑡

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}

× exp{((1 + 𝑘) −
√1 + 𝑘

√1 + 𝑠
)∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}]

⩽ Ê𝑠/(1+𝑠) [exp{√(1 + 𝑘) (1 + 𝑠) ∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠

−
(1 + 𝑘) (1 + 𝑠)

2
∫

𝑡

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}]

×Ê𝑠/(1+𝑠) [exp{((1 + 𝑘) −
√1 + 𝑘

√1 + 𝑠
)

1 + 𝑠

𝑠
∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}]

= Ê𝑠/(1+𝑠) [exp{((1 + 𝑘) −
√1 + 𝑘

√1 + 𝑠
)

1 + 𝑠

𝑠
∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑𝐵
𝑠
}] ,

(42)
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where 𝑘 and 𝑠 are small positive numbers. Without loss of
generality, let 𝑘 = 𝜃𝑠. Then we have

lim
𝑠→0

((1 + 𝑘) −
√1 + 𝑘

√1 + 𝑠
)

1 + 𝑠

𝑠

= lim
𝑠→0

√(1 + 𝜃𝑠) (1 + 𝑠) (√(1 + 𝜃𝑠) (1 + 𝑠) − 1)

𝑠

=
1

2
(1 + 𝜃) .

(43)

So we can choose 𝜃 and 𝑠 small enough such that

((1 + 𝑘) −
√1 + 𝑘

√1 + 𝑠
)

1 + 𝑠

𝑠
<

1

2
+ 𝜀

0
. (44)

Then, Ê[E1+𝑘
(𝐵

𝑡
)] < ∞ and

𝐶 [E (𝐵
𝑡
) > 𝑛] ⩽

Ê [E (𝐵
𝑡
)]

𝑛
→ 0, (45)

so that

lim
𝑛→∞

𝐸
𝐺
[E (𝐵

𝑡
) 𝐼

{E(𝐵
𝑡
)>𝑛}

]

⩽ Ê
1/(1+𝑘)

[E
1+𝑘

(𝐵
𝑡
)] 𝐶

𝑘/(1+𝑘)
[E (𝐵

𝑡
) > 𝑛] = 0.

(46)

SinceE(𝐵
𝑡
) ∈ 𝐿

1

𝐺
(F

𝑡
), andE(𝐵

𝑡
) is a martingale under each

𝑃], we have

Ê [E (𝐵
𝑇
) | F

𝑡
] = 𝐸

𝑃]
[E (𝐵

𝑇
) | F

𝑡
] = E (𝐵

𝑡
) , 𝑃]. a.s.

(47)

Then,

Ê [

Ê [E (𝐵

𝑇
) | F

𝑡
] − E (𝐵

𝑡
)

]

= sup
𝑃]∈P

𝐸
𝑃]

[

Ê [E (𝐵

𝑇
) | F

𝑡
] − E (𝐵

𝑡
)

]

= sup
𝑃]∈P

𝐸
𝑃]

[
E (𝐵

𝑡
) − E (𝐵

𝑡
)
] = 0,

(48)

which means that E(𝐵
𝑡
) is a symmetric martingale.

As a corollary, we can obtain the following criterion,
because

Ê {exp [(
1

2
+ 𝜀

0
)𝑀

∞
]} ⩽ Ê{exp [(

1

2
+ 𝜀

0
) ⟨𝑀⟩

∞
]}

1/2

.

(49)

Corollary 13. If there exists an 𝜀 > 0 such that

Ê [exp{(
1

2
+ 𝜀

0
)∫

𝑇

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}] < ∞, (50)

then E(𝐵
𝑡
) is a symmetric martingale under 𝐸

𝐺
, and, for all

𝑡 ∈ [0, 𝑇], E(𝐵
𝑡
) ∈ 𝐿

1

𝐺
(F

𝑡
).

We will close this section with an example which tells a
distinct difference between the above two criteria. Let 𝑀

𝑡
=

∫
𝑡

0
𝐻(𝑠, 𝜔)𝑑𝐵

𝑠
.

Theorem 14. If ‖𝑀‖
∞

< 𝜋/2, then

Ê [exp{(
1

2
+ 𝜀

0
)∫

𝑇

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}] < ∞. (51)

However, there exists a 𝐺-martingale 𝑀 such that ‖𝑀‖
∞

=

𝜋/2 and

Ê [exp{(
1

2
+ 𝜀

0
)∫

𝑇

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩𝑠}] = ∞. (52)

To show this, one needs the next lemma.

Lemma 15 (see [7]). Let (𝑀)
𝑡⩾0

is a mean-square integrable
martingale, 𝑎, 𝑏 > 0 and 𝜏 = inf{𝑡 : 𝑀

𝑡
∉ (−𝑎, 𝑏)}. Then one

has

𝐸 [exp (
1

2
𝜃
2
⟨𝑀⟩𝜏)]

=
cos (((𝑎 − 𝑏) /2) 𝜃)

cos (((𝑎 + 𝑏) /2) 𝜃)
(0 ⩽ 𝜃 <

𝜋

𝑎 + 𝑏
) .

(53)

Proof of Theorem 14. Firstly, let us consider the stopping time
𝜏 = inf{𝑡 : 𝐵

𝑡
∉ (−𝑑, 𝑑)}, where 𝑑 ⩽ (𝜋/2), and cons-

ider the process 𝑀 = 𝐵
𝜏. From [8], we know that (𝑀)

𝑡⩾0
is

a 𝐺-symmetric martingale, and, under each probability mea-
surement 𝑃 ∈ P, (𝑀)

𝑡⩾0
is a mean-square integrable marti-

ngale. Then, it follows from the lemma that

𝐸
𝑃
[exp(

1

2
⟨𝑀⟩

∞
)] = 𝐸

𝑃
[exp(

1

2
⟨𝐵⟩

𝜏
)]

=

{{

{{

{

1

cos 𝑑
< ∞, 𝑑 <

𝜋

2

lim
𝜃→1

1

cos ((𝜋/2) 𝜃)
= ∞, 𝑑 =

𝜋

2
;

(54)

that is, we use the relationship Ê[⋅] = sup
𝑃∈P𝐸

𝑃
[⋅] and comp-

lete the proof.
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