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We extend the concept of 𝛼-𝜓-contractive mappings introduced recently by Samet et al. (2012) to the setting of gauge spaces.
New fixed point results are established on such spaces, and some applications to nonlinear integral equations on the half-line are
presented.

1. Introduction and Preliminaries

Fixed point theory plays an important role in nonlinear
analysis. This is because many practical problems in applied
science, economics, physics, and engineering can be refor-
mulated as a problem of finding fixed points of nonlinear
mappings. The Banach contraction principle [1] is one of
the fundamental results in fixed point theory. It guarantees
the existence and uniqueness of fixed points of certain self-
maps of metric spaces and provides a constructive method to
approximate those fixed points.

Theorem 1 (see [1]). Let (𝑋, 𝑑) be a complete metric space. Let
𝑇 : 𝑋 → 𝑋 be a contraction self-mapping on 𝑋; that is, there
exists a constant 𝑘 ∈ (0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , (1)

for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋. Then the map 𝑇 admits a unique fixed
point.Moreover, for any 𝑥

0
∈ 𝑋, the sequence {𝑇𝑛𝑥

0
} converges

to this fixed point.

During the last few decades, several extensions of this
famous principle have been established. In 1961, Edelstein [2]
established the following result.

Theorem 2 (see [2]). Let (𝑋, 𝑑) be complete and 𝜀-chainable
for some 𝜀 > 0. Let 𝑇 : 𝑋 → 𝑋 be such that

𝑥, 𝑦 ∈ 𝑋, 𝑑 (𝑥, 𝑦) < 𝜀 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , (2)

where 𝑘 ∈ (0, 1) is a constant.Then 𝑇 has a unique fixed point.

Kirk et al. [3] introduced the concept of cyclic mappings
and proved the following fixed point theorem.

Theorem 3 (see [3]). Let 𝐴 and 𝐵 be two nonempty closed
subsets of a complete metric space (𝑋, 𝑑). Let 𝑇 : 𝑋 → 𝑋

be a self-mapping such that

𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝐴 × 𝐵 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , (3)

where 𝑘 ∈ (0, 1) is a constant. Suppose also that 𝑇(𝐴) ⊆ 𝐵 and
𝑇(𝐵) ⊂ 𝐴. Then 𝑇 has a unique fixed point in 𝐴 ∩ 𝐵.

Ran and Reurings [4] extended the Banach contraction
principle to ametric space endowedwith a partial order.They
established the following result.

Theorem 4 (see [4]). Let (𝑋, 𝑑) be a complete metric space
endowed with a partial order ⪯. Let 𝑇 : 𝑋 → 𝑋 be a
continuous mapping such that

𝑥, 𝑦 ∈ 𝑋, 𝑥 ⪯ 𝑦 󳨐⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , (4)

where 𝑘 ∈ (0, 1) is a constant. Suppose also that there exists
𝑥
0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
. Then 𝑇 has a fixed point.



2 Abstract and Applied Analysis

Many extensions of the previous result exist in the
literature; for more details, we refer the reader to [5–11] and
the references therein.

Observe that all the contractive conditions (2), (3), and
(4) can be written as

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , ∀ (𝑥, 𝑦) ∈ 𝐻, (5)

where𝐻 is a subset of𝑋 × 𝑋. In Theorem 2, we have

𝐻 := {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑑 (𝑥, 𝑦) < 𝜀} . (6)

InTheorem 3, we have

𝐻 := (𝐴 × 𝐵) ∪ (𝐵 × 𝐴) . (7)

InTheorem 4, we have

𝐻 := {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : (𝑥 ⪯ 𝑦) ∧ (𝑦 ⪯ 𝑥)} . (8)

The contractive condition (5) is said to be a partial contrac-
tion, that is, a contraction satisfied only on a subset of 𝐻 ⊆

𝑋 × 𝑋.
Very recently, Samet et al. [12] observed that a partial

contraction can be considered as a total contraction, that is,
a contraction satisfied for every pair (𝑥, 𝑦) ∈ 𝑋 × 𝑋. More
precisely, if we define the function 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) := {
1, if (𝑥, 𝑦) ∈ 𝐻,
0, otherwise,

(9)

we show that (5) is equivalent to

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑋. (10)

In [12], the authors considered amore general inequality; that
is,

𝛼 (𝑥, 𝑦) 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑋, (11)

where 𝜓 : [0,∞) → [0,∞) is a function satisfying some
conditions.The above inequality is called an𝛼-𝜓-contraction.
In [12], some fixed point results were established under this
contractive condition. For other works in this direction, we
refer the reader to [13–16].

The aim of this work is to extend, generalize, and improve
the obtained results in [12]. More precisely, the concept of 𝛼-
𝜓-contractive mappings is extended to the setting of gauge
spaces. New fixed point results are established on such spaces,
and some applications to nonlinear integral equations on the
half-line are presented.

Through this paper, E will denote a gauge space endowed
with a separating gauge structureD = {𝑑

𝜆
}
𝜆∈Λ

, where Λ is a
directed set.

A sequence {𝑥
𝑛
} ⊂ E is said to be convergent if there exists

an 𝑥 ∈ E such that for every 𝜀 > 0 and 𝜆 ∈ Λ, there is an
𝑁 ∈ N with 𝑑

𝜆
(𝑥
𝑛
, 𝑥) < 𝜀, for all 𝑛 ≥ 𝑁.

A sequence {𝑥
𝑛
} ⊂ E is said to beCauchy, if for every 𝜀 > 0

and 𝜆 ∈ Λ, there is an 𝑁 ∈ N with 𝑑
𝜆
(𝑥
𝑛
, 𝑥
𝑛+𝑝
) < 𝜀, for all

𝑛 ≥ 𝑁 and 𝑝 ∈ N.

A gauge space is called complete if any Cauchy sequence
is convergent.

A subset of E is said to be closed if it contains the limit of
any convergent sequence of its elements.

For more details on guage spaces, we refer the reader to
Dugundji [17].

We denote byΨ the set of functions𝜓 : [0,∞) → [0,∞)

satisfying the following conditions:

(C1) 𝜓 is nondecreasing;
(C2) ∑∞

𝑛=1
𝜓
𝑛
(𝑡) < ∞, for all 𝑡 > 0, where 𝜓𝑛 is the 𝑛th

iterate of 𝜓;
(C3) 𝜓(𝑎) + 𝜓(𝑏) ≤ 𝜓(𝑎 + 𝑏), for all 𝑎, 𝑏 ≥ 0.

It is easy to show that under the conditions (C1) and (C2), we
have 𝜓(𝑡) < 𝑡, for all 𝑡 > 0. Moreover, under the conditions
(C1) and (C3), we have

𝜓
𝑛
(𝑎) + 𝜓

𝑛
(𝑏) ≤ 𝜓

𝑛
(𝑎 + 𝑏) , (12)

for all 𝑛 ∈ N and 𝑎, 𝑏 ≥ 0.

Example 5. Let 𝜓 : [0,∞) → [0,∞) be the function defined
by

𝜓 (𝑡) :=

{{{

{{{

{

𝑡
2

4
, if 𝑡 ∈ [0, 1) ,

𝑡

2
, if 𝑡 ≥ 1.

(13)

Then 𝜓 ∈ Ψ.

Definition 6. Let 𝛼 : E×E → [0,∞) be a given function. Let
𝑁 ∈ N and 𝑥, 𝑦 ∈ E. We say that (𝑥𝑖)𝑁

𝑖=0
⊂ E is an𝑁-𝛼-path

from 𝑥 to 𝑦 if

𝑥
0
= 𝑥, 𝑥

𝑁
= 𝑦,

𝛼 (𝑥
𝑖−1
, 𝑥
𝑖
) ≥ 1, ∀𝑖 = 1, . . . , 𝑁.

(14)

We denote

𝑥 [𝑁, 𝛼] := {𝑦 ∈ E : there is an 𝑁-𝛼-path from 𝑥 to 𝑦} .
(15)

Let𝑁 ∈ N and 𝑥 ∈ E. For 𝜆 ∈ Λ and 𝑦 ∈ 𝑥[𝑁, 𝛼], and let

𝑝
𝑁

𝜆
(𝑥, 𝑦) := inf {

𝑁

∑

𝑖=1

𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
) : (𝑥
𝑖
)
𝑁

𝑖=0
⊂ 𝑋

is an 𝑁-𝛼-path from 𝑥 to 𝑦} .

(16)

2. Fixed Point Results for 𝛼-𝜓
𝜆

-Contractions

Definition 7. Let 𝑇 : E → E be a given self-mapping. Let
𝛼 : E×E → [0,∞) be a given function, and let {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ.
We say that 𝑇 is an 𝛼-𝜓

𝜆
-contraction if

𝛼 (𝑥, 𝑦) 𝑑
𝜆
(𝑇𝑥, 𝑇𝑦) ≤ 𝜓

𝜆
(𝑑
𝜆
(𝑥, 𝑦)) , (17)

for all 𝜆 ∈ Λ and 𝑥, 𝑦 ∈ E.
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Definition 8. Let 𝑇 : E → E be a given self-mapping. Let
𝛼 : E × E → [0,∞) be a given function. We say that 𝑇 is
𝛼-admissible if

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1, ∀𝑥, 𝑦 ∈ E. (18)

The following lemma will be useful to establish our fixed
point results.

Lemma 9. Let 𝑇 : E → E be a self-mapping. Suppose that
there exist 𝛼 : E×E → [0,∞) and {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ such that the
following conditions hold:

(i) 𝑇 is an 𝛼-𝜓
𝜆
-contraction;

(ii) 𝑇 is 𝛼-admissible.
Let 𝜀 > 0 and 𝑁 ∈ N. Then, for every 𝜆 ∈ Λ, 𝑥 ∈ 𝑋, and
𝑦 ∈ 𝑥[𝑁, 𝛼], one has

(I) 𝑇𝑦 ∈ 𝑇𝑥[𝑁, 𝛼] with

𝑝
𝑁

𝜆
(𝑇𝑥, 𝑇𝑦) ≤ 𝜓

𝜆
(𝑝
𝑁

𝜆
(𝑥, 𝑦) + 𝜀) ; (19)

(II) for all 𝑘 ∈ N ∪ {0}, one has 𝑇𝑘𝑦 ∈ 𝑇𝑘𝑥[𝑁, 𝛼] with

𝑝
𝑁

𝜆
(𝑇
𝑘
𝑥, 𝑇
𝑘
𝑦) ≤ 𝜓

𝑘

𝜆
(𝑝
𝑁

𝜆
(𝑥, 𝑦) + 𝜀) . (20)

Proof. Let 𝜆 ∈ Λ, 𝑥 ∈ 𝑋, and 𝑦 ∈ 𝑥[𝑁, 𝛼]. Let {𝑥𝑖}𝑁
𝑖=0

be an
𝑁-𝛼-path from 𝑥 to 𝑦 such that

𝑁

∑

𝑖=1

𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
) ≤ 𝑝
𝑁

𝜆
(𝑥, 𝑦) + 𝜀. (21)

Since 𝛼(𝑥, 𝑥1) ≥ 1, we have

𝑑
𝜆
(𝑇𝑥, 𝑇𝑥

1
) ≤ 𝛼 (𝑥, 𝑥

1
) 𝑑
𝜆
(𝑇𝑥, 𝑇𝑥

1
) ≤ 𝜓
𝜆
(𝑑
𝜆
(𝑥, 𝑥
1
)) .

(22)

Since 𝛼(𝑥1, 𝑥2) ≥ 1, we have

𝑑
𝜆
(𝑇𝑥
1
, 𝑇𝑥
2
) ≤ 𝛼 (𝑥

1
, 𝑥
2
) 𝑑
𝜆
(𝑇𝑥
1
, 𝑇𝑥
2
)

≤ 𝜓
𝜆
(𝑑
𝜆
(𝑥
1
, 𝑥
2
)) .

(23)

Recursively from 𝑖 = 3 to𝑁, since 𝛼(𝑥𝑖−1, 𝑥𝑖) ≥ 1, we have

𝑑
𝜆
(𝑇𝑥
𝑖−1
, 𝑇𝑥
𝑖
) ≤ 𝛼 (𝑥

𝑖−1
, 𝑥
𝑖
) 𝑑
𝜆
(𝑇𝑥
𝑖−1
, 𝑇𝑥
𝑖
)

≤ 𝜓
𝜆
(𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
)) .

(24)

On the other hand, since 𝑇 is 𝛼-admissible, {𝑇𝑥𝑖}𝑁
𝑖=0

is an𝑁-
𝛼-path from 𝑇𝑥 to 𝑇𝑦. So, we have

𝑝
𝑁

𝜆
(𝑇𝑥, 𝑇𝑦) ≤

𝑁

∑

𝑖=1

𝑑
𝜆
(𝑇𝑥
𝑖−1
, 𝑇𝑥
𝑖
)

≤

𝑁

∑

𝑖=1

𝜓
𝜆
(𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
))

≤ 𝜓
𝜆
(

𝑁

∑

𝑖=1

𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
))

≤ 𝜓
𝜆
(𝑝
𝑁

𝜆
(𝑥, 𝑦) + 𝜀) .

(25)

Thus, we proved (I).

Again, since 𝛼(𝑇𝑥, 𝑇𝑥1) ≥ 1, we have

𝑑
𝜆
(𝑇
2
𝑥, 𝑇
2
𝑥
1
) ≤ 𝛼 (𝑇𝑥, 𝑇𝑥

1
) 𝑑
𝜆
(𝑇
2
𝑥, 𝑇
2
𝑥
1
)

≤ 𝜓
𝜆
(𝑑
𝜆
(𝑇𝑥, 𝑇𝑥

1
)) ≤ 𝜓

2

𝜆
(𝑑
𝜆
(𝑥, 𝑥
1
)) .

(26)

Since 𝛼(𝑇𝑥1, 𝑇𝑥2) ≥ 1, we have

𝑑
𝜆
(𝑇
2
𝑥
1
, 𝑇
2
𝑥
2
) ≤ 𝛼 (𝑇𝑥

1
, 𝑇𝑥
2
) 𝑑
𝜆
(𝑇
2
𝑥
1
, 𝑇
2
𝑥
2
)

≤ 𝜓
𝜆
(𝑑
𝜆
(𝑇𝑥
1
, 𝑇𝑥
2
)) ≤ 𝜓

2

𝜆
(𝑑
𝜆
(𝑥
1
, 𝑥
2
)) .

(27)

Recursively from 𝑖 = 3 to𝑁, since 𝛼(𝑇𝑥𝑖−1, 𝑇𝑥𝑖) ≥ 1, we have

𝑑
𝜆
(𝑇
2
𝑥
𝑖−1
, 𝑇
2
𝑥
𝑖
) ≤ 𝛼 (𝑇𝑥

𝑖−1
, 𝑇𝑥
𝑖
) 𝑑
𝜆
(𝑇
2
𝑥
𝑖−1
, 𝑇
2
𝑥
𝑖
)

≤ 𝜓
𝜆
(𝑑
𝜆
(𝑇𝑥
𝑖−1
, 𝑇𝑥
𝑖
))

≤ 𝜓
2

𝜆
(𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
)) .

(28)

On the other hand, since 𝑇 is 𝛼-admissible, {𝑇2𝑥𝑖}𝑁
𝑖=0

is an𝑁-
𝛼-path from 𝑇

2
𝑥 to 𝑇2𝑦. So, we have

𝑝
𝑁

𝜆
(𝑇
2
𝑥, 𝑇
2
𝑦) ≤

𝑁

∑

𝑖=1

𝑑
𝜆
(𝑇
2
𝑥
𝑖−1
, 𝑇
2
𝑥
𝑖
)

≤

𝑁

∑

𝑖=1

𝜓
2

𝜆
(𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
))

≤ 𝜓
2

𝜆
(

𝑁

∑

𝑖=1

𝑑
𝜆
(𝑥
𝑖−1
, 𝑥
𝑖
))

≤ 𝜓
2

𝜆
(𝑝
𝑁

𝜆
(𝑥, 𝑦) + 𝜀) .

(29)

Continuing this process, by induction, we get (II).

Definition 10. Let 𝑇 : E → E be a self-mapping, and let 𝛼 :
E × E → [0,∞) be a given function. For 𝑁 ∈ N, we say
that a sequence {𝑥

𝑛
} ⊂ E is an 𝑁-𝛼-Picard trajectory from

𝑥
0
if 𝑥
𝑛
= 𝑇𝑥
𝑛−1

∈ 𝑥
𝑛−1
[𝑁, 𝛼] for all 𝑛 ∈ N. We denote by

T
𝑁
(𝑇, 𝛼, 𝑥

0
), the set of all𝑁-𝛼-Picard trajectories from 𝑥

0
.

Definition 11. Let 𝑇 : E → E be a self-mapping, and let 𝛼 :
E × E → [0,∞) be a given function. For𝑁 ∈ N, we say that
𝑇 is 𝑁-𝛼-Picard continuous from 𝑥

0
∈ E if the limit of any

convergent sequence {𝑥
𝑛
} ∈ T

𝑁
(𝑇, 𝛼, 𝑥

0
) is a fixed point of

𝑇.

We have the following fixed point result.

Theorem 12. Let 𝑇 : E → E be a self-mapping on the
complete gauge space E. Let {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ and 𝛼 : E ×

E → [0,∞) be a given function. Suppose that the following
conditions hold:

(i) 𝑇 is an 𝛼-𝜓
𝜆
-contraction;
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(ii) 𝑇 is 𝛼-admissible;
(iii) there exist 𝑁 ∈ N and 𝑥

0
∈ E such that 𝑇𝑥

0
∈

𝑥
0
[𝑁, 𝛼];

(iv) 𝑇 is𝑁-𝛼-Picard continuous from 𝑥
0
.

Then 𝑇 has a fixed point.

Proof. Let 𝜆 ∈ Λ and 𝜀 > 0. From condition (iii) and
Lemma 9, we have 𝑇2𝑥

0
∈ 𝑇𝑥
0
[𝑁, 𝛼] and

𝑑
𝜆
(𝑇𝑥
0
, 𝑇
2
𝑥
0
) ≤ 𝑝
𝑁

𝜆
(𝑇𝑥
0
, 𝑇
2
𝑥
0
) ≤ 𝜓
𝜆
(𝑝
𝑁

𝜆
(𝑥
0
, 𝑇𝑥
0
) + 𝜀) .

(30)

Again, from Lemma 9, we have 𝑇3𝑥
0
∈ 𝑇
2
𝑥
0
[𝑁, 𝛼] and

𝑑
𝜆
(𝑇
2
𝑥
0
, 𝑇
3
𝑥
0
) ≤ 𝑝
𝑁

𝜆
(𝑇
2
𝑥
0
, 𝑇
3
𝑥
0
)

≤ 𝜓
2

𝜆
(𝑝
𝑁

𝜆
(𝑥
0
, 𝑇𝑥
0
) + 𝜀) .

(31)

Continuing this process, by induction, for 𝑛 ≥ 2, we have
𝑇
𝑛+1
𝑥
0
∈ 𝑇
𝑛
𝑥
0
[𝑁, 𝛼] and

𝑑
𝜆
(𝑇
𝑛
𝑥
0
, 𝑇
𝑛+1
𝑥
0
) ≤ 𝑝
𝑁

𝜆
(𝑇
𝑛
𝑥
0
, 𝑇
𝑛+1
𝑥
0
)

≤ 𝜓
𝑛

𝜆
(𝑝
𝑁

𝜆
(𝑥
0
, 𝑇𝑥
0
) + 𝜀) .

(32)

Thus, {𝑇𝑛𝑥
0
} ∈ T

𝑁
(𝑇, 𝛼, 𝑥

0
) and, for𝑚 ≥ 1,

𝑑
𝜆
(𝑇
𝑛
𝑥
0
, 𝑇
𝑛+𝑚

𝑥
0
) ≤

𝑚−1

∑

𝑖=0

𝑑
𝜆
(𝑇
𝑛+𝑖
𝑥
0
, 𝑇
𝑛+𝑖+1

𝑥
0
)

≤

𝑚−1

∑

𝑖=0

𝜓
𝑛+𝑖

𝜆
(𝑝
𝑁

𝜆
(𝑥
0
, 𝑇𝑥
0
) + 𝜀)

≤ ∑

𝑗≥𝑛

𝜓
𝑗

𝜆
(𝑝
𝑁

𝜆
(𝑥
0
, 𝑇𝑥
0
) + 𝜀) .

(33)

From condition (C2), we have

∑

𝑗≥𝑛

𝜓
𝑗

𝜆
(𝑝
𝑁

𝜆
(𝑥
0
, 𝑇𝑥
0
) + 𝜀) 󳨀→ 0 as 𝑛 󳨀→ ∞, (34)

which implies that {𝑇𝑛𝑥
0
} is a Cauchy sequence in the

complete gauge space E. Since 𝑇 is 𝑁-𝛼-Picard continuous
from 𝑥

0
, the limit of {𝑇𝑛𝑥

0
} is a fixed point of 𝑇.

Corollary 13. Let 𝑇 : E → E be a self-mapping on the
complete gauge space E. Let {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ and 𝛼 : E ×

E → [0,∞) be a given function. Suppose that the following
conditions hold:

(i) 𝑇 is an 𝛼-𝜓
𝜆
-contraction;

(ii) 𝑇 is 𝛼-admissible;
(iii) there exist 𝑁 ∈ N and 𝑥

0
∈ E such that 𝑇𝑥

0
∈

𝑥
0
[𝑁, 𝛼];

(iv) 𝑇 is continuous.

Then 𝑇 has a fixed point.

Proof. Let {𝑥
𝑛
} ∈ T

𝑁
(𝑇, 𝛼, 𝑥

0
) be such that 𝑥

𝑛
→ 𝑥 ∈ E.

Since 𝑇 is continuous, we have 𝑥
𝑛+1

= 𝑇𝑥
𝑛
→ 𝑇𝑥. Since E is

endowed with a separating gauge structure, we have 𝑥 = 𝑇𝑥.
The conclusion follows fromTheorem 12.

Corollary 14. Let 𝑇 : E → E be a self-mapping on the
complete gauge space E. Let {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ and 𝛼 : E ×

E → [0,∞) be a given function. Suppose that the following
conditions hold:

(i) 𝑇 is an 𝛼-𝜓
𝜆
-contraction;

(ii) 𝑇 is 𝛼-admissible;
(iii) there exist 𝑁 ∈ N and 𝑥

0
∈ E such that 𝑇𝑥

0
∈

𝑥
0
[𝑁, 𝛼];

(iv) for every {𝑥
𝑛
} ∈ T

𝑁
(𝑇, 𝛼, 𝑥

0
) such that 𝑥

𝑛
→ 𝑥 ∈

E, there exist a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} and 𝑘

0
∈

N such that 𝛼(𝑥
𝑛(𝑘)
, 𝑥) ≥ 1 for 𝑘 ≥ 𝑘

0
.

Then 𝑇 has a fixed point.

Proof. Let {𝑥
𝑛
} ∈ T

𝑁
(𝑇, 𝛼, 𝑥

0
) be such that 𝑥

𝑛
→ 𝑥 ∈ E.

From condition (iv), there exist a subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
}

and 𝑘
0
∈ N such that 𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1 for 𝑘 ≥ 𝑘

0
. Since 𝑇 is an

𝛼-𝜓
𝜆
-contraction, for all 𝜆 ∈ Λ and 𝑘 ≥ 𝑘

0
, we have

𝑑
𝜆
(𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥) ≤ 𝛼 (𝑥

𝑛(𝑘)
, 𝑥) 𝑑
𝜆
(𝑇𝑥
𝑛(𝑘)
, 𝑇𝑥)

≤ 𝜓
𝜆
(𝑑
𝜆
(𝑥
𝑛(𝑘)
, 𝑥)) .

(35)

Letting 𝑘 → ∞ in the above inequality, we obtain that

𝑥
𝑛(𝑘)+1

= 𝑇𝑥
𝑛(𝑘)

󳨀→ 𝑇𝑥, as 𝑘 󳨀→ ∞. (36)

SinceE is endowedwith a separating gauge structure, we have
𝑥 = 𝑇𝑥. The conclusion follows fromTheorem 12.

For 𝑇 : E → E, we denote by Fix(𝑇) the set of fixed
points of 𝑇; that is,

Fix (𝑇) := {𝑥 ∈ E : 𝑥 = 𝑇𝑥} . (37)

The next result gives us a sufficient condition that ensures the
uniqueness of the fixed point.

Theorem 15. Suppose that all the conditions ofTheorem 12 are
satisfied. Moreover, suppose that

(v) for every (𝑥, 𝑦) ∈ Fix(𝑇) × Fix(𝑇) with 𝑥 ̸= 𝑦, there
exists𝑁(𝑥, 𝑦) ∈ N such that𝑦 ∈ 𝑥[𝑁(𝑥, 𝑦), 𝛼].

Then 𝑇 has a unique fixed point.

Proof. FromTheorem 12,Themapping𝑇has at least one fixed
point. Suppose that 𝑢, V ∈ E are two fixed points of 𝑇 with
𝑢 ̸= V. From the condition (v), there exists 𝑁(𝑢, V) ∈ N such
that V ∈ 𝑢[𝑁(𝑢, V), 𝛼]. Let 𝜆 ∈ Λ and 𝜀 > 0. From Lemma 9,
we have

𝑑
𝜆 (𝑢, V) ≤ 𝑝

𝑁(𝑢,V)
𝜆

(𝑢, V)

≤ 𝜓
𝑛

𝜆
(𝑝
𝑁(𝑢,V)
𝜆

(𝑢, V) + 𝜀) ,
(38)



Abstract and Applied Analysis 5

for all 𝑛 ∈ N. Letting 𝑛 → ∞ in the above inequality, we
obtain that 𝑑

𝜆
(𝑢, V) = 0 for all 𝜆 ∈ Λ, which is a contradiction

with 𝑢 ̸= V (since we have a separating gauge structure). We
deduce that 𝑢 = V.

The following result follows immediately fromTheorems
12 and 15 with𝑁 = 1 and 𝛼(𝑥, 𝑦) = 1 for every 𝑥, 𝑦 ∈ E.

Corollary 16. Let 𝑇 : E → E be a self-mapping on the
complete gauge space E. Let {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ. Suppose that for all
𝜆 ∈ Λ, for all 𝑥, 𝑦 ∈ E, one has

𝑑
𝜆
(𝑇𝑥, 𝑇𝑦) ≤ 𝜓

𝜆
(𝑑
𝜆
(𝑥, 𝑦)) . (39)

Then 𝑇 has a unique fixed point.

Corollary 17. Let 𝑇 : E → E be a self-mapping on the
complete gauge space E. Let {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ and 𝛼 : E ×

E → [0,∞) be a given function. Suppose that the following
conditions hold:

(i) 𝑇 is an 𝛼-𝜓
𝜆
-contraction;

(ii) 𝑇 is 𝛼-admissible;
(iii) there exists 𝑥

0
∈ E such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1;

(iv) 𝑇 is continuous

(or) for any sequence {𝑥
𝑛
} ⊂ E such that 𝑥

𝑛
= 𝑇𝑥
𝑛−1

, 𝑥
𝑛
→

𝑥 ∈ E and 𝛼(𝑥
𝑛−1
, 𝑇𝑥
𝑛−1
) ≥ 1 for 𝑛 ∈ N, there exist a

subsequence {𝑥
𝑛(𝑘)
} of {𝑥

𝑛
} and 𝑘

0
∈ N such that𝛼(𝑥

𝑛(𝑘)
, 𝑥) ≥ 1

for 𝑘 ≥ 𝑘
0
.

Then 𝑇 has a fixed point. Moreover, if

(v) for every (𝑥, 𝑦) ∈ Fix(𝑇) × Fix(𝑇) with 𝑥 ̸= 𝑦, there
exists 𝑧 ∈ E such that 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑧, 𝑦) ≥ 1,

one has uniqueness of the fixed point.

Proof. The existence follows from Theorem 12 with 𝑁 = 1.
The uniqueness follows from Theorem 15 with 𝑁(𝑥, 𝑦) = 2.

Corollary 18. Let ⪯ be a partial order on the complete gauge
space E. Let 𝑇 : E → E be a self-mapping and {𝜓

𝜆
}
𝜆∈Λ

⊂ Ψ.
Suppose that the following conditions hold:

(i) for all 𝜆 ∈ Λ, for all 𝑥, 𝑦 ∈ E such that 𝑥 and 𝑦 are
comparable, one has

𝑑
𝜆
(𝑇𝑥, 𝑇𝑦) ≤ 𝜓

𝜆
(𝑑
𝜆
(𝑥, 𝑦)) ; (40)

(ii) 𝑥, 𝑦 ∈ E, 𝑥 and 𝑦 are comparable ⇒ 𝑇𝑥 and 𝑇𝑦 are
comparable;

(iii) there exists 𝑥
0
∈ E such that 𝑥

0
and 𝑇𝑥

0
are compa-

rable;
(iv) 𝑇 is continuous,

(or) for any sequence {𝑥
𝑛
} ⊂ E such that 𝑥

𝑛
= 𝑇𝑥
𝑛−1

, 𝑥
𝑛
→

𝑥 ∈ E, 𝑥
𝑛−1

and 𝑥
𝑛
= 𝑇𝑥
𝑛−1

are comparable for 𝑛 ∈ N, there
exist a subsequence {𝑥

𝑛(𝑘)
} of {𝑥

𝑛
} and 𝑘

0
∈ N such that 𝑥

𝑛(𝑘)

and 𝑥 are comparable for 𝑘 ≥ 𝑘
0
.

Then 𝑇 has a fixed point. Moreover, if

(v) for every (𝑥, 𝑦) ∈ Fix(𝑇) × Fix(𝑇) with 𝑥 ̸= 𝑦, there
exists 𝑧 ∈ E such that 𝑥 and 𝑧 are comparable, 𝑧 and 𝑦
are comparable,

one has uniqueness of the fixed point.

Proof. It follows from Corollary 17 with

𝛼 (𝑥, 𝑦) := {
1, if (𝑥 ⪯ 𝑦) ∨ (𝑦 ⪯ 𝑥) ,
0, otherwise.

(41)

3. Applications

In this section, we are interested in the study of the existence
of solutions to the nonlinear integral equation on the real axis

𝑥 (𝑡) = ℎ (𝑡) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ≥ 0, (42)

where ℎ ∈ 𝐶([0,∞),E) and 𝐹 ∈ 𝐶([0,∞) × [0,∞) × E,E).
Here,E is a Banach space with respect to a given norm ‖ ⋅ ‖E.

Let E := 𝐶([0,∞),E) and the family of pseudonorms
{‖ ⋅ ‖
𝑛
}
𝑛∈N defined by

‖𝑥‖𝑛 := max
𝑡∈[0,𝑛]

‖𝑥 (𝑡)‖E𝑒
−𝜏𝑡
, 𝜏 > 0. (43)

For every 𝑛 ∈ N, define now
𝑑
𝑛
(𝑥, 𝑦) :=

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑛, for𝑥, 𝑦 ∈ E. (44)

ThenD := {𝑑
𝑛
}
𝑛∈N is a separating gauge structure on E.

We have the following existence result.

Theorem 19. Suppose that the following conditions hold:
(i) there exist a nonempty set Γ ⊆ E × E and a constant
𝑘 < 𝜏 such that

‖𝐹 (𝑡, 𝑠, 𝑢) − 𝐹 (𝑡, 𝑠, V)‖E ≤ 𝑘‖𝑢 − V‖E, (45)

for all 𝑡, 𝑠 ≥ 0, (𝑢, V) ∈ Γ;

(ii) there exists a nonempty set ΓE ⊆ E × E such that

(𝑥, 𝑦) ∈ ΓE ⇐⇒ (𝑥 (𝑡) , 𝑦 (𝑡)) ∈ Γ, ∀𝑡 ≥ 0; (46)

(iii) for all (𝑥, 𝑦) ∈ ΓE, one has

(ℎ (𝑡) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, ℎ (𝑡) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑦 (𝑠)) 𝑑𝑠) ∈ Γ,

(47)

for all 𝑡 ≥ 0;

(iv) there exists 𝑥
0
∈ E such that

(𝑥
0
(𝑡) , ℎ (𝑡) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑥
0
(𝑠)) 𝑑𝑠) ∈ Γ, (48)

for all 𝑡 ≥ 0;
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(v) if {𝑥
𝑝
} ⊂ E is a sequence such that (𝑥

𝑝
, 𝑥
𝑝+1
) ∈ ΓE for

𝑝 ∈ N and 𝑥
𝑝
→ 𝑥 ∈ E (with respect toD), then there

exist a subsequence {𝑥
𝑝(𝑘)

} of {𝑥
𝑝
} and 𝑘

0
∈ N such that

(ℎ (𝑡) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑥
𝑝(𝑘)

(𝑠)) 𝑑𝑠, 𝑥 (𝑡)) ∈ Γ, (49)

for all 𝑘 ≥ 𝑘
0
, 𝑡 ≥ 0.

Then (42) has at least one solution in E.

Proof. Consider the mapping 𝑇 : E → E defined by

𝑇𝑥 (𝑡) := ℎ (𝑡) + ∫

𝑡

0

𝐹 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ≥ 0, (50)

for all 𝑥 ∈ E.We have to prove that𝑇 has at least a fixed point.
Define the function 𝛼 : E × E → [0,∞) by

𝛼 (𝑥, 𝑦) := {
1, if (𝑥, 𝑦) ∈ ΓE,
0, otherwise.

(51)

We claim that for all 𝑛 ∈ N, for all 𝑥, 𝑦 ∈ E,

𝛼 (𝑥, 𝑦) 𝑑
𝑛
(𝑇𝑥, 𝑇𝑦) ≤ 𝜓

𝑛
(𝑑
𝑛
(𝑥, 𝑦)) , (52)

where 𝜓
𝑛
(𝑡) = (𝑘/𝜏)𝑡 for all 𝑛 ∈ N, for all 𝑡 ≥ 0. Clearly, since

𝑘 < 𝜏, {𝜓
𝑛
}
𝑛∈N ⊂ Ψ. If 𝛼(𝑥, 𝑦) = 0, (52) holds immediately. So,

suppose that 𝛼(𝑥, 𝑦) ̸= 0; that is, (𝑥, 𝑦) ∈ ΓE. Let 𝑛 ∈ N. From
conditions (i) and (ii), for all 𝑡 ∈ [0, 𝑛], we have

󵄩󵄩󵄩󵄩𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)
󵄩󵄩󵄩󵄩E ≤ ∫

𝑡

0

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝐹 (𝑡, 𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩E𝑑𝑠

≤ ∫

𝑡

0

𝑘𝑒
𝜏𝑠
(
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩E𝑒
−𝜏𝑠
) 𝑑𝑠

≤
𝑘

𝜏
𝑑
𝑛
(𝑥, 𝑦) 𝑒

𝜏𝑡
,

(53)

which implies that

𝛼 (𝑥, 𝑦) 𝑑
𝑛
(𝑇𝑥, 𝑇𝑦) = 𝑑

𝑛
(𝑇𝑥, 𝑇𝑦) ≤

𝑘

𝜏
𝑑
𝑛
(𝑥, 𝑦) . (54)

Thus, we proved (52).
We will prove that 𝑇 is 𝛼-admissible. Let (𝑥, 𝑦) ∈ E × E

such that 𝛼(𝑥, 𝑦) ≥ 1; that is, (𝑥, 𝑦) ∈ ΓE. From condition (iii),
we have (𝑇𝑥(𝑡), 𝑇𝑦(𝑡)) ∈ Γ for all 𝑡 ≥ 0, which implies from
condition (ii) that (𝑇𝑥, 𝑇𝑦) ∈ Γ

𝐸
; that is, 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. So, 𝑇

is 𝛼-admissible.
From conditions (iv) and (ii), we have (𝑥

0
, 𝑇𝑥
0
) ∈ ΓE,

which is equivalent to say that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1.

Finally, condition (v) implies that for every {𝑥
𝑝
} ∈

T
1
(𝑇, 𝛼, 𝑥

0
) such that𝑥

𝑝
→ 𝑥 ∈ E, there exist a subsequence

{𝑥
𝑝(𝑘)

} of {𝑥
𝑝
} and 𝑘

0
∈ N such that 𝛼(𝑥

𝑝(𝑘)
, 𝑥) ≥ 1 for 𝑘 ≥ 𝑘

0
.

Now, All the hypotheses of Corollary 14 are satisfied; we
deduce that 𝑇 has at least a fixed point, which is a solution to
(52).

Theorem 20. In addition to the assumptions of Theorem 19,
suppose that

(vi) for all (𝑥, 𝑦) ∈ E × E, there exists 𝑧 ∈ E such that
(𝑥, 𝑧) ∈ ΓE and (𝑧, 𝑦) ∈ ΓE.

Then (42) has one and only one solution in E.

Proof. It follows immediately fromTheorem 15.
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