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We obtain a representation theorem for the generators of BSDEs driven by G-Brownian motions and then we use the representation
theorem to get a converse comparison theorem for G-BSDEs and some equivalent results for nonlinear expectations generated by

G-BSDEs.

1. Introduction

Let (Q, %,P) be a probability space, and, for fixed T €
[0, +00), let (B,)o;<r be a standard Brownian motion and
let &, be the augmentation of o{B,,0 < s < t}. Then
Pardoux and Peng [1] introduced the backward stochastic
differential equations (BSDEs) and proved the existence and
uniqueness result of the BSDEs. In 1997, Peng [2] promoted g-
expectations based on BSDEs. One of the important proper-
ties of g-expectations is comparison theorem or monotonic-
ity. Chen [3] first considers a converse result of BSDEs under
equal case. After that, Briand et al. [4] obtained a converse
comparison theorem for BSDEs under general case. They also
derived a representation theorem for the generator g. Follow-
ing this paper, Jiang [5] discussed a more general representa-
tion theorem then, in his another paper [6], showed a more
general converse comparison theorem. Here the representa-
tion theorem is an important method in solving the converse
comparison problem and other problems (see Jiang [7]).
Peng [8-13] defined the G-expectations and G-Brownian
motions (G-BMs) and proved the representation theorem of
G-expectation by a set of singular probabilities, which differs
from nonlinear g-expectations because g-expectations
are equivalent with a group of absolutely continuous
probabilities with respect to the probability measure P. Soner
et al. [14] obtained an existence and uniqueness result of 2
BSDEs. Recently, Hu et al. [15] proved another existence and

uniqueness result on BSDEs driven by G-Brownian motions
(G-BSDEs).

An important advantage of G-BSDEs is the easiness to
define the nonlinear expectations. Hu et al. in [16] gave
a comparison theorem for G-BSDEs and talked about the
properties of corresponding nonlinear expectations. In this
paper, we consider the representation theorem for generators
of G-BSDEs and then consider the converse comparison the-
orem of G-BSDEs and some equivalent results for nonlinear
expectations generated by G-BSDEs. In the following, in
Section 2, we review some basic concepts and results about
G-expectations. We give the representation theorem of G-
BSDEs in Section 3. In Section 4, we consider the applications
of representation theorem of G-BSDEs, which contain the
converse comparison theorem and some equivalent results
for nonlinear expectations generated by G-BSDE:s.

2. Preliminaries

We review some basic notions and results of G-expectation,
the related spaces of random variables, and the backward
stochastic differential equations driven by a G-Brownian
motion. The readers may refer to [10, 13, 15, 17-19] for more
details.

Definition 1. Let Q) be a given set and let 7 be a vector lattice
of real valued functions defined on Q, namely, ¢ € # for each



constant ¢ and |X| € # if X € #. Z is considered as the
space of random variables. A sublinear expectation E on # is

a functional E : # — R satisfying the following properties:
forall X,Y € #, one has

(a) monotonicity: if X > Y, then E[X] > E[Y];
(b) constant preservation: Elc] = ¢
(c) subadditivity: E[X +Y] < E[X] + E[Y];

(d) positive homogeneity: E[AX] = AE[X] for each A >
0. (Q, #,E) is called a sublinear expectation space.

Definition 2. Let X, and X, be two n-dimensional random
vectors defined, respectively, in sublinear expectation spaces
(Q,, %,,E,) and (Q,, #,,E,). They are called identically
distributed, denoted by X, 2 X,, if £, [¢(X,)] = E,[¢(X,)],
forall ¢ € Cpp,(R"), where Cp,1;,(R™) denotes the space of
bounded and Lipschitz functions on R".

Definition 3. In a sublinear expectation space (Q, %,E), a
random vector Y = (Y1,...,Y,), Y, € Z, is said to be
independent of another random vector X = (X,,...,X,,),
X; € 9 under E[], denoted by Y L X, if for every
test function ¢ € Cb,Lip(IRm x R™) one has E[p(X,Y)] =

EIE[p(x, Y)]—x]-

Definition 4 (G-normal distribution). A d-dimensional ran-
domvector X = (X,,...,X,) inasublinear expectation space
(Q, #,E) is called G-normally distributed if for each a,b > 0
one has

aX +bX & Va2 + b2X, @

where X is an independent copy of X; that is, X ¢ X and
X 1 X. Here, the letter G denotes the function

G(A) := %[E [(AX,X)]:S; — R, )

where S; denotes the collection of d x d symmetric matrices.

Peng [13] showed that X = (X;,...,X,) is G-normally
distributed if and only if for each ¢ € Cb,Lip(IRd), u(t, x) =

E[p(x + VEX)], (£, x) € [0,00) x RY, is the solution of the
following G-heat equation:

u-G (Diu) =0, u(0,x) = (x). (3)

The function G(-) : S; — R is a monotonic,
sublinear mapping on S; and G(A) = (1/2)E[(AX, X)] <
(1/2)|AIE[IX*] implies that there exists a bounded, convex,
and closed subset I' ¢ S} such that

G(A) = %sulr) tr [yA], (4)
ye

where S denotes the collection of nonnegative elements in
Sy
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In this paper, we only consider nondegenerate G-normal
distribution; that is, there exists some gz > 0 such that G(A) -
G(B) = o tr[A - B] for any A > B.

Definition 5. (i) Let Q = C9(R") denote the space of RY-

valued continuous functions on [0, co) with w, = 0 and let
B,(w) = w, be the canonical process. Set

Ly, (@) ={p(B,,...

¢ € Cpyp (R™)}.

,B, ):in>1,t,...,t, € [0,00),

(5)

LetG:S; — R be a given monotonic and sublinear func-
tion. G-expectation is a sublinear expectation defined by

EIX]=E[p(Vi—tobi s Ve — tmibm)]»  (6)

forall X = (B, - B,,B, - B,,....,B, — B, ), where
&,...,&, are identically distributed d-dimensional G-
normally distributed random vectors in a sublinear
expectation space (Q, %, E) such that &, is independent
of (§,...,&) for everyi = 1,...,m — 1. The corresponding
canonical process B, = (B;)?=1 is called a G-Brownian motion.

(ii) For each fixed t € [0,00), the conditional G-
expectation E, for & = (B, -B,,B, -B,,....B, =B, )¢
L,,(€2), where without loss of generality we suppose ¢; = £, is
defined by

E,[¢ (B, - B,.B, - B,,....B, —B, )]

(7)
= W(Bﬁ _Bto’sz _Btl"“,Bti _Bti—l)’
where
v (g5 x;)
N (8)
=E[¢(x)....x, B, —B,,...,B, =B, )]
For each fixed T' > 0, we set
Liy(Qr):={@(B,.....B, ) :n21,t;,....t, €[0,T],
0 € Cusy (R},
9)

For each p > 1, we denote by Lé(Q) (resp., L%(QT))
the completion of L;,(Q2) (resp., L;,(€)7)) under the norm
1€l = ELEIP])P. Tt is easy to check that LL(Q) ¢ LE(Q)
for 1 < p < gand E,[] can be extended continuously to
Ly(Q).

For each fixed a € RY, B} = (a, B,) isa 1-dimensional G,-
Brownian motion, where G, () = (1 /2)(038T“+ - afaaroc_),
2G(aa’) and O'EaaT = -2G(-aa’). Let nf\f =
{té\], e t%}, N =1,2,..., be asequence of partitions of [0, ¢]
such that y(nf\]) = max{ltf\i1 —th| :i=0,...,N-1} — 0;
the quadratic variation process of B* is defined by

2 _
Oga’ =

N-1

(B*), = lim Y (B

—B*‘N)2 (10)
W) —ofg s
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For each fixed a,a ¢ R, the mutual variation process of B*
and B* is defined by

BF), =L, -] w

Definition 6. For fixed T > 0, let Mg(O, T) be the collection
of processes in the following form: for a given partition
{to,. .. tn} =mpof [0,T7,

N-1
1 (w) = Z EjI[tj,th) (OF (12)
=0

where &; € Lip(Qtj),j =0,1,2,...,N—-1.For p > 1, one
denotes by Hg(O, T), Mg(O, T) the completion of Mg(O,T)
under the norms [l = (E[([, 2”112, Iyl =

{[E[fOT Inslpds]}l/p, respectively.

Foreach# € Mé(O, T'), we can define the integrals JOT n,dt
and IoT nd(B* B*), for each a, a € R’ For each 5 «

Hg(O, T; R?) with p > 1, we can define It&’s integral _[OT n,dB,.
Let S5(0,T) = {h(t, By ps-- - B pf) t tysonnst, € [0,T],
h e Cb,Lip(R”H)}. Forp > landy € S%(O,T), set ||11||sé =
{E[supte[o,ﬂlntlp]}l/f’. Denote by Sg(O, T) the completion of
Sg(O, T) under the norm || - ”sg-
We consider the following type of G-BSDEs (in this paper,
we always use Einstein convention):

T

T . .
Y, =&+ J f(s, Ys,Zs)ds + J 9ij (s, YS,Zs)d<Bl,B]>
¢ S

t

T
- J stBs - (KT - Kt) >
t

(13)
where

f(twy,2),g; (6w ,2) : [0,T] x Qp x Rx R — R,
(14)

satisty the following properties.

(H1) There exists some 3 > 1 such that for any
)/) z, f(') > y’ Z), gij(') > y) Z) € Mé(o) T)‘
(H2) There exists some L > 0 such that

d
[ (6 3.2) = £ (652)] + X g (6.922) = g5 (65, 2')]

i,j=1

SL('y—y'|+|z—z"). )
15

For simplicity, we denote by ©5(0,T) the collection of

processes (Y, Z, K) such that Y € S5(0,T), Z € H(0,T; R%),
K is a decreasing G-martingale with K, = 0 and K €
LE(Qy).

Definition 7. Let & € Lﬁc(QT) and f and g;; satisfy (H1) and
(H2) for some 3 > 1. A triplet of processes (Y, Z, K) is called a
solution of (13) if for some 1 < « < f the following properties
hold:

(@) (Y, Z,K) € @%(0,T);
0) Y, =&+ [ f(s, Yo Z)ds+ [ gs Yo Z)d(B, B),~
[ Z.dB, - (K - K)).

Theorem 8 (see [15]). Assume that & € Llé(QT) and f and 9ij
satisfy (H1) and (H2) for some 3 > 1. Then, (13) has a unique
solution (Y, Z, K). Moreover, for any 1 < o < f3, one hasY €
S&(0,T), Z € HA(0, T; RY), and Ky € L%(Qyp).

We have the following estimates.
Proposition 9 (see [15]). Let & € Lg(QT) and f, gij satisfy
(H1) and (H2) for some 3 > 1. Assume that (Y,Z,K) €

&5(0,T) for some 1 < « < B is a solution of (13). Then, there
exists a constant C, > 0 depending on o, T, G, L such that

T 24
Y,|" < C,E, [|£|“ + <j |h‘j|ds> ] ,
t
~ T «f2
E [(J |ZS|2ds> :|
0
1/2
<C, {[E [ sup lYt|“] + (E [ sup |Y;|" >
te[0,T] te[0,T]
T o 1/2
><<[E [(J hgds> ]) },
0
E [|Kt|“] <C, {[E [ sup |Yt|a] +E [(J hgds> H» ,
te[0,T] 0

where h) = | £(5,0,0)| + Y7 _, |g;(s,0,0)].

Proposition 10 (see [15, 20]). Let « > 1 and § > 0 be fixed.
Then, there exists a constant C depending on o and § such that

E [ sup E, [lﬂ“]]
te[0,T]

<C {([E [|E|a+6:|)“/(‘x+5) o [|5|M8”’ (17)

VE € L% (Qp).



Theorem 11 (see [16]). Let (Y, Z K", I =
solutions of the following G-BSDEs:

1,2, be the
Y, =&+ J f(sYL2)ds+ J 9 (s, Y0, 2.) d(B', B')
t t
Vivi- [ Zan - (k- K1),
t (18)

where & € Llé(QT), f and g;; satisfy (H1) and (H2) for some
B> 1and (th)th are RCLL processes in Mé(O,T) such that
E[supte[o,T]IthIﬁ] < co. If V! =V} is an increasing process,
then Yt1 > Ytzfort € [0,T].

In this paper, we also need the following assumptions for
G-BSDE (13).

(H3) For each fixed (w,y,z) € Qp x R x R t —
ftw,y,2) and t — g;;(t, w, y, z) are continuous.

(H4) For each fixed (t, y,2) € [0,T) x R x R%, f(t, y,2),
g,-j(t, ,2) € L/é(Qt), and

e—0+¢

lim LE Um <|f (3,2) = f (t:3,2)°

) |9ij (4, 3,2) = g (¢, Z)|ﬁ> du] 0.

i,j=1
19)

(H5) For each (t,w, y) € [0,T] x QO x R, f(t,w, y,0) =
gij(t, w, y,0) = 0.

Assume that& € Lé(QT); fand gij satisty (H1), (H2), and

(H5) for some 3 > 1. Let VE AR KT’E) be the solution of
G-BSDE (13) corresponding to §, f,and g;; on [0, T]. It is easy

to check that Y% = yT'% on [0,T] forT' > T. Following [16],
we can define consistent nonlinear expectation

E, [£] = YtT’E for t € [0,T] (20)

and set E[&] = E,[£] = Yg’g.

3. Representation Theorem of
Generators of G-BSDEs

We consider the following type of G-FBSDEs:

X =x+ J b (X)) du
t

N u

. . (21)
v [ ny () (BB, 4 | o (X0 aB,,
t t
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t+e

sYSt,x,y,p =y + <p’ Xt,x x>

t+e
" L f(u’SY;)x’y’p>£Ztu’x’y’P)du
(22)
e SYt,x,y,p € Zt,x,y,p d Bi Bj
] gy (w2 r) d(BL B,

N

t+e
€ 1,%,9,p E XD € tx,Y,p
_J 25500 dB, — ("KL KPP,
s

where hj; = hj;and g;; = g;, 1 <1, j<d.
We now give the main result in this section.
Theorem 12. Letb : R" — R" h; : R* — R", ando :

R" — R™ be Lipschitz functions and let f and gij satisfy
(H1), (H2), (H3), and (H4) for some 3 > 1. Then, for each
(t,x, 9, p) €[0,T) x R" x R x R" and « € (1, ), one has

a . 1 (e £,%X,y,p
ti- i {7

= f(t.y.0" () p) + {pb(x))

+2G ((gij (t’ y,0" (x) P) + <P’ hy; (x)>):'i,j:1> .
(23)

Proof. For each fixed (t,x,y,p) € [0,T) x R" x R x R",
we write (Y%, Z°,K®) instead of ((Y"7P S zb0rp € ghxrp)
for simplicity. We have E[lXi’fsV] < oo foreach y > 1
(see [16, 19]). Thus, by Theorem 8, G-BSDE (22) has a unique
solution (Y*, Z%, K*) and Y; € LE(€Q,). Wesset, for s € [t,t+¢],

Yo=Y - (y+ <p,X§”‘ —x>),

Zi=7:-o" (X")p, K=K

N N

(24)

Applying Ito’s formula to Y¢ on [t, + ], it is easy to verify
that (Y%, Z¢, K?) solves the following G-BSDE:

Ye= Jt+£f(u,}7§+y+ <p,X;’x—x>,

ZE+a" (X;’x) p) du
[T (b (xe)) d

+ Jt+€ gij (u, Yi+y+ <p, b Gl x> , (25)
Zy+o' (X;")p)d(B,B')
o[ (o () a7,

t+e
- | Zuas, - (R, -KD).

t+e ~ Vs
s
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From Proposition 9,

7' <C.E

(7 o= (o). (x27) )
+[(p (X))

+Z|9U (wy+ (P X" = x).0" (X7) p)|

+|<p hy; (X“‘)>|)du

[ (e

<CE[([ (I Gy (o207 (x27) )

+ [ b (XN + [y (X57)))|

Z,

d
+ 2 gy (wy+ (p X = %),
i1
o (X&) p)| ) ) |
+E[ sup I?fa”’,
s€[tt+e] (26)

hold for some constant C, > 0, only depending on o, T', G,
and L. By Proposition 10 and the Lipschitz assumption, we

obtain
. el t+e — 12 /2
e an ([ )
s€[t,t+e] t
= 1 t+e
<CeE|1+]| - J |f (.0, 0)|ﬁ
€ Jt

d ol
+ Z 'gij (1,0, O)|ﬁ> du)

ij=1

+ sup |X§’x'ﬁ},

se(t,t+e]
(27)

where C, is a constant dependingon x, y, p,«, 8, T, G, and L.
Noting that E[sup,(, | X5*1F] < Cy(1 + |xIP) (see [16,19]),
where C, depends on T and L, and the following inequality
holds:

L <|f(u 0,0)" + Z |9, (1,0, 0)1’3)

i,j=1

<2/ { <|f(t 0,0)" + Z |g;; (£,0, 0)|’;>

i,j=1

t+e
N L <|f(u,0,0)—f(t,0,0)|’3

ij=1

d
+ Z .gzj (u’ 0, 0) - g,-j (t, 0, 0)|ﬁ> du} .

(28)

Together with assumption (H4), we get

tve /2
(I, 1)
t

where C; depends on x, y, p, &, 5, T, G, and L. Now, we prove
(23). Let us consider

E

< Cye”, (29)

se[t,t+e]

¥ - yh= ¥ =SB [T+ KL - K]

1~

t+e
I tx T t,x
= sEt “t f (u,y+ <p,XM x>,a (Xu )p)du
t+e
v (pb(x)) du
t
t+e
e[ o (wy+ (pX =), 0" (X))
xd(B,B')

o[ oy () a(B. ),
t

+L

(30)

where

L=t | [ (),
740" (X))
e an
+f+s 95 (Ve +y+ (p. X"~ x),
) p)a(em),
o[y () (),

j Flwy+ (p X5 - x), 0" (X5%) p) du

Z+a(

; j (pohy (X17)) d(Bi,Bj)u] } |

(31)



t+e

It is easy to check that |L,| < (C,/e)E,[ [, (IY;| + |Z; |)dul,
where C, depends on G, L, and T. Thus, by (29), we get

E[|L]"]
CZ" t+e
< 2 [(]
S zaflcicl]’; [<J»t+s
& t

<2%'cy {[E [ sup

s€[tt+e]

Y,

+

z )du)a]
du)a + (Lm
7

« = t+e
. ] +e°E <J
t

< 2"‘_1CZC3 (s“ + s“/z) R

7 zZ

u

du)]
o

(32)

z,

which implies L, - lim, _,,, L, = 0. We set

Mo= B[ 7 (o (ot 2) o7 (X07) p) s
[ (b (i) d
o[y s (o x) 0" (7))
xd(B,B')
e[ oy (3 (e, |
_E, H:ﬂf(u,y, o' (x) p)du + (p,b(x)) e
' J 9 (320" () p) d(B.B'),

[ o) g, |}

(33)

By the Lipschitz condition, we can get
t+e

(Cs/e)[Et[_[t IX;”“ — x|du], where C5 depends on p, G, L,
and T Noting that E[supse[t’m] |X5% —x]%] < Co(1+ |x|%)e™/?
(see [16,19]), where C depends on L, G, and «, we obtain

M| <

E[|m,]"] < CSE [ sup .Xix - x|a]

s€(tt+e]

(34)
< CICq (1 + |x]) €%,
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which implies L, - lim, _, o, M, = 0. Now, we set

N. =

™ | =

{E U f(wy,0" (x)p)du+(p.b(x))e
[ gy ™ 0 p) a8,
o[ oy 0y agem), |

_E, “:Hf(t, 2,0 () p)du+ (p,b(x) e
[ oslere wp) o),

+ LHE (pohy; (x)) d<Bi’Bj>“] } '

(35)

It is easy to deduce that |[N,| < (C7/8)E[Lt+s(|f(u, ¥,

oT(x)p)~ f(t, y, 0" ()Pl + X7 ) 1w v, 0" (x)p) - gy (t, 3,
oT(x)p)l)du], where C, depends on G. Then,

E[In]
<G [[ (I (o 0 p) - £ (600" 1)

d
+ Z |9ij (u»%aT (x) P)

ij=1
gy (30" 09p)]) ]

(e[ (rtererion

-f (t, ¥, o (x) p)'

d

3

i,j=1

9ij (”r Y o (%) P)

B alB
~ Gij (t’ Y o' (x) P)|) d”]
(36)

Take limit on both sides of the above inequality and use
assumption (H4); then, we have

L - lim N, = 0. (37)
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On the other hand,
. t+e T
E, [L f(ty,0" () p)du+ (p,b(x))e
t+e ) )
+ L g; (t-y,0" (x) p) (B B')

+ fﬂ (phyj (x)) d(Bi,Bj>u]
= f(t.y 0" () p)e+ (pb(x))e
+E[(95 (630" @) p) + (p 1y (1))
x((B.8),,. -~ (B.8),)]
= (£ (t.2.0" @ p) + (pb ()

+2G ((gij (t, ¥, o (x) p) + <p, hy; (x)>)ij=1>> &

(38)

Then, we have

o . 1 €
Lg- slgl&g {Yt - }’}
= f (620" @) p) + (pb ()
+26((g; (630" @ p) + (phy )], ).

(39)

The proof is complete. O

4. Some Applications

4.1. Converse Comparison Theorem for G-BSDEs. We con-
sider the following G-BSDEs:

T
VA =g [ f (s 2 s
t

T
1 LE 1 i nj
o[ (v 2 a(E p), (40)

T
I, 1, 1,
- L Z¥dB, - (K - KY), 1=1.2,
h I
where g;; = g;.
We first generalized the comparison theorem in [16].
Proposition 13. Let f* and gfj satisfy (H1) and (H2) for some

d
B>1,1=121If-f' + 2G((gi2]. - gilj)i)jzl) < 0, then, for
each & € Llé(QT), one has Ytl"E > Ytz’gfort € [0,T].

Proof. From the above G-BSDEs, we have
T
v [ £ (s 2 as
t

o[ g 2 g ),
t

- JT 72%dB, - (K3* - K}*)
- (41)
“g [ (s 2 ds
t

T . .
+ L a5 (s,Yf’f,Zf"f)d<B’,BJ>s

T
+Vp -V, - J z2%dB, - (K3* - K}*),
t

t . .
+ [ (a5 - a)) (s 725, 22) a8 B,

- Jt <f2 - f! +2G<(gi2j -g}j)ijzl» (s,Yf’E,Zf’E)ds

(42)

By the assumption, it is easy to check that (V,),.; is a
decreasing process. Thus, using Theorem 11, we obtain Ytl’g >
Y2 fort € [0,T]. O

Remark 14. Suppose d = 1 and let f' = 10lz], f* = |z,
gl = |z|, and g2 = 2|z|. It is easy to check that f2 - f1 +
2G(gZ _ gl) < 0. rl-hus, f2 _ fl + 2G((g12] — gllj)ijzl) < 0 does

. 2 _ g1 2\d 1yd
notimply f° < f* and (g;)); ;- < (4;); j=1-
Now, we give the converse comparison theorem.

Theorem 15. Let f' and gj; satisfy (H1), (H2), (H3), (H4), and
(H5) for some 3 > 1,1 =1,2. IfYtl’E > Ytz’ffor eacht € [0,T]
and & € Llé(QT), then f* — f' + 2G((gi2j - gilj)szl) <0gs.

Proof. For simplicity, we take the notation [Ei [£] = Ytl’f, I =
1, 2. For each fixed (¢, y,z) € [0,T) x R x R, let us consider

e =0+ <Z, hij> (<Bi’Bj>t+£ N <Bi’Bj>t) + <Z, B - Bt> >
(43)



where h;; = hj; € R?. By Theorem 12, we have, for each « €

Lp).

1% lim = (B 1] - )

e—0+¢

= 1(t.2.2)+26((g) (63,2

<z,h ) . 1)

(44)
Since E} [1,] > E/[1,],
£ (6 322)+26 (g5 (6 302) + (2)) )
> 12 (t.3,2) + 26 (g7 (6. 7.2) + (=), ) as.
(45)

__ 1 2 /1
Take ahij such that (z, hij) = —gij(t, y,z). Therefore, { f*—f "+
2G((g;

and (H3), it is easy to deduce that f2—f1 +2G((gi2j—g}j)fj:1) <
0q.s. U

- gilj)f j:I)}(t, ¥,2) < 0 q.s. By the assumptions (H2)

In the following, we use the notation [Ei [&] = Ytl’E, I=1,2.

Corollary 16. Let f' and gfj be deterministic functions and
satisfy (H1), (H2), (H3), and (H5) for some 8 > 1,1 = 1,2. If
E'[£] > EZ[E]for each & € Lg(QT), then f2 - f1 + 2G((gi2j -

d
gilj)i,jzl) <0.

Proof. Taking #, as in Theorem 15, since f' and gf ; are deter-

ministic, we could get E[r/s] = E'[n,], for I = 1, 2. And the
proof in Theorem 15 still holds true. O

4.2. Some Equivalent Relations. We consider the following G-
BSDE:

T T .
Y, =&+ J f(sY,2Z,)ds+ J g (.Y, Z)d(B',B’)
t t s

T
- J stBs - (KT - Kt) >
t (46)

where g;; = g;;. We use the notation E,[&] =,

Proposition 17. Let f and gij satisfy (H1), (H2), (H3), (H4),
and (H5) for some 3 > 1 and fix « € (1, B). Then, one has

() E,[E+n] = E,[E] +nfort € [0,T), & € LY (QT) and
n € LE(Q,) ifand only if for each t € [0,T], y, y' € R,
zeRY,

fltyz)-f(ty.2)

o (47)
+26 ((gij (t.22) =gy (t.7 ’Z))i,j=1> =0

Abstract and Applied Analysis

() E[& + 7] < E,[&] + Elnl fort € [0,T], & € LEQy),
and n € LE(Qq) if and only if for each t € [0,T], y,
y' €R, z 7z €RY,

0 2f(t,y+y',z+z')—f(t,y,z)—f(t,y',z')

+2G <(g,~j (t, y+y,z+ z') - gij (t, y,2) (48)
d
~9ij (t’ y,’Z’))i,]‘:1> ;

(3) E,[A& +(1-My) < AE[&]+ (1 -DE,[y] fort € [0, T],
A€ [0,1], & € LE(Qy), and iy € LE(Qy) if and only if
foreacht € [0,T], 5,y €R,z, 7z € R A € [0,1],

0> f(tAy+ 1=y, Az+(1-21)2")
M (Lyz)- (-1 f(ty.2)

+ zc((g,.j (LAy+(1 -1y Az+(1-1)2")

—Ag;j (t.y,2) = (1= N g; (t’yl’zl))ij:1>;
(49)

(4) E,[AE] = AE,[€] fort € [0,T], A 2 0, andEGL (Qr)
if and only if for each t € [0,T], y € R,z € R%, 1 > 0,

{64y, Az) = Af (. y,2)
=2G <(Agij (t.y.2) - g; (. Ay, Az))ij:1> (50)

d
=-2G <(gij (t Ay, Az) = Agy; (t. y, Z)),»,jﬂ) .

Proof. (1) “=” part. For each fixed t € [0,T), y, y' eR,z €
R?, we take

=y+(zhy) ((B.F),, - (B.B),)

+<ZBt+s B>’

(51)
!
n=y -»

where h;; = h;; € R Then, by Theorem 12 and E, [, + #7] =
E,[£.] +#, we can obtain

f(ty2)+ 2G<(9i;’ (t5'2) + (= hij>);i,j:1>
)+ (ah))i )

We choose h;; such that g;;(t, v, z) + (z, h;;) = 0, which
implies (47).

“<” part. Let (Y, Z, K) be the solution of G-BSDE (46)
corresponding to terminal condition &. We claim that (Y, +
1 Zg, K)sepr 7y 1 the solution of G-BSDE (46) corresponding

(52)
= [ (6.2.2)+26 (g, (0. .2
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to terminal condition & +# on [¢, T]. For this, we only need to
check that, for s € [t,T],

T T S
J f(wY,, Z,)du+ J g (WY, Z,) d<Bl, B]>u

s

T
= J fwY,+n2,)du (53)

+ JT gij (u’ Yu + 1, Zu) d<Bi, BJ>M

By (47) we can get

JT (glj (u’ Yu’ Zu) - gij (u’ Yu +1, Zu)) d<Bi> BJ>M

N

T
_2 j G <(g,-j (WY, Z,) - g5 (WY, +1.2,))" )du

s i,j=1

T . .
= J' (gij (wY,,2,) - g;; (.Y, +1, Zu)) d<B',B]>u

N

T
o[ @Yz - f Y, rn2))duso,

J-T (gl} (u’ YM +1, Zu) - gij (Ll, Yu’ Zu)) d<Bi’ B]>u

N

T
-2 I G <(gij (WY, +1.2,) - g; (Y, Zu))fi ) du

s i,j=1

= IT (gij (wY, +1,2,) - g; (s Yu,Zu)) d<Bi’Bj>u

N

T
t [ Fvonz) - f @y, z)duso
s (54)

which implies (53). The proof of (1) is complete.

(2) “=” part. For each fixed t € [0,T), y, y' € R, z,2' €
R? we consider & =y + (2 hij)((Bi,Bj)t+£ - (B,B’),) +
(2,By,. = By and 5, = y' + (2", b ) (B, B)),.,. - (B, B),) +
(z',B,,.— B, where hy; = h; € uzid and hlf]; = h; € R?. Then,
by Theorem 12 and E,[&, + 1] = E,[&,] + E,[#.], we obtain

f(t,y+y',z+z')
+2G ((gij (Ly+y.z+7)
d
(ahy)+ )
<fltyz)+f(6).2)
+2G ((gij (t.3.2) + (2, hif>)ij=1)

+2G ((g,j (ty,2) + {2, h;j>)jj:1) .

(55)

We choose h;j, hlfj such that g;;(t, y,z) + (z,h;) = 0 and
gt y',2") + (2, h;) = 0, which implies (48).

“<” part. Let (Y, Z,K) and (Y, Z',K') be the solutions
of G-BSDE (46) corresponding to terminal condition £ and

1, respectively. Then, (Y + Y', Z + Z',K) solves the following
G-BSDE:

T
Yt+Yt’:E+11+j f(sY,+Y,Z+2)ds

t
+ JTgij (sY,+Y,z,+2)d(B,B) (56
t

T

+VT—\4—J (Zs+z;)st—(KT—Kt),

t

where
V,=-K, - Jf (f(sY +Y, 2.+ 2))
0
_f (S> Y, Zs) - f (S, Y;; Z:)) ds
- J: (gij (S’ Yo+ Y, Z+ Z;) -9 (s Y Zy)

~g;(s.Y5, 2:)) d(B.B),

Z—Kt’—{

t
J (gij (5, Y, + YS',ZS + Z:)

0

~ 9ij (5’ Y, Zs) ~ Yij (5’ Ys” Z;)) d<Bi’ Bj>s

-2 JtG<(gij (Y, +Y,Z,+2.)
0

— gi]. (S, Ysy Zs)
- Gij (S, Ys” Z;))j]:1> dS]’

—r {f(s,YS+YS',ZS+Z£)

_f($>Ys’Zs) _f(S’YsI’Z;)

+2G <(g,~j (Y, +Y,Z+ Z) - g; (s Y, Z,)

- 9ij (s, Y;» Z:))z]:l)} ds.
(57)

By (48), it is easy to check that V; is an increasing process.
Then, by Theorem 11, we can get E,[E + nl < E,[&] + E[q],
The proof of (2) is complete.

Finally, we could prove (3) asin (2) and (4) asin (1). [

Proposition 18. One has the following.

(1) IfG(A) + G(=A) > 0 forany A € S; and A+0, then
(47) holds if and only if f and g;; are independent of y.
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(2) If there exists an A € S, with A+0 such that
G(A) + G(-A) = 0 and G(A) #0, then, for any fixed
g(t, y, z) satisfying (H1)-(H5), one has f(t,y,z) =
-2G(A)g(t, y,z) and (gij(t, ¥, z))ffj:1 = g(t,y,2)A
satisfying (47).

Proof. 1t is easy to verify (2), and we only need to prove
(1). If (47) holds, it is easy to check that G((g,-j(t, V,2) —

9(6,0,2)) ) + G((g;;(t,0,2) - g;;(t, y,2)) ) = 0 holds.
Then, from the assumption, we get g;;(f, y,z) = g;;(t,0,2).
Therefore, by (47), we have f(t,y,z) = f(t,0,2), which
implies that f and g;; are independent of y. The converse part
is obvious. O
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