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For a nonlinear generalization of the Camassa-Holm equation, we investigate the dynamic properties of solutions for the equation
under the assumption that the initial value 𝑢

0
(𝑥) lies in the space 𝐻

1
(𝑅). A one-sided upper bound estimate on the first-order

spatial derivative, 𝐿𝑝 bound estimate, and a space-time higher-norm estimate for the solutions are obtained.

1. Introduction

Hakkaev and Kirchev [1] investigated the following general-
ized Camassa-Holm equation:

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ (2𝑘𝑢 +

𝑛 + 2

2

𝑢
𝑛+1

)
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= (𝑛𝑢
𝑛−1

𝑢
2

𝑥

2

+ 𝑢
𝑛
𝑢
𝑥𝑥

)

𝑥

,

(1)

where 𝑛 is an integer. When 𝑛 = 1, (1) becomes the
Camassa-Holm model (see [2]). The local well-posedness
in the Sobolev space 𝐻

𝑠 with 𝑠 > 3/2 is established, and
sufficient conditions for the stability and instability of the
solitary wave solutions are given in [1]. However, the 𝐿

𝑝

estimate of strong solutions and one-sided upper bound
estimate on the first-order spatial derivative for the solutions
are not discussed in [1]. This constitutes the objective of this
work.

Like the Camassa-Holm equation (see [1, 2]), (1) has the
conservation law

∫

𝑅

(𝑢
2
(𝑡, 𝑥) + 𝑢

2

𝑥
(𝑡, 𝑥)) 𝑑𝑥 = ∫

𝑅

(𝑢
2
(0, 𝑥) + 𝑢

2

𝑥
(0, 𝑥)) 𝑑𝑥,

(2)

which plays an important role in our further investigations.
In fact, many scholars have paid their attentions to the

study of the Camassa-Holm equation.The existence of global
weak solutions is established in Constantin and Escher [3],

Constantin and Molinet [4], Xin and Zhang [5], and Coclite
et al. [6]. It was shown in Constantin and Escher [7] that the
blowup occurs in the form of breaking waves. Namely, the
solution remains bounded, but its slope becomes unbounded
in finite time. After wave breaking, the solution is continued
uniquely either as a global conservative weak solution [8, 9]
or as a global dissipative solution [10, 11]. Exact traveling wave
solutions for the Camassa-Holm equation are presented in
[12]. For other methods to investigate the problems involving
various dynamic properties of the Camassa-Holm equation,
the reader is referred to [13–16] and the references therein.

In this paper, we investigate several dynamic properties of
strong solutions for the generalized Camassa-Holm equation
(1) in the case where 𝑛 is an odd natural number and the
assumption 𝑢

0
(𝑥) ∈ 𝐻

1
(𝑅). The results obtained in this

work include a one-sided upper bound estimate on the first-
order derivatives of the solution, a space-time higher-norm
estimate, and the 𝐿

𝑝
(2 ≤ 𝑝 < ∞) bound estimate.

The rest of this paper is organized as follows. Section 2
states the main result. Several lemmas are given in Section 3
where the proof of main result is completed.

2. Main Result

Let 𝑚 be a nonnegative integer and 𝑛 = 2𝑚 + 1. In this case,
the Cauchy problem for (1) is written in the form
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=
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(3)

which is equivalent to
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(4)

where the operator Λ2 = 1 − 𝜕
2
/𝜕𝑥
2 and

Λ
−2

𝑓 (𝑥) =

1

2

∫

𝑅

𝑒
−|𝑥−𝑦|

𝑓 (𝑦) 𝑑𝑦 for 𝑓 (𝑥) ∈ 𝐿
2
(𝑅) . (5)

We introduce a result presented in [1] for problem (3).

Lemma 1 (see [1]). Suppose that 𝑢
0

∈ 𝐻
𝑠 with constant 𝑠 >

3/2. Then there is a real number 𝑇 > 0 such that the problem
(3) has a unique solution 𝑢(𝑡, 𝑥) satisfying

𝑢 (𝑡, 𝑥) ∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠
(𝑅))⋂𝐶

1
([0, 𝑇) ;𝐻

𝑠−1
(𝑅)) . (6)

Now we state the main result of this paper.

Theorem 2. Let 𝑢
0
∈ 𝐻
𝑠
(𝑅) with 𝑠 > 3. Then the solution of

problem (3) has the following properties.

(a) There exists a positive constant 𝑐
0
depending on 𝑚 and

‖𝑢
0
‖
𝐻
1
(𝑅)

such that the one-sided 𝐿
∞ norm estimate on

the first-order spatial derivative holds

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑥

≤ 𝑐
0
(1 + 𝑡) , for (𝑡, 𝑥) ∈ [0,∞) × 𝑅. (7)

(b) Let 0 < 𝛾 < 1, 𝑇 > 0, and 𝑎, 𝑏 ∈ 𝑅, 𝑎 < 𝑏.
Then there exists a positive constant 𝑐

1
depending only
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0
‖
𝐻
1
(𝑅)

, 𝛾, 𝑇, 𝑎, 𝑏, and𝑚 such that the following
estimate holds:
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1
. (8)

(c) There exists a constant 𝑐
2

depending only on
‖𝑢
0
‖
𝐻
1
(𝑅)

, and 𝑚, 𝑝 such that

‖𝑢‖𝐿
𝑝
(𝑅)

≤ 𝑐
2
(1 + 𝑡) , 𝑡 ∈ [0,∞) , 2 ≤ 𝑝 < ∞. (9)

3. Proof of Main Result

From the conservation law (2), we have
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1
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Differentiating the first equation of problem (4) with respect
to 𝑥 and writing 𝜕𝑢/𝜕𝑥 = 𝑞, we obtain
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Lemma 3. Let 0 < 𝛾 < 1, 𝑇 > 0, and 𝑎, 𝑏 ∈ 𝑅, 𝑎 <

𝑏. Then there exists a positive constant 𝑐
1
depending only

on ‖𝑢
0
‖
𝐻
1
(𝑅)

, 𝛾, 𝑇, 𝑎, 𝑏, and 𝑚, such that the space higher
integrability estimate holds
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where 𝑢 = 𝑢(𝑡, 𝑥) is the unique solution of problem (3).

Proof. Theproof is a variant of the proof presented in Xin and
Zhang [5] (or seeCoclite et al. [6]). Let𝜙 ∈ 𝐶

∞
(𝑅) be a cut-off

function such that 0 < 𝜙 < 1 and

𝜙 (𝑥) = {

1, if 𝑥 ∈ [𝑎, 𝑏] ,

0, if 𝑥 ∈ (−∞, 𝑎 − 1]⋃ [𝑏 + 1,∞) .

(13)

Letting 𝜃(𝜉) = 𝜉(1 + |𝜉|)
𝛾
, 𝜉 ∈ 𝑅, and 0 < 𝛾 < 1 yields
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from which we get
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Multiplying (11) by 𝜙𝜃
󸀠
(𝑞), using the chain rule, and

integrating over 𝜋
𝑇

:= [0, 𝑇] × 𝑅, we have

(2𝑚 + 1) ∫

𝜋
𝑇

𝜙 (𝑥) 𝑢
2𝑚

𝑞𝜃 (𝑞) 𝑑𝑡 𝑑𝑥

−

2𝑚 + 1

2

∫

𝜋
𝑇

𝜙 (𝑥) 𝑢
2𝑚

𝑞
2
𝜃
󸀠
(𝑞) 𝑑𝑡 𝑑𝑥

= ∫

𝑅

𝜙 (𝑥) (𝜃 (𝑞 (𝑡, 𝑥)) − 𝜃 (𝑞 (0, 𝑥))) 𝑑𝑥

− ∫

𝜋
𝑇

𝑢
2𝑚+1

𝜙
󸀠
(𝑥) 𝜃 (𝑞) 𝑑𝑡 𝑑𝑥

− ∫

𝜋
𝑇

𝑄 (𝑡, 𝑥) 𝜙 (𝑥) 𝜃
󸀠
(𝑞) 𝑑𝑡 𝑑𝑥.

(17)

From (16), we get

(2𝑚 + 1) ∫

𝜋
𝑇

𝜙 (𝑥) 𝑢
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−
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2

∫

𝜋
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𝜙 (𝑥) 𝑢
2𝑚

𝑞
2
𝜃
󸀠
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𝜋
𝑇

(2𝑚 + 1) 𝜙 (𝑥) 𝑢
2𝑚

(𝑞𝜃 (𝑞) −

1

2

𝑞
2
𝜃
󸀠
(𝑞)) 𝑑𝑡 𝑑𝑥

≥

(1 − 𝛾)

2

∫

𝜋
𝑇

𝜙 (𝑥) 𝑢
2𝑚

𝑞
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󵄨
󵄨
󵄨
󵄨
𝑞
󵄨
󵄨
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󵄨
)
𝛾
𝑑𝑡 𝑑𝑥.

(18)

Using the Hölder inequality, (2), and (15) yields

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑅

𝜙 (𝑥) 𝜃 (𝑞) 𝑑𝑥
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󵄨
󵄨
󵄨
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󵄨

≤ ∫

𝑅

𝜙 (𝑥) (
󵄨
󵄨
󵄨
󵄨
𝑞
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󵄨
󵄨
󵄨

1+𝛾
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󵄨
󵄨
󵄨
󵄨
𝑞
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑥

≤
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩𝐿
2/(1−𝛾)
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

1+𝛾

𝐿
2
(𝑅)

+
󵄩
󵄩
󵄩
󵄩
𝜙
󵄩
󵄩
󵄩
󵄩𝐿
2
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝐿
2
(𝑅)

≤ (𝑏 − 𝑎 + 2)
(1−𝛾)/2󵄩

󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

1+𝛾

𝐻
1
(𝑅)

+ (𝑏 − 𝑎 + 2)
1/2󵄩

󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1
(𝑅)

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜋
𝑇

𝑢
2𝑚+1

𝜙
󸀠
(𝑥) 𝜃 (𝑞) 𝑑𝑡 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝜋
𝑇

|𝑢|
2𝑚+1 󵄨󵄨

󵄨
󵄨
󵄨
𝜙
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
(
󵄨
󵄨
󵄨
󵄨
𝑞
󵄨
󵄨
󵄨
󵄨

1+𝛾
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󵄨
󵄨
󵄨
󵄨
𝑞
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑡 𝑑𝑥

≤
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2𝑚+1

𝐻
1
(𝑅)

∫

𝑇

0

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2/(1−𝛾)
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

1+𝛾

𝐿
2
(𝑅)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝐿
2
(𝑅)

) 𝑑𝑡

≤ 𝑐𝑇 (

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2/(1−𝛾)
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

1+𝛾

𝐻
1
(𝑅)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1
(𝑅)

) .

(19)

Using (10), we obtain
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2(𝑚 + 1)

𝑢
2𝑚+2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑐,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

Λ
−2

[2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

≤ 𝑐.

(20)

Applying (10), the Hölder inequality, and ∫
𝑅
𝑒
−|𝑥−𝑦|

𝑑𝑦 = 2, we
have

󵄨
󵄨
󵄨
󵄨
󵄨
Λ
−2

[𝑢
2𝑚

𝑞
2
]

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑅

1

2

𝑒
−|𝑥−𝑦|

𝑢
2𝑚

𝑢
2

𝑦
𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐‖𝑢‖𝐻
1
(𝑅)

≤ 𝑐,

(21)

where 𝑐 is a constant depending on ‖𝑢
0
‖
𝐻
1
(𝑅)

and 𝑚.
From (20) and (21), we deduce that there exists a positive

constant 𝑐 depending on ‖𝑢
0
‖
𝐻
1
(𝑅)

and 𝑚, such that

‖𝑄(𝑡, 𝑥)‖𝐿
∞
(𝑅)

≤ 𝑐, (22)

from which we get
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜋
𝑇

𝑄 (𝑡, 𝑥) 𝜙 (𝑥) 𝜃
󸀠
(𝑞) 𝑑𝑡 𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐 ∫

𝜋
𝑇

󵄨
󵄨
󵄨
󵄨
𝜙 (𝑥)

󵄨
󵄨
󵄨
󵄨
((1 + 𝛾)

󵄨
󵄨
󵄨
󵄨
𝑞
󵄨
󵄨
󵄨
󵄨
+ 1) 𝑑𝑡 𝑑𝑥

≤ 𝑐𝑇 ( (1 + 𝛾)
󵄩
󵄩
󵄩
󵄩
𝜙(𝑥)

󵄩
󵄩
󵄩
󵄩𝐿
2
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1
(𝑅)

+∫

𝑅

󵄨
󵄨
󵄨
󵄨
𝜙 (𝑥)

󵄨
󵄨
󵄨
󵄨
𝑑𝑥) .

(23)

From inequalities (18)–(19) and (23), we obtain (12).

Lemma 4. There exists a positive constant 𝑐 depending only on
‖𝑢
0
‖
𝐻
1
(𝑅)

and 𝑚 such that

‖𝑄(𝑡, ⋅)‖𝐿
∞
(𝑅)

≤ 𝑐,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐻(𝑡, ⋅)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑅)

≤ 𝑐. (24)

If 𝑘 = 0, it holds that

‖𝑄(𝑡, ⋅)‖𝐿
1
(𝑅)

≤ 𝑐,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐻(𝑡, ⋅)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
(𝑅)

≤ 𝑐, (25)

‖𝑄(𝑡, ⋅)‖𝐿
2
(𝑅)

≤ 𝑐,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐻(𝑡, ⋅)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
(𝑅)

≤ 𝑐. (26)

Proof. We have

𝑄 (𝑡, 𝑥)

= 2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

− Λ
−2

[2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑞
2
] ,

𝜕𝐻

𝜕𝑥

= Λ
−2

𝜕
𝑥
[2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑢
2

𝑥
] .

(27)
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The first inequality of (24) is proved in Lemma 3 (see (22)).
For the second inequality in (24), we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝐻 (𝑡, ⋅)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

∫

𝑅

𝑒
−|𝑥−𝑦|

× [2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑢
2

𝑦
]

𝑦

𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

𝑒
−𝑥

∫

𝑥

−∞

𝑒
𝑦
[2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑢
2

𝑦
]

𝑦

𝑑𝑦

+

1

2

𝑒
𝑥
∫

∞

𝑥

𝑒
−𝑦

[2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑢
2

𝑦
]

𝑦

𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

1

2

𝑒
−𝑥

∫

𝑥

−∞

𝑒
𝑦
[2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑢
2

𝑦
]𝑑𝑦

+

1

2

𝑒
𝑥
∫

∞

𝑥

𝑒
−𝑦

[2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑢
2

𝑦
]𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑅

𝑒
−|𝑥−𝑦|

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝑘𝑢 +

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑢
2

𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑦

≤ 𝑐‖𝑢‖𝐻
1
(𝑅)

≤ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1
(𝑅)

,

(28)

which together with (22) results in (24).
In fact, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
2𝑚+2󵄩󵄩

󵄩
󵄩
󵄩𝐿
1
(𝑅)

≤ 𝑐 ‖𝑢‖
2

𝐿
2
(𝑅)

≤ 𝑐‖𝑢‖
2

𝐻
1
(𝑅)

≤ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1
(𝑅)

,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

Λ
−2

[

2𝑚
2
+ 5𝑚 + 2

2 (𝑚 + 1)

𝑢
2𝑚+2

+

2𝑚 + 1

2

𝑢
2𝑚

𝑞
2
]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
(𝑅)

≤ 𝑐‖𝑢‖
2

𝐻
1
(𝑅)

≤ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1
(𝑅)

,

󵄩
󵄩
󵄩
󵄩
󵄩
Λ
−2

[𝜕
𝑥
𝑢
2𝑚+2

]

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
(𝑅)

≤ ∬

𝑅

𝑒
−|𝑥−𝑦|

𝑢
2𝑚+2

𝑑𝑥 𝑑𝑦

≤ 𝑐‖𝑢‖
2

𝐻
1
(𝑅)

≤ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1
(𝑅)

,

󵄩
󵄩
󵄩
󵄩
󵄩
Λ
−2

𝜕
𝑥
[𝑢
2𝑚

𝑢
2

𝑥
]

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
(𝑅)

≤ ∬

𝑅

𝑒
−|𝑥−𝑦|

𝑢
2𝑚

𝑢
2

𝑦
𝑑𝑥 𝑑𝑦

≤ 𝑐‖𝑢‖
2

𝐻
1
(𝑅)

≤ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1
(𝑅)

.

From (3)–(31), we obtain (25).
Using

‖𝑄(𝑡, ⋅)‖
2

𝐿
2
(𝑅)

≤ ‖𝑄(𝑡, ⋅)‖𝐿
∞‖𝑄(𝑡, ⋅)‖𝐿

1
(𝑅)

≤ 𝑐,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐻(𝑡, ⋅)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑅)

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐻(𝑡, ⋅)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐻(𝑡, ⋅)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
(𝑅)

≤ 𝑐

(29)

completes the proof of (26).

From Lemma 1, we know that for any 𝑢
0

∈ 𝐻
𝑠
(𝑅) with

𝑠 > 3/2, there exist a maximal 𝑇 = 𝑇(𝑢
0
) > 0 and a unique

strong solution 𝑢 to problem (3) such that

𝑢 ∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠
(𝑅)) 𝐶

1
([0, 𝑇) ;𝐻

𝑠−1
(𝑅)) . (30)

Consider the differential equation

𝜉
𝑡
= 𝑢
2𝑚+1

(𝑡, 𝜉) , 𝑡 ∈ [0, 𝑇) ,

𝜉 (0, 𝑥) = 𝑥.

(31)

Lemma 5. Assume 𝑢
0

∈ 𝐻
𝑠
, 𝑠 > 3, and let 𝑇 > 0 be

the maximal existence time of the solution to problem (3).
Then there exists a unique solution 𝜉 ∈ 𝐶

1
([0, 𝑇) × 𝑅, 𝑅)

to problem (31). In addition, the map 𝑝(𝑡, ⋅) is an increasing
diffeomorphism of 𝑅 with 𝜉

𝑥
(𝑡, 𝑥) > 0 for (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅.

Proof. Using Lemma 1, we obtain 𝑢 ∈ 𝐶
1
([0, 𝑇);𝐻

𝑠−1
(𝑅)) and

𝐻
𝑠−1

∈ 𝐶
1
(𝑅). Therefore, we know that functions 𝑢(𝑡, 𝑥) and

𝑢
𝑥
(𝑡, 𝑥) are bounded, Lipschitz in space, and 𝐶

1 in time. The
existence and uniqueness theorem for differential equations
guarantees that problem (31) has a unique solution 𝜉 ∈

𝐶
1
([0, 𝑇) × 𝑅, 𝑅).
From (31), we get

𝑑

𝑑𝑡

𝜉
𝑥
= (2𝑚 + 1) 𝑢

2𝑚
𝑢
𝜉 (

𝑡, 𝜉) 𝜉𝑥
, 𝑡 ∈ [0, 𝑇) ,

𝑝
𝑥
(0, 𝑥) = 1.

(32)

Furthermore,

𝜉
𝑥
(𝑡, 𝑥) = exp(∫

𝑡

0

(2𝑚 + 1) 𝑢
2𝑚

𝑢
𝜉
(𝜏, 𝜉 (𝜏, 𝑥)) 𝑑𝜏) . (33)

For every 𝑇
󸀠
< 𝑇, the Sobolev imbedding theorem gives rise

to

sup
(𝜏,𝑥)∈[0,𝑇

󸀠
)×𝑅

󵄨
󵄨
󵄨
󵄨
𝑢
𝑥
(𝜏, 𝑥)

󵄨
󵄨
󵄨
󵄨
< ∞. (34)

Therefore, there exists a constant 𝐾
0
> 0 such that 𝜉

𝑥
(𝑡, 𝑥) ≥

𝑒
−𝐾
0
𝑡 for (𝑡, 𝑥) ∈ [0, 𝑇) × 𝑅. The proof is completed.
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Using (11) and (32), we get

𝑑𝑢
𝜉
(𝑡, 𝜉 (𝑡, 𝑥))

𝑑𝑡

=

𝑑𝑢
𝜉
(𝑡, 𝜉 (𝑡, 𝑥))

𝑑𝑡

+

𝑑𝑢
𝜉
(𝑡, 𝜉 (𝑡, 𝑥))

𝑑𝜉

𝜉
𝑡

=

𝑑𝑢
𝜉
(𝑡, 𝜉 (𝑡, 𝑥))

𝑑𝑡

+

𝑑𝑢
𝜉
(𝑡, 𝜉 (𝑡, 𝑥))

𝑑𝜉

𝑢
2𝑚+1

= 𝑄 (𝑡, 𝜉 (𝑡, 𝑥)) −

2𝑚 + 1

2

𝑢
2𝑚

𝑞
2

≤ ‖ 𝑄 (𝑡, 𝑥) ‖𝐿
∞

≤ 𝑐.

(35)

It follows from (35) that

𝑢
𝜉 (

𝑡, 𝜉 (𝑡, 𝑥)) ≤ 𝑐 + 𝑐𝑡. (36)

Using Lemma 5 and (36), we have

𝑢
𝑥
(𝑡, 𝑥) ≤ 𝑐 + 𝑐𝑡, 𝑡 ∈ [0,∞) . (37)

Using the first equation of problem (4) and Lemma 4, for
an arbitrary integer 𝐾 ≥ 2, we have

𝑑

𝑑𝑡

∫

𝑅

𝑢
2𝐾

𝑑𝑥

= 2𝐾∫

𝑅

𝑢
2𝐾−1 𝑑𝑢

𝑑𝑡

𝑑𝑥

= 2𝐾∫

𝑅

𝑢
2𝐾−1

[−𝑢
2𝑚+1

𝑢
𝑥
−

𝜕𝐻

𝜕𝑥

] 𝑑𝑥

= −2𝐾∫

𝑅

𝑢
2𝐾+2𝑚

𝑢
𝑥
𝑑𝑥 − 2𝐾∫

𝑅

𝑢
2𝐾−1 𝜕𝐻

𝜕𝑥

𝑑𝑥

= −2𝐾∫

𝑅

𝑢
2𝐾−1 𝜕𝐻

𝜕𝑥

𝑑𝑥

≤ 2𝐾‖𝑢‖
2𝐾−3

𝐿
∞
(𝑅)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝐻

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑅)

‖𝑢‖
2

𝐿
2
(𝑅)

≤ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1
(𝑅)

≤ 𝑐,

(38)

from which we get

∫

𝑅

𝑢
2𝐾

𝑑𝑥 ≤ 𝑐𝑡 + ∫

𝑅

𝑢
2𝐾

0
𝑑𝑥 ≤ 𝑐𝑡 + 𝑐

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩𝐿
∞
(𝑅)

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐻
1
(𝑅)

. (39)

By the 𝐿
𝑝 interpolation theorem, for all 2 ≤ 𝑝 < ∞, we

obtain

‖𝑢‖𝐿
𝑝
(𝑅)

≤ 𝑐 (1 + 𝑡) , 𝑡 ∈ [0,∞) , (40)

where 𝑐 depends on ‖𝑢
0
‖
𝐻
1
(𝑅)

and 𝑝.
From Lemma 3 and (37) and (40), we complete the proof

of Theorem 2.
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