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In this paper, by using a fixed point theorem, we investigate the existence of a positive solution to the singular fractional boundary
value problem CDZ+M + f(t,u, CD;u, CD:;M) +g(t, u,CD;+u, CD'(;u) =0, u(0) = u'(0) = u"(0) = /" (0) = 0, where 3 < « < 4,
0<v<ll<u<2, CD:+ is Caputo fractional derivative, f (¢, x, y, z) is singular at the value 0 of its arguments x;, y, z, and g(t, x,

y,z) satisfies the Lipschitz condition.

1. Introduction

In recent years, as an extended concept of integral differential
equations, fractional differential equations are widely con-
cerned in various fields of science. For examples, see [1-14].
Many results, such as [1, 2, 6, 15, 16], discuss singular frac-
tional boundary value problems.

In [1], the authors discuss positive solutions to the singu-
lar Dirichlet problem

Dyu(t)+ f (tu(t),D*u(t)) =0,
1
u(0)=u(l)=0, W

where 1 < & < 2,0 < y < «—1 and f is a Carathéodo-
ry function on [0, 1] x (0, 00) x R. Here, D}, is the standard
Riemann-Liouville fractional derivative. The existence of
positive solutions is obtained by the combination of regu-
larization and sequential techniques with the Guo-Krasnos-
el’skii fixed point theorem on cone.

The singular problem

Diu(t)+q(t) f (u@),u @),...u"? @) =0,

n-l<a<sn n=2, (2)

= =u"20) =0 u"?1)=0,

was discussed in [16], where f € C((0, 00)"™) and q € Lo,
1] (r > 0) are positive. The existence results of positive solu-
tions are acquired by the use of regularization and sequential
techniques with a fixed point theorem for mixed monotone
operators on normal cones.

Paper [6] investigates positive solutions of singular frac-
tional boundary value problem

Dy,u(t)+ f(t,u(t),Dy,u(t),Diu(t)) =0,
3)
u@=u 0 =u"0=4"1)=0,

where 3 < & < 4,0 < v < 1,1 < u < 2, Dy, is the
standard Riemann-Liouville fractional derivative, and f is a
Carathédory function. The existence and multiplicity of pos-
itive solutions are obtained by means of Guo-Krasnosel’skii
fixed point theorem on cones.

In this paper, we are concerned with the following singu-
lar fractional boundary value problem:

C % CrY . CH
Dy, u+ f (t’ U, "Dy, 1, D0+u)
cY [oN )
+g (t, u, "Dy, U, D0+u) =0,

u()=u (0)=u"(1)=u"(0) =0, (5)



where 3 < & < 4,0 < v < l,and1 < pu < 2 are real
numbers. CDS‘+ is the Caputo fractional derivative of order
a. f satisfies the Carathéodory condition on [0,1] x 9,
P ¢ R, f(t, x, y,z) may be singular at the value 0 of all its
space variables x, y, z, and g(t, x, y, z) satisfies the Lipschitz
condition.

A function u € C?[0,1] is called a positive solution of
problems (4), (5) if u > 0 on (0, 1], CD3+ u € L[0,1], and u
satisfies boundary condition (5) and equality (4) for a.e. t €
[0, 1].

Throughout the paper, denote ||x||, = JOI |x(t)|dt which
is the norm of L[0, 1], and | x|| = max{|x(¢)]| : t € [0, 1]} is the
norm of space C[0, 1], while ||x[|, = max{[lx[, [xll, [x"l} is
the norm of C?[0, 1]. AC[0, 1] and ACk[O, 1] are sets of abso-
lutely continuous functions and functions having absolutely
continuous kth derivatives on [0, 1], respectively.

The following conditions on f and g in (4) will be used.

(H,) fisaCarathéodory function on [0, 1]xZ, where & =
(0,0)*, and there exists a positive constant m such
that, fora.e. t € [0, 1] and all (x, y,2) € 9D,

f(t.x,y,2) >m. (6)

(H,) g = 0 satisfies the following inequality, for a.e. t €
[0, 1] and all (xy, y;,2:), (x5, ¥5,2,) € D:

Ig (txy,y1.2) - g (¢ x27)’2>22)|

<Lyl = x| + Ly [y = ya| + Ly |21 - 2o, 7
with
ﬁ L1+r(2Liv)+r(3Li“) <1. (8)
(H;) Fora.e.t € [0,1] and all (x, y,2) € 9,
ftxy.2)+g(tx .2)
)

<p(x.p.2)+yt)h(x y.2),

where y € L[0,1], p € C(D), and h € C([0, 00)*) are
positive, p and & are nonincreasing and nondecreas-
ing in all their arguments, respectively,

1 2—u)M
J P (2Mt“, Mt‘H, ¢t3_”) dt < oo,
0 12 6
(10)
m . h(xx,x)

M=—-:y, 0.
I'(x+1)

X — 00 X

We will use regularization and sequential techniques to
prove the existence of a positive solution of problems (4), (5).
Define y, and f, (n € N) by the following formulas:

1
t, ift>—;
n
Xn (1) = . ) (11)
—, ift< -,
n n

Abstract and Applied Analysis

fora.e.t € [0,1] and all (x, y,2) € R3,

fult:x,3,2) = fF (b X () X0 () xn (). (12)

Then, condition (H,) gives that f, is a Carathéodory
function on [0, 1] x R?,

for a.e. t € [0,1] and all (x, y,2) € R’.
(13)

fu(t.y,2)2m,

Condition (H;) gives

111 1 1 1
fn(t,x,y,z) gp(;,;,;)+y(t)h<x+ ;,y-i— ;,Z+;>,

for a.e. t € [0,1] and all (x, y,z) € [0,00)’,
(14)

1 1 1

t) s Vs < s Vs th( ) > _>)
fotxy2) < ployz)+yOh(x+ - y+ 2+~
for a.e. t € [0,1] and all (x,y,z) € 2.

(15)

In Section 3, We will firstly investigate the regular frac-
tional differential equation

C& CY , CpH
Dy, u+ f, (t, u, "Dy, U, D0+u)
) . (16)
+ g(t, u, CD0+u, CD(Hu) =0.

2. Preliminaries
Definition 1. The Caputo fractional derivative of order 8 > 0

of a function v € C[0, 1] is defined by

pf v = ﬁ L (t- " P (ds,  (17)

provided that the right-hand side is pointwise defined on
[0,1], where n = [B] + 1 and [f] means the integer part of
the number 8. T is the Euler function.

Definition 2. The fractional integral of order « > 0 of a

function y: [0,1] — R is defined by

t
Iy () = ﬁ L (t ="y (s)ds, (18)

provided the right-hand side is pointwise defined on [0, 1].

Lemma 3 (see [10]). One has

L L'10,1], if a € (0,1),
Iy, : L [0,1] — (19)
ACY1(0,1], ifax1,

where [a] means the integral part of « and AC°[0, 1] = ACJo0,
1].
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Lemma 4 (see [10]). Suppose that« > 0, o ¢ N. If x € C(0, 1]
and CDg+x e L'[0,1], then

n—-1
x(0) =I5, Dy, x (O + Yo', forte01],  (20)
k=0

wheren = [a]+landg e R, k=0,1,...,n— 1.

Lemma 5. Given p € L[0, 1], then fort € [0, 1],

1
u(t) = j G(t,s)p(s)ds (21)
0
is the unique solution in C*[0, 1] of the equation
Dg,u(t)+p(t) =0, (22)
satisfying the boundary condition (5), where o € (3,4) and

t2(1 _S)a—s (t_s)a—l
A(a-2) T(a)
t*(1-s)*3

2T (a-2)"

, if0<s<t<l,
G(t,s) =
ifo<t<s<l.

(23)
Proof. By Lemma 4,

for 3 <a <4,
(24)

u(t)=-I.p(®) +¢+at +ot’ +t°,

are all solutions of (22) in C[0, 1], where ¢; € R. Lemma 3

guarantees that I, p € AC?[0, 1], for 3 < « < 4; therefore,

u(t) =I5 p(t) +ot’, for3<a<4, (25)

are all solutions of (22) in C*[0, 1], where 6, ¢ € R. Consid-
ering that the solutions should satisfy u(0) = d0)=4"0) =
u'"(0) = 0, we get that ¢, = (1/2I(« - 2)) j01(1 - 5)*7p(s)ds.
Consequently,

=9 7p©ds [i -9 p(s)ds

u(® 2T (o — 2) T ()
1
= J G(t,s)p(s)ds
0
(26)
is the unique solution of problems (22), (5). O

Lemma 6. Let G be as defined in (2.3). Then,
(1) G(t,s) € C([0,1] x [0,1]) and G(t,s) > 0 on (0,1) x
(0,1),
(2) G(t,s) < 1/T(a — 1) for (t,s) € [0,1] x [0,1],
(3) [, Gt 9)ds > (o — = 2)t%/2T(a + 1) for t € [0,1],

(4) (0/0t)G(t,s) € C([0,1] x [0,1]) and (0/0t)G(t,s) > 0
on (0,1) x (0, 1),

(5) (3/o1)G(t, s) < 1/T(a - 2) for (t,5) € [0,1] x [0, 1],
(6) [ (/G $)ds > (a - 27 T(@) for t € [0,1],

(7) (*/0t*)G(t,s) € C([0,1] x [0,1]) and (8*/0t*)G(¢,
s)>0o0n(0,1)x(0,1),

(8) (0°/0t*)G(t, s) < 1/T(a — 2) for (t,5) € [0,1] x [0, 1],
9) [, @/)G(t, s)ds = t(1-12)/T(a~1) fort € [0,1].

Proof. (1), (4), and (7) are as follows

£a-97 (t-9™ ifo<s<t<l1
2T (. — 2) () T
G(ts) = £(1 = 5)*>
m, if0<t<s<l,
HL-9"° (-9 i icrsn
0 Fa-2) T(@-1) T
FTRRARAN P
m, if0<t<s<l,
-9 (-9 ifo<ss<t<1
a—ZG(ts): F'w—2) T(x-2) T
ot? i (1_5)oc—3

-, ifo<t<s<l.
I'(x—2)
(27)
Because (32/0t2)G(t,s) > 0, therefore (9/0t)G(t,s) >
(0/0t)G(0,s) > 0 and G(t, s) > G(0,s) > 0.
It is obvious that (2), (3), (5), (6), (8), and (9) hold. O

3. Auxiliary Regular Problems (16), (5)
Let X = C*[0, 1], and let

P={xeX:x ()20, x'(t)20, x"(t)>0, for te[0,1]}.

(28)
For x € P, we can obtain that
°py.xeCl0,1],  “DjxeClo1],
“Dpx() =0,  °Di x(t)=0, (29)

forxeP, tel0,1].

We define the operators @, and ¥ on P as

(®,x) ()
= Jl G(t:5) f, (s x(s) ,°Dy,x(s),°D}, x (s))ds,
0

n=1,2,...,

1
(x) (t) = j G(t,5) g (5:x(5), "Dy, x(s), Dy, x (5)) ds.

0
(30)



Lemma?7. ®,: P — P isacompletely continuous operator.
The proof is similar to Lemma 3.1 of [6], so we omit it.

Lemma 8 (see [17]). Let M be a closed convex and nonempty
subset of a Banach space X. Let A, B be the operators such that
(i) Ax + By € M wherever x,y € M, (ii) A is compact and
continuous, and (iii) B is a contraction mapping. Then, there
exists z € M such that z = Az + Bz.

Theorem 9. Let (H,) and (H,) hold. Then, problems (16), (5)
have a solution u,, € P such that

mt® (oc2 . 2)
u, (t) > ————,
2T (a+ 1)

fort €[0,1]. (31)
Proof. By Lemma 7, ®, : P — P isa completely continuous
operator. Now, for x, y € X, we obtain that

leex) - ()|

= max
0<t<1

JIG(t,s)

0

X [g (s, x(s) ,CD;+x (s) ,CDg+x (s))

_g(s,y(s),CD;er(s) 0+y )]ds

1
< maxj G(t,s)ds

0<t<1

x (L=l + 1] Dy, x - “Dy,y
+Ls “ CDngx - 0+y“

1
< |max J G(t,s)ds

0<t<1 Jo

L2
(Lol s o

L, -
+m“x )’||*>

S”x_y“* (L1+ L, N Ls )
I'(a-2) r2-» T(3-u)

b,

(32)

Therefore, ¥ is a contraction mapping, and it is obvious that
®,x+V¥y € X, for x, y € X. Thus, all the assumptions of
Lemma 8 are satisfied, and the conclusion of Lemma 8 implies
that the boundary value problems (16), (5) have at least one
solution. O

Lemma 10. Suppose that (H,), (H,), and (H;) hold and u,,
be a solution of problems (16), (5). Then, the sequence {u,,} is
relatively compact in X.
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Proof. Note that, fort € [0,1] andn € N,

1
10 = | 669 £, (5:3,5), D}, 5), D, (9) s
1
+LG(t,s)g(s,xn(s), 0+ n(s) 0+ n(s))ds
(33)
And u,, fulfills (31).
Lemma 6 and (13) imply that
) 19 m(a—2) !
u, (t) > m,[o aG(t,S) ds > T,
fort € [0,1], neN,
(34)
, 152 . m(1-1"72)t
u, (t) > mJ;) ﬁG(t,S) s = W
fort € [0,1], neN.
So,
Cpy _ 1 ! R /)
Dy, u, (t) = T -p) Jo (t=s) "u, (s)ds
m ! o\l _ a2
Z—F(Z—M)F(cx— I)Jo (t-ys) s(l s )ds,

1 ! -y !
0+ Uy, (t) m J() (t - S) u, (S) ds

m(x—1) ! - a-1
] L R
35

Since

Jt (t—s)'¥s (1 - sa_z) ds

0
t
> J (t—s)""s(1-s)ds
0

:%J (t—s)""(1-25)ds

( (3- it;(: M))
: ((34 Mgl 42tu))
= (e

(3- M)4 #))

—H
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A
ERDIC)

t
J (t—s)"s" 'ds

¢
> J (t—s)"sds
0

Jt(t )7 x 352 s
0 (1-»)

P (t—5)" x6s
L 1—v)(2—v)ds

t > x6
J(1—v)(z DG
B 6t*”

S 1-v2-1B-v)(4-9)

4-v

t
209206 E—

(36)
then,
2 —
c ﬁ; n(t)_Mt“‘, fort € [0,1], n €N,
F(5-p)l(a-1)
c m@a-1) 4,
t)> ———= 7" fort 1], N.
DO"u”()_F(S—v)F(a) orte[0,1], ne
(37)
Let
1 1 1
- mi , , = M. 38
" mm{r(an) T (a) (oc—l)} (38)
It follows from (31) and (37) that, for t € [0,1],n € N,
u, (£) 2 2Mt%, Dy u, () = %t“‘”,
(=M )
2 CEM

Therefore,

P (1 (6), Dy, 14, (), "D, 14, (1))

2-u)M
P<2Mt M 4 v’( n"l) t37
12 6

(40)
H) ,

By Lemma 6, (15), and (39), there hold that

0<u (t)

ot?

L « M4, 2-pM
SF(oc—Z),LP(ZMS’E , o ds

1 ful, 1 Jull
(“ ol TWTG-) W TG n)

2
J 9 —G () f, (s u, (s), D;+un (s), CDg+un (s)) ds

F(oc 2)

1
xjoy(s)ds
1
S—
I'(x-2)

(o (o2l Tl Ly )

0<u (1) = Jt W' (s)ds
0
1
<
I'(x-2)

1

(e (il 2 e o g ),

t
OSun(t)=j u;(s)ds
0

1
<
I'(x—2)

1
<A+h<||u |+2 il

wheret € [0,1],n € N,and A = _[01 P2Ms*, (M/12)s*7, ((2—

)M /6)s>*) ds.
It follows from (H,) and the assumption that A < oo.
Hence,

Jull. <

L

i) M)

(41)

1
T'(x-2)

1 |u
X (A, +h(||un||* o r"(3 ol ) + n, (42)

el D).

h(x, x, x)/x = 0, there exists L >

where n € N. Since lim
0 such that, forv > L,

1
I'(x-2)

1 v 1
A+h{v+ -,
X( i (U+n TG-» ' n r(3 W)

X — 00

+2)wl,)

(43)



Consequently, [u,ll, < L for n € N, so that {u,} is
bounded in X. We are now in a position to prove that {u }
is equicontinuous on [0, 1]. Let

1
+ —) , (44)
n

), for t € (0,1].
(45)

Vi=h L+l, L +l, L
nITB-v nT@B-p)

Mtzx—v) 2-u) Mt3—[4

G)(t):p(ZMt "5 e

Then, A = j'ol O(t)dt and, fora.e.t € [0,1],alln € N,
O ) +Vyy ()
> £, (b1, (), “Dy,u, (), “Dp,1t, () (46)
+g(tu, (), “Dy,u, (), Dy, 1, (1))
holds. Suppose that 0 < t; <t, <1, then

'”:z, (t,) - ”:z’ (tl)'

1 aZ aZ
[[(Zows-2009)

X (fn (s, u,(s), CDg+un (s), CDngun (s))

+9 (5,1, (5), "Dy, 1, (), “Di 1, () ds

1

<
I'(x-2)

|:J:2 (t, - S)“73 (O(s) +Vyy(s)ds
[

x(®(s) +Vyy(s) ds]

<t [0 (A vib)
' Lt‘ (CEDMEICED N

x (O (s) + Vly(s))ds] .
(47)

The proof is similar to that of Lemma 7. We choose € > 0.
Then, there exists §, > 0 such that (£, —s)*7 = (t, - )% < ¢,
forany0 < t; < t, < 1,t, —t; < §p,and 0 < s < t,.
Suppose that 0 < § < min{d,, “¥/¢}. Then, for t,,¢, € [0,1],
0<t,—t, <8, neN,wehave

|”:1' (&) - " (t1)| .2 5 (A+V, ||y||q) ) (48)

I'(ax—

Thus, {u;'} is equicontinuous on [0, 1]. O
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4. Main Result

Theorem 11. Suppose that (H,), (H,), and (H;) hold. Then,
problems (4), (5) has a positive solution u and, fort € [0, 1],

M,
u(t)=2Mt%, Dy u() = ﬂt‘* v
(49)
2-u)M
“phut) = %t“‘.

Proof. Theorem 9 shows that problems (16), (5) have a solu-
tionu,, € P.Inaddition, Lemma 10 gives that {u,,} is relatively
compact in X and satisfies inequality (39) for t € [0,1], n €
N. Assume that {u,} itself is convergentin X and lim,, _, . u,, =
u. Then, u € P satisfies the boundary condition (5), and
lim, _, CDg+un = CDngu and lim, _, CD:;Jrun = CD;+u
in C[0, 1]. Consequently, u satisfies (49). Furthermore,

Jim f,, (£, (6), "Dy, (1), “Dy 1, (1))
(50)
= f(bu(®), Dy, u®), Dy,u ().

Let K = sup{llu,,|l, : n € N}. Then, it follows from 0 < v <
landl <pu<2

” CD‘M u < L || CDV u < L
O+l = F(S—PI)) o+l F(Z—V) (51)
for n € N.

Hence, for a.e. (t,s) € [0,1] x [0,1] and all u,, € N, we
have

0< G (t’ 5) (fn (S’ un (S) ’CD;+un (S) ’CDZ+u” (S))

+g (s, u,(s), CD:),Jrun (s), CDg+un (s)))

1
< -
I'(e—-1)

1 K
_,—+_
nlTQ2-v) n

LS PP
rG-w n)V)

where O is defined by (45). Puttingn — 00, by the Lebesgue
dominated convergence theorem, we have, for t € [0, 1],

>

><<®(s)+h<K+

(52)

u(t) = JIG(t,s)

0
< (f (ssu(s) LDy, u(s), Dy, u ()

+g (s, u(s) ,CD(VHu (s), CDg+u (s))) ds.
(53)

Consequently, u is a positive solution of problems (4), (5)
and satisfies inequality (49). The proof is complete. O
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