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Using the Fountain theorem and a version of the Local Linking theorem, we obtain some existence and multiplicity results for a
class of fourth-order elliptic equations.

1. Introduction and Main Results

Consider the fourth-order Navier boundary value problem

Δ
2
𝑢 + 𝑐Δ𝑢 + 𝑎 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) , in Ω,

𝑢 = Δ𝑢 = 0, on 𝜕Ω,

(1)

where Ω ⊂ R𝑁
(𝑁 > 4) is a bounded smooth domain,

𝑎 ∈ 𝐿
∞
(Ω), 𝑐 ∈ R, and 𝑓 ∈ 𝐶(Ω × R,R). Δ is the Laplace

operator and Δ2 is the biharmonic operator.
Let 0 < 𝜆

1
< 𝜆

2
≤ 𝜆

3
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑘
≤ ⋅ ⋅ ⋅ be the eigenvalues

of −Δ in𝐻1

0
(Ω). The eigenvalue problem

Δ
2
𝑢 + 𝑐Δ𝑢 = 𝜇𝑢, in Ω,

𝑢 = Δ𝑢 = 0, on 𝜕Ω,

(2)

has infinitely many eigenvalues 𝜇
𝑖
= 𝜆

𝑖
(𝜆

𝑖
− 𝑐), 𝑖 = 1, 2, . . ..

We will always assume 𝑐 < 𝜆
1
. Let 𝐸 be the Hilbert space

𝐻
2
(Ω)⋂𝐻

1

0
(Ω). 𝐸 is equipped with the inner product

⟨𝑢, V⟩ = ∫
Ω

(Δ𝑢ΔV − 𝑐∇𝑢∇V) 𝑑𝑥 (3)

and the norm

‖𝑢‖ = (∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
) 𝑑𝑥)

1/2

. (4)

A weak solution of problem (1) is any 𝑢 ∈ 𝐸 such that

∫
Ω

(Δ𝑢ΔV − 𝑐∇𝑢 ⋅ ∇V + 𝑎 (𝑥) 𝑢V) 𝑑𝑥 − ∫
Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥 = 0

(5)

for any V ∈ 𝐸.
Let 𝜑 : 𝐸 → R be the functional defined by

𝜑 (𝑢) =
1

2
∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
+ 𝑎 (𝑥) 𝑢

2
) 𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥,

(6)

where 𝐹(𝑥, 𝑢) = ∫
𝑢

0
𝑓(𝑥, 𝑠)𝑑𝑠. And, one has

⟨𝜑
󸀠
(𝑢) , V⟩ = ∫

Ω

(Δ𝑢ΔV − 𝑐∇𝑢 ⋅ ∇V + 𝑎 (𝑥) 𝑢V) 𝑑𝑥

− ∫
Ω

𝑓 (𝑥, 𝑢) V 𝑑𝑥

(7)

for any 𝑢, V ∈ 𝐸, so that a critical point of the functional 𝜑 in
𝐸 corresponds to a weak solution of problem (1).

In recent years, fourth-order problems have been studied
bymany authors. In [1], Lazer andMcKenna have pointed out
that problem (1) furnishes a model to study travelling waves
in suspension bridges if 𝑓(𝑥, 𝑢) = 𝑏((𝑢 + 1)

+
−1), where 𝑢+ =

max{𝑢, 0} and 𝑏 ∈ R. Since then, more general nonlinear
fourth-order elliptic boundary value problems have been
studied.
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In [2, 3], Micheletti and Pistoia proved that problem

Δ
2
𝑢 + 𝑐Δ𝑢 = 𝑓 (𝑥, 𝑢) , in Ω,

𝑢 = Δ𝑢 = 0, on Ω,

(8)

admits two or three solutions by variational method. In [4],
Zhang obtained the existence of weak solutions for problem
(8) when 𝑓(𝑥, 𝑢) is sublinear at ∞. In [5], Zhang and Li
showed that problem (8) has at least two nontrivial solutions
by means of Morse theory and local linking. When 𝑓(𝑥, 𝑢)

is asymptotically linear at infinity, the existence of three
nontrivial solutions has been obtained in [6] by using Morse
theory. In [7], by using the mountain pass theorem, An and
Liu gave the existence result for nontrivial solutions for a
class of asymptotically linear fourth-order elliptic equations.
In [8], Zhou and Wu got the existence of four sign-changing
solutions or infinitely many sign-changing solutions for (8)
by using the sign-changing critical point theorems. In [9],
Yang and Zhang showed new results on invariant sets of the
gradient flows of the corresponding variational functionals
and proved the existence of positive, negative, and sign-
changing solutions for some fourth-order semilinear elliptic
boundary value problems. In [10], by using the variational
method, Liu and Huang obtained an existence result of sign-
changing solutions as well as positive and negative solutions
for a fourth-order elliptic problem whose nonlinear term is
asymptotically linear at both zero and infinity.

In this paper, we will study the existence of nontrivial
solutions of problem (1). Our main results are the following
theorems.

Theorem 1. Assume that 𝐹 is even in 𝑢 and the following
conditions hold:

(𝐹
1
)

𝐹 (𝑥, 𝑢)

𝑢2
󳨀→ +∞ as |𝑢| 󳨀→ ∞ (9)

uniformly in 𝑥 ∈ Ω;
(𝐹

2
) there exist two constants 2 < 𝜃 < 2𝑁/(𝑁 − 4) = 2

∗∗

and 𝑘
1
> 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝑘

1
(1 + |𝑢|

𝜃−1
) (10)

uniformly for all 𝑥 ∈ Ω;
(𝐹

3
) there exists a constant 𝛾 > 𝑁(𝜃 − 2)/4 such that

lim inf
|𝑢|→∞

𝑓 (𝑥, 𝑢) 𝑢 − 2𝐹 (𝑥, 𝑢)

|𝑢|
𝛾

> 0, (11)

uniformly for all 𝑥 ∈ Ω.

Then problem (1) has infinitely many nontrivial solutions.

Theorem 2. Assume that 𝐹 satisfies (𝐹
1
) and

(𝐹
4
) there exist three positive constants 𝐿, 𝑚

1
, and 𝑚

2
such

that

(𝑗
1
) 𝑓(𝑥, 𝑢)𝑢 − 2𝐹(𝑥, 𝑢) ≥ 𝑚

1
|𝑢|

2, if |𝑢| ≥ 𝐿;
(𝑗

2
) |𝑓(𝑥, 𝑢)|𝜎/|𝑢|𝜎 ≤ 𝑚

2
(𝑓(𝑥, 𝑢)𝑢 − 2𝐹(𝑥, 𝑢)), if

|𝑢| ≥ 𝐿, where 𝜎 > (𝑁 − 2)/2.

If 𝐹 is even in 𝑢, problem (1) has infinitely many nontrivial
solutions.

Remark 3. For Schrödinger equation, the corresponding
condition (𝐹

4
) is due to Ding and Luan [11]. The condition

(𝐹
4
) is weaker than the usual Ambrosetti-Rabinowitz-type

condition (see [11, 12]).

Theorem 4. Assume that 𝐹 satisfies (𝐹
1
), (𝐹

2
), (𝐹

3
), and

(𝐹
5
)

𝐹 (𝑥, 𝑢)

𝑢2
󳨀→ 0 as 𝑢 󳨀→ 0 (12)

uniformly in 𝑥 ∈ Ω.

If 0 is an eigenvalue of Δ2
+ 𝑐Δ + 𝑎 (with Navier boundary

condition), assume also the condition that

(𝐹
6
) there exists 𝛿 > 0 such that

(i) 𝐹(𝑥, 𝑢) ≥ 0, for all |𝑢| ≤ 𝛿, 𝑥 ∈ Ω; or
(ii) 𝐹(𝑥, 𝑢) ≤ 0, for all |𝑢| ≤ 𝛿, 𝑥 ∈ Ω.

Then problem (1) has at least one nontrivial solution.

Theorem 5. Suppose that 𝐹 satisfies (𝐹
1
), (𝐹

4
), and (𝐹

5
). If 0 is

an eigenvalue ofΔ2
+𝑐Δ+𝑎 (with Navier boundary condition),

assuming also (𝐹
6
), then problem (1) has at least one nontrivial

solution.

Here, we have

𝜑 (𝑢) =
1

2
∫
Ω

(|Δ𝑢|
2
− 𝑐|∇𝑢|

2
+ 𝑎 (𝑥) 𝑢

2
) 𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

=
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥,

(13)

where 𝑢− ∈ 𝐸
−
, 𝑢

+
∈ 𝐸

+, and 𝐸−
(𝐸

+
) is the space spanned

by the eigenvectors corresponding to negative (positive)
eigenvalues ofΔ2

+𝑐Δ+𝑎. It is easy to know that 𝜑 ∈ 𝐶
1
(𝐸,R)

under the conditions of our theorems.
It iswell known that𝐸 is continuously embedded in𝐿𝜆(Ω)

for every 𝜆 ∈ [1, 2𝑁/(𝑁 − 4)]. If 1 ≤ 𝜆 < 2𝑁/(𝑁 − 4), the
embedding is compact. It follows from (𝐹

2
), (𝐹

3
), and (𝐹

4
) that

𝜃 <
2𝑁

𝑁 − 4
,

𝜃𝑁 − 4𝛾

𝑁 − 4
<

2𝑁

𝑁 − 4
,

2𝜎

𝜎 − 1
<

2𝑁

𝑁 − 4
.

(14)

Hence, there is a positive constant𝐾 such that

‖𝑢‖
𝐿
𝜆 ≤ 𝐾 ‖𝑢‖ , ∀𝑢 ∈ 𝐸 (15)

for 𝜆 = 1, 2, 𝜃, 2𝜎/(𝜎 − 1), 2𝑁/(𝑁 − 4) = 2
∗∗, where ‖ ⋅ ‖

𝐿
𝜆

denotes the norm of 𝐿𝜆(Ω).
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2. Proof of Main Results

In this paper, we will use the Fountain Theorem of Bartsch
([13,Theorem 2.5], [14,Theorem 3.6]) to prove ourTheorems
1 and 2. And, we will prove Theorems 4 and 5 by using a
version of Local Linking theorem [12, Theorem 2.2] which
extends theorems given by Li andWillem [15], Li and Szulkin
[16].

In [13, 14], Bartsch established the Fountain Theorem
under the (PS)

𝑐
condition. Since the DeformationTheorem is

still valid under the Cerami condition, the FountainTheorem
is true under the Cerami condition. So, we have the following
FountainTheorem.

Let𝑋 be a reflexive and separable Banach space. It is well
known that there exist {V

𝑛
}
𝑛∈N ⊂ 𝑋, {𝜓

𝑛
}
𝑛∈N ⊂ 𝑋

∗ such that

(1) ⟨𝜓
𝑛
, V

𝑚
⟩ = 𝛿

𝑛,𝑚
where 𝛿

𝑛,𝑚
= 1 for 𝑛 = 𝑚 and 𝛿

𝑛,𝑚
= 0

for 𝑛 ̸=𝑚.
(2) span{V

𝑛
𝑛 ∈ N} = 𝑋, span𝜔

∗

{𝜓
𝑛
| 𝑛 ∈ N} = 𝑋

∗.

Let𝑋
𝑗
= RV

𝑗
; then𝑋 = ⨁

𝑗≥1
𝑋

𝑗
. We define

𝑌
𝑘
=

𝑘

⨁

𝑗=1

𝑋
𝑗
, 𝑍

𝑘
=

∞

⨁

𝑗=𝑘

𝑋
𝑗
. (16)

Theorem A (Fountain theorem). Assume that 𝜑 ∈ 𝐶
1
(𝑋,R)

satisfies the Cerami condition (C), 𝜑(−𝑢) = 𝜑(𝑢). If for almost
every 𝑘 ∈ N, there exist 𝜌

𝑘
> 𝑟

𝑘
> 0 such that

(𝐴
1
)

𝑎
𝑘
:= max

𝑢∈𝑌𝑘, ‖𝑢‖=𝜌𝑘

𝜑 (𝑢) ≤ 0, (17)

(𝐴
2
)

𝑏
𝑘
:= inf

𝑢∈𝑍𝑘 , ‖𝑢‖=𝑟𝑘

𝜑 (𝑢) 󳨀→ ∞, 𝑘 󳨀→ ∞, (18)

then 𝜑 has an unbounded sequence of critical values.

For the reader’s convenience, we state the following Local
Linking theorem [12, Theorem 2.2]. Let 𝑋 be a real Banach
space with 𝑋 = 𝑋

1
⊕ 𝑋

2 and 𝑋
𝑗

0
⊂ 𝑋

𝑗

1
⊂ 𝑋

𝑗

2
⊂ ⋅ ⋅ ⋅ ⊂ 𝑋

𝑗

such that𝑋𝑗
= ⋃

𝑛∈N𝑋
𝑗

𝑛, 𝑗 = 1, 2. For every multi-index 𝛼 =

(𝛼
1
, 𝛼

2
) ∈ N2, let 𝑋

𝛼
= 𝑋

1

𝛼1
⊕ 𝑋

2

𝛼2
. We define that 𝛼 ≤ 𝛽 ⇔

𝛼
1
≤ 𝛽

1
, 𝛼

2
≤ 𝛽

2
. A sequence {𝛼

𝑛
} ⊂ N2 is admissible if for

every 𝛼 ∈ N2 there is 𝑚 ∈ N such that 𝑛 ≥ 𝑚 ⇒ 𝛼
𝑛
≥ 𝛼.

We say that 𝜑 ∈ 𝐶
1
(𝑋,R) satisfies the (𝐶∗

) condition if every
sequence {𝑢

𝛼𝑛
} such that {𝛼

𝑛
} is admissible and satisfies

𝑢
𝛼𝑛
∈ 𝑋

𝛼𝑛
, sup

𝑛

𝜑 (𝑢
𝛼𝑛
) < ∞,

(1 +
󵄩󵄩󵄩󵄩󵄩
𝑢
𝛼𝑛

󵄩󵄩󵄩󵄩󵄩
) 𝜑

󸀠

𝛼𝑛
(𝑢

𝛼𝑛
) 󳨀→ 0

(19)

contains a subsequence which converges to a critical point of
𝜑, where 𝜑

𝛼
= 𝜑|

𝑋𝛼
.

Theorem B (see [12, Theorem 2.2]). Suppose that 𝜑 ∈

𝐶
1
(𝑋,R) satisfies the following assumptions:

(𝑖
1
) 𝑋 ̸= {0} and 𝜑 has a local linking at 0; that is, for some
𝑟 > 0,

𝜑 (𝑢) ≥ 0, ∀𝑢 ∈ 𝑋
1 with ‖𝑢‖ ≤ 𝑟,

𝜑 (𝑢) ≤ 0, ∀𝑢 ∈ 𝑋
2 with ‖𝑢‖ ≤ 𝑟;

(20)

(𝑖
2
) 𝜑 satisfies (𝐶∗

) condition;
(𝑖
3
) 𝜑maps bounded sets into bounded sets;

(𝑖
4
) for every 𝑚 ∈ N, 𝜑(𝑢) → −∞ as |𝑢| → ∞, on
𝑢 ∈ 𝑋

1

𝑚
⊕ 𝑋

2.

Then 𝜑 has at least one nonzero critical point.

Now, we can give the proof of our theorems.

Proof of Theorem 1. At first, we claim that 𝜑 satisfies the
Cerami condition (𝐶). Consider a sequence {𝑢

𝑛
} such that

𝜑(𝑢
𝑛
) is bounded and ‖𝜑󸀠

(𝑢
𝑛
)‖(1 + ‖𝑢

𝑛
‖) → 0 as 𝑛 → ∞.

Then there exists a constant𝑀
1
> 0 such that

󵄨󵄨󵄨󵄨𝜑 (𝑢𝑛)
󵄨󵄨󵄨󵄨 ≤ 𝑀

1
, (1 +

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠

𝑛
(𝑢

𝑛
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀

1
. (21)

By a standard argument, we only need to prove that {𝑢
𝑛
} is

a bounded sequence in 𝐸. Otherwise, going if necessary to a
subsequence, we can assume that ‖𝑢

𝑛
‖ → ∞ as 𝑛 → ∞.

From (𝐹
3
), there exist two constants 𝑘

2
, 𝑘

3
> 0 such that

𝑓 (𝑥, 𝑢) 𝑢 − 2𝐹 (𝑥, 𝑢) ≥ 𝑘
2|𝑢|

𝛾
− 𝑘

3
, ∀ (𝑥, 𝑢) ∈ Ω ×R.

(22)

So, by (21) and (22), we have

3𝑀
1
≥ 2𝜑 (𝑢

𝑛
) − ⟨𝜑

󸀠
(𝑢

𝑛
) , 𝑢

𝑛
⟩

= ∫
Ω

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢

𝑛
− 2𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥

≥ 𝑘
2
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛾

𝑑𝑥 − 𝑘
3 |Ω|

(23)

which implies that

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛾

𝑑𝑥 < 𝑘
4 (24)

for all 𝑛 ∈ N and some positive constant 𝑘
4
.

Since

𝛾 >
𝑁

4
(𝜃 − 2) ,

𝑁

4
(𝜃 − 2) <

2𝑁

𝑁 + 4
(𝜃 − 1) <

2𝑁

𝑁 − 4
.

(25)

On the one hand, we consider the case

𝑁

4
(𝜃 − 2) < 𝛾 <

2𝑁

𝑁 + 4
(𝜃 − 1) . (26)

Putting

𝛼 =
2 (𝜃 − 1)𝑁 − (𝑁 + 4) 𝛾

2𝑁 − (𝑁 − 4) 𝛾
, (27)
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one has 0 < 𝛼 < 1. Let

𝑝 =
𝛾

𝜃 − 1 − 𝛼
> 1, 𝑢

𝑛
= 𝑢

+

𝑛
+ 𝑢

−

𝑛
+ 𝑢

0

𝑛
∈ 𝐸

+
⊕ 𝐸

−
⊕ 𝐸

0
,

(28)

where 𝐸0
= ker(Δ2

+ 𝑐Δ + 𝑎). We can obtain from Hölder’s
inequality, (15), and (24) that

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝜃−1 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥

= ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝜃−1−𝛼󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥

= ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛾/𝑝󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (∫
Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝛾/𝑝

)

𝑝

𝑑𝑥)

1/𝑝

(∫
Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨)
𝑞

𝑑𝑥)

1/𝑞

≤ (∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛾

𝑑𝑥)

1/𝑝

(∫
Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝑞𝛼

)
2
∗∗
/(𝑞𝛼)

𝑑𝑥)

𝛼/2
∗∗

× (∫
Ω

(
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨

𝑞

)
2
∗∗
/𝑞

𝑑𝑥)

1/2
∗∗

≤ 𝑘
1/𝑝

4

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝛼

𝐿
2
∗∗
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩𝐿2
∗∗

≤ 𝑘
1/𝑝

4
𝐾

𝛼+1󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝛼 󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩

(29)

for all 𝑛, where 𝑞 = 𝑝/(𝑝 − 1) = 2
∗∗
/(𝛼 + 1).

By (𝐹
2
) and (29), one has

⟨𝜑
󸀠
(𝑢

𝑛
) , 𝑢

+

𝑛
⟩ =

󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩

2

− ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝑢

+

𝑛
𝑑𝑥

≥
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− ∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢𝑛)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥

≥
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1
∫
Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝜃−1 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨) 𝑑𝑥

=
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝜃−1 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥 − 𝑘1 ∫
Ω

󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥

≥
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1
𝑘
1/𝑝

4
𝐾

𝛼+1󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝛼 󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩 − 𝑘1𝐾
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

(30)

for all 𝑛. Since 𝛼 < 1, we have
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑛 󳨀→ ∞. (31)

On the other hand, if 𝛾 satisfies,

2𝑁

𝑁 + 4
(𝜃 − 1) ≤ 𝛾 <

2𝑁

𝑁 − 4
. (32)

then one sees 1 ≤ 𝛾/(𝛾 − 𝜃 + 1) ≤ 2𝑁/(𝑁 − 4). So, we get

‖𝑢‖
𝐿
𝛾/(𝛾−𝜃+1) ≤ 𝐾 ‖𝑢‖ , ∀𝑢 ∈ 𝐸. (33)

It follows from (24) that

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛾

𝑑𝑥

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑛 󳨀→ ∞. (34)

By (𝐹
2
) and (33), we obtain

⟨𝜑
󸀠
(𝑢

𝑛
) , 𝑢

+

𝑛
⟩

=
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) 𝑢

+

𝑛
𝑑𝑥

≥
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− ∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢𝑛)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥

≥
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1
∫
Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝜃−1 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨) 𝑑𝑥

=
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝜃−1 󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥 − 𝑘1 ∫
Ω

󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨 𝑑𝑥

≥
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1
(∫

Ω

(
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

𝜃−1

)

𝛾/𝜃−1

𝑑𝑥)

(𝜃−1)/𝛾

× (∫
Ω

󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨

𝛾/(𝛾−𝜃+1)

𝑑𝑥)

(𝛾−𝜃+1)/𝛾

− 𝑘
1
𝐾
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝜃−1

𝐿
𝛾 ⋅

󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩𝐿𝛾/(𝛾−𝜃+1)
− 𝑘

1
𝐾
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

2

− 𝑘
1
𝐾
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝜃−1

𝐿
𝛾 ⋅

󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩 − 𝑘1𝐾
󵄩󵄩󵄩󵄩𝑢

+

𝑛

󵄩󵄩󵄩󵄩

(35)

for all 𝑛. Note that 𝛾 ≥ 2𝑁(𝜃−1)/(𝑁+4) and𝑁 > 4 imply that
𝛾 > 𝜃 − 1. So, it follows from (34) and the above expression
that

󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑛 󳨀→ ∞. (36)

Hence, we conclude from (31) and (36) that

󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑛 󳨀→ ∞. (37)

Similarly for 𝑢−
𝑛
, we get

󵄩󵄩󵄩󵄩𝑢
−

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑛 󳨀→ ∞. (38)

It follows from the equivalence of the norms on the finite
dimensional space 𝐸0 that there exists 𝐾

1
> 0 such that

‖𝑢‖∞ ≤ 𝐾
1 ‖𝑢‖ , ‖𝑢‖ ≤ 𝐾

1‖𝑢‖𝐿1 ,

‖𝑢‖ ≤ 𝐾
1‖𝑢‖𝐿2 , ∀𝑢 ∈ 𝐸

0
.

(39)

Putting 𝜏 = 2𝑁 + (5 − 𝑁)𝛾 + 1, one has

1 <
2𝜏 − 𝛾

𝜏 − 1
<

2𝑁

𝑁 − 4
. (40)
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It follows from (24), (39), and Hölder’s inequality that

1

𝐾
2

1

󵄩󵄩󵄩󵄩󵄩
𝑢
0

𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ ∫
Ω

󵄨󵄨󵄨󵄨󵄨
𝑢
0

𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = ∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛾/𝜏󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2−𝛾/𝜏

𝑑𝑥

≤ (∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛾

𝑑𝑥)

1/𝜏

(∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

(2𝜏−𝛾)/(𝜏−1)

𝑑𝑥)

(𝜏−1)/𝜏

≤ 𝑘
1/𝜏

4
𝐾

(2𝜏−𝛾)/𝜏󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

(2𝜏−𝛾)/𝜏

(41)

and consequently
󵄩󵄩󵄩󵄩󵄩
𝑢
0

𝑛

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑛 󳨀→ ∞. (42)

Hence, by (37), (38), and (42), one sees

1 =

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩𝑢
+

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑢
0

𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑢

−

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0 (43)

as 𝑛 → ∞, which is a contradiction. So, we obtain that {𝑢
𝑛
} is

bounded in 𝐸. By a standard argument, we get that 𝜑 satisfies
the condition (𝐶).

Let 𝐸 = ⊕
𝑗≥1
𝑋

𝑗
with dim𝑋

𝑗
< ∞ for any 𝑗 ≥ 1. Set

𝑌
𝑘
=

𝑘

⨁

𝑗=1

𝑋
𝑗
, 𝑍

𝑘
=

∞

⨁

𝑗=𝑘

𝑋
𝑗
. (44)

Since dim(𝑌
𝑘
) < ∞, all the norms are equivalent. For 𝑢 ∈ 𝑌

𝑘
,

there exists a constant𝐾
2
> 0 such that

‖𝑢‖ ≤ 𝐾
2‖𝑢‖𝐿2 . (45)

From condition (𝐹
1
), there exists 𝑘

5
> 0 such that

𝐹 (𝑥, 𝑢) ≥ 𝐾
2

2
|𝑢|

2
− 𝑘

5
, ∀ (𝑥, 𝑢) ∈ Ω ×R. (46)

For 𝑢 ∈ 𝑌
𝑘
, it follows from (45) and (46) that

𝜑 (𝑢) =
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − 𝐾
2

2
‖𝑢‖

2

𝐿
2 + 𝑘5 |Ω|

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − (
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩

2

) + 𝑘
5 |Ω|

= −
1

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

2

−
1

2

󵄩󵄩󵄩󵄩𝑢
−󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩

2

+ 𝑘
5 |Ω|

≤ −
1

2
‖𝑢‖

2
+ 𝑘

5 |Ω|

(47)

which implies that

𝜑 (𝑢) 󳨀→ −∞ as ‖𝑢‖ 󳨀→ ∞, in 𝑌
𝑘
. (48)

So, (𝐴
1
) of Theorem A is satisfied for every 𝜌

𝑘
> 0 large

enough.
Here, we obtain from (𝐹

2
) that there exists a positive

constant 𝑘
6
such that

|𝐹 (𝑥, 𝑢)| ≤ 𝑘
6
(1 + |𝑢|

𝜃
) (49)

uniformly for all 𝑥 ∈ Ω. Let us define

𝛽
𝑘
= sup

𝑢∈𝑍𝑘,‖𝑢‖=1

‖𝑢‖
𝐿
𝜃 . (50)

For 𝑘 large enough, one has𝑍
𝑘
⊂ 𝐸

+. By (49), on𝑍
𝑘
, we have

𝜑 (𝑢) =
‖𝑢‖

2

2
− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
‖𝑢‖

2

2
− 𝑘

6‖𝑢‖
𝜃

𝐿
𝜃 − 𝑘6 |Ω|

≥
‖𝑢‖

2

2
− 𝑘

6
𝛽
𝜃

𝑘
‖𝑢‖

𝜃
− 𝑘

6 |Ω| .

(51)

Choosing 𝑟
𝑘
= (𝑘

6
𝜃𝛽

𝜃

𝑘
)
1/(2−𝜃), we obtain, if 𝑢 ∈ 𝑍

𝑘
and ‖𝑢‖ =

𝑟
𝑘
,

𝜑 (𝑢) ≥ (
1

2
−
1

𝜃
) (𝑘

6
𝜃𝛽

𝜃

𝑘
)
2/(2−𝜃)

− 𝑘
6 |Ω| . (52)

Since, by Lemma 3.8 of [14], 𝛽
𝑘

→ 0 as 𝑘 → ∞, (𝐴
2
)

is proved. Hence, the proof is completed by using Fountain
theorem.

Proof of Theorem 2. Firstly, we claim that 𝜑 satisfies the
Cerami condition (C). Consider a sequence {𝑢

𝑛
} such that

𝜑(𝑢
𝑛
) is bounded from above and ‖𝜑󸀠

(𝑢
𝑛
)‖(1 + ‖𝑢

𝑛
‖) → 0

as 𝑛 → ∞. By a standard argument, we only need to prove
that {𝑢

𝑛
} is a bounded sequence in 𝐸. For otherwise, we can

assume that ‖𝑢
𝑛
‖ → ∞ as 𝑛 → ∞.

From assumption (𝐹
4
), there exist two positive constants

𝑚
3
and𝑚

4
, such that

𝑚
3
≥ 2𝜑 (𝑢

𝑛
) − ⟨𝜑

󸀠
(𝑢

𝑛
) , 𝑢

𝑛
⟩

= ∫
Ω

(𝑓 (𝑥, 𝑢
𝑛
) 𝑢

𝑛
− 2𝐹 (𝑥, 𝑢

𝑛
)) 𝑑𝑥

≥ ∫
Ω

𝑚
1

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 − 𝑚
4 |Ω| .

(53)

So, one has

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝑚
5 (54)

for all 𝑛 and some positive constant𝑚
5
.

Let V
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖; then ‖V

𝑛
‖ = 1 and ‖V

𝑛
‖
𝐿
𝑟 ≤ 𝐶

𝑟
for all

𝑟 ∈ [1, 2𝑁/(𝑁 − 4)). By (54), we have

∫
Ω

V2
𝑛
𝑑𝑥 =

1

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤
𝑚

5

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2
󳨀→ 0 (55)
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as 𝑛 → ∞. So, for 𝑟 ∈ (2, (2𝑁 − 4)/(𝑁 − 4)), it follows from
Hölder’s inequality and the above expression that

∫
Ω

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥 ≤ (∫
Ω

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

2(𝑟−1)

𝑑𝑥)

1/2

(∫
Ω

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

󳨀→ 0

(56)

as 𝑛 → ∞. It follows from (39) that

⟨𝜑
󸀠
(𝑢

𝑛
) , 𝑢

+

𝑛
− 𝑢

−

𝑛
⟩

=
󵄩󵄩󵄩󵄩𝑢

+

𝑛
− 𝑢

−

𝑛

󵄩󵄩󵄩󵄩

2

− ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
) 𝑑𝑥

=
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑢
0

𝑛

󵄩󵄩󵄩󵄩󵄩

2

− ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
) 𝑑𝑥

=
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

2

(1 − ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
)

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2
𝑑𝑥) −

󵄩󵄩󵄩󵄩󵄩
𝑢
0

𝑛

󵄩󵄩󵄩󵄩󵄩

2

≥
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

2

(1 − ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
)

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2
𝑑𝑥) − 𝐾

2

1

󵄩󵄩󵄩󵄩󵄩
𝑢
0

𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
.

(57)

Hence, we get

1 − ∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
)

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2
𝑑𝑥 = 𝑜 (1) . (58)

From (𝐹
4
), (53), and (56), there exists a positive constant 𝑚

6

such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
Ω

𝑓 (𝑥, 𝑢
𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
)

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 2(∫
Ω

(

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢𝑛)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

)

𝜎

𝑑𝑥)

1/𝜎

× (∫
Ω

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

2𝜎
󸀠

𝑑𝑥)

1/𝜎
󸀠

≤ 𝑚
6
(∫

Ω

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

2𝜎
󸀠

𝑑𝑥)

1/𝜎
󸀠

󳨀→ 0

(59)

as 𝑛 → ∞; therefore, 1 = 𝑜(1), which is a contradiction.
Hence, {𝑢

𝑛
} is bounded.

In a way similar to the proof of Theorem 1, we can obtain
that 𝜑 satisfies (𝐴

1
) of Theorem A.

It follows from (𝐹
1
) that there is 𝐿

1
> 0 such that

𝐹 (𝑥, 𝑢) ≥ |𝑢|
2
, ∀ |𝑢| ≥ 𝐿

1
. (60)

Then, by (𝐹
4
) and (60), for |𝑢| ≥ 𝐿

2
= max{𝐿, 𝐿

1
}, 𝑥 ∈ Ω,

one has
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢)

󵄨󵄨󵄨󵄨

𝜎

≤ 𝑚
2
(𝑓 (𝑥, 𝑢) 𝑢 − 2𝐹 (𝑥, 𝑢)) |𝑢|

𝜎

≤ 𝑚
2

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢)
󵄨󵄨󵄨󵄨 |𝑢|

𝜎+1

(61)

which implies that

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝑚

1/(𝜎−1)

2
|𝑢|

(𝜎+1)/(𝜎−1) (62)

for |𝑢| ≥ 𝐿
2
.

Therefore, there exist two positive constants 𝑚
7
and 𝑚

8

such that

|𝐹 (𝑥, 𝑢)| ≤ 𝑚
7
+ 𝑚

8|𝑢|
2𝜎/(𝜎−1)

, ∀ (𝑥, 𝑢) ∈ Ω ×R, (63)

where 2𝜎/(𝜎 − 1) < 2𝑁/(𝑁 − 4). As the proof of Theorem 1,
we can get (𝐴

2
). Therefore, Theorem 2 holds.

Proof of Theorem 4. The proof of this theorem is divided in
several steps.

Step 1. We claim that 𝜑 has a local linking at zero with respect
to (𝑋1

, 𝑋
2
).

By (𝐹
5
), for any 𝜀 > 0, there exists 𝛿

1
> 0 such that

|𝐹 (𝑥, 𝑢)| ≤ 𝜀𝑢
2
, ∀ |𝑢| ≤ 𝛿

1
. (64)

We obtain from the above expression and (49) that

|𝐹 (𝑥, 𝑢)| ≤ 𝜀𝑢
2
+𝑀

2|𝑢|
𝜃
, ∀ (𝑥, 𝑢) ∈ Ω ×R, (65)

where𝑀
2
= 𝑘

6
+𝑘

6
𝛿
−𝜃

1
. Hence, we can get from (15) and (65)

that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

Ω

𝜀𝑢
2
𝑑𝑥 +𝑀

2
∫
Ω

|𝑢|
𝜃
𝑑𝑥

= 𝜀‖𝑢‖
2

𝐿
2 +𝑀2‖𝑢‖

𝜃

𝐿
𝜃

≤ 𝐾
2
𝜀‖𝑢‖

2
+ 𝐾

𝜃
𝑀

2‖𝑢‖
𝜃

(66)

for all 𝑢 ∈ 𝐸.
Here, we consider only the case where 0 is an eigenvalue

ofΔ2
+𝑐Δ+𝑎 and case (ii) of (𝐹

6
) holds.The case (i) is similar.

Let 𝑋 = 𝐸, 𝑋
1
= 𝐸

+
⊕ 𝐸

0, and 𝑋
2
= 𝐸

−, where 𝐸0
=

ker(Δ2
+𝑐Δ+𝑎). Choose a Hilbertian basis {𝑒

𝑛
}
𝑛≥0

for𝑋1 and
define

𝑋
1

𝑛
= span {𝑒

0
, . . . , 𝑒

𝑛
} , 𝑛 ∈ N,

𝑋
2

𝑛
= 𝑋

2
, 𝑛 ∈ N,

𝑋
1
= ⋃

𝑛

𝑋1

𝑛
.

(67)

Now, by (66), for each 𝑢 ∈ 𝑋2
= 𝐸

−, one has

𝜑 (𝑢) = −
1

2
‖𝑢‖

2
− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤ −
1

2
‖𝑢‖

2
+ 𝐾

2
𝜀‖𝑢‖

2
+ 𝐾

𝜃
𝑀

2‖𝑢‖
𝜃
.

(68)

Letting 𝜀 = 1/(8𝐾
2
) and by 𝜃 > 2, we have

𝜑 (𝑢) ≤ 0, ∀𝑢 ∈ 𝑋
2 with ‖𝑢‖ ≤ 𝛿

2
(69)

for 𝛿
2
> 0 small enough.
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Let 𝑢 = 𝑢
0
+ 𝑢

+
∈ 𝐸

0
⊕ 𝐸

+
= 𝑋

1 be such that ‖𝑢‖ ≤ 𝛿
3
:=

𝛿/(2𝐾
1
). Put

Ω
1
= {𝑥 ∈ Ω |

󵄨󵄨󵄨󵄨𝑢
+
(𝑥)

󵄨󵄨󵄨󵄨 ≤
𝛿

2
} , Ω

2
= Ω \ Ω

1
. (70)

Then, for all ‖𝑢‖ ≤ 𝛿
3
and 𝑥 ∈ Ω, by (39), one sees

󵄨󵄨󵄨󵄨󵄨
𝑢
0
(𝑥)

󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐾
1

󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩
≤ 𝐾

1 ‖𝑢‖ ≤
𝛿

2
. (71)

On one hand, from above expression, for any 𝑥 ∈ Ω
1
, we have

|𝑢 (𝑥)| ≤
󵄨󵄨󵄨󵄨󵄨
𝑢
0
(𝑥)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢

+
(𝑥)

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩∞

+
𝛿

2
≤ 𝛿. (72)

Hence, by condition (ii) of (𝐹
6
), we get

∫
Ω1

𝐹 (𝑥, 𝑢) 𝑑𝑥 ≤ 0. (73)

On the other hand, for any 𝑥 ∈ Ω
2
, one has

|𝑢 (𝑥)| ≤
󵄨󵄨󵄨󵄨󵄨
𝑢
0
(𝑥)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢

+
(𝑥)

󵄨󵄨󵄨󵄨 ≤
𝛿

2
+
󵄨󵄨󵄨󵄨𝑢

+
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 2
󵄨󵄨󵄨󵄨𝑢

+
(𝑥)

󵄨󵄨󵄨󵄨 .

(74)

Hence, for all𝑥 ∈ Ω
2
and 𝑢 ∈ 𝑋1 with ‖𝑢‖ ≤ 𝛿

3
, we can obtain

from (65) that

𝐹 (𝑥, 𝑢) ≤ 𝜀𝑢
2
+𝑀

2|𝑢|
𝜃
≤ 4𝜀

󵄨󵄨󵄨󵄨𝑢
+
(𝑥)

󵄨󵄨󵄨󵄨

2

+ 2
𝜃
𝑀

2

󵄨󵄨󵄨󵄨𝑢
+
(𝑥)

󵄨󵄨󵄨󵄨

𝜃

,

(75)

which implies that

∫
Ω2

𝐹 (𝑥, 𝑢) 𝑑𝑥 ≤ 4𝜀∫
Ω2

󵄨󵄨󵄨󵄨𝑢
+
(𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 2
𝜃
𝑀

2
∫
Ω2

󵄨󵄨󵄨󵄨𝑢
+
(𝑥)

󵄨󵄨󵄨󵄨

𝜃

𝑑𝑥

= 4𝜀
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

𝐿
2 + 2

𝜃
𝑀

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

𝜃

𝐿
𝜃

≤ 4𝐾
2
𝜀
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

+ (2𝐾)
𝜃
𝑀

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

𝜃

.

(76)

Letting 𝜀 = 1/(16𝐾
2
) in above expression, then for all 𝑥 ∈ Ω

2

and 𝑢 ∈ 𝑋1 with ‖𝑢‖ ≤ 𝛿
3
, we have

𝜑 (𝑢) =
1

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

2

− ∫
Ω2

𝐹 (𝑥, 𝑢) 𝑑𝑥 − ∫
Ω1

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥
1

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

2

− 4𝐾
2
𝜀
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

− (2𝐾)
𝜃
𝑀

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

𝜃

≥
1

4

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

2

− (2𝐾)
𝜃
𝑀

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

𝜃

,

(77)

which implies that

𝜑 (𝑢) ≥ 0, ∀𝑢 ∈ 𝑋
1 with ‖𝑢‖ ≤ 𝛿

4
(78)

for 𝛿
4
> 0 small enough. Hence, 𝜑 has a local linking at zero

with respect to (𝑋1
, 𝑋

2
) for 𝛿

5
= min{𝛿

2
, 𝛿

4
} small enough.

Step 2. In a way similar to the proof of Theorem 1, we can get
that 𝜑 satisfies the (𝐶∗

) condition.

Step 3. Now, we claim that for each𝑚 ∈ N, one has

𝜑 (𝑢) 󳨀→ −∞, as ‖𝑢‖ 󳨀→ ∞, in 𝑋
1

𝑚
⊕ 𝑋

2
. (79)

Since dim(𝐸0
) < ∞ and dim(𝑋1

𝑚
) < ∞, all the norms are

equivalent. For 𝑢 ∈ 𝑋
1

𝑚
⊕ 𝑋

2, there exists a constant 𝑘
7
> 0

such that

‖𝑢‖ ≤ 𝑘
7‖𝑢‖𝐿2 . (80)

From condition (𝐹
1
), there exists a constant 𝑘

8
> 0 such that

𝐹 (𝑥, 𝑢) ≥ 𝑘
2

7
|𝑢|

2
− 𝑘

8
, ∀ (𝑥, 𝑢) ∈ Ω ×R. (81)

For 𝑢 ∈ 𝑋1

𝑚
⊕ 𝑋

2, it follows from (80) and (81) that

𝜑 (𝑢) =
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − 𝑘
2

7
‖𝑢‖

2

𝐿
2 + 𝑘8 |Ω|

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − 𝑘
2

7
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
) + 𝑘

8 |Ω|

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑢

−󵄩󵄩󵄩󵄩

2

) − (
󵄩󵄩󵄩󵄩𝑢

+󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩

2

) + 𝑘
8 |Ω|

= −
1

2

󵄩󵄩󵄩󵄩𝑢
+󵄩󵄩󵄩󵄩

2

−
1

2

󵄩󵄩󵄩󵄩𝑢
−󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩

2

+ 𝑘
8 |Ω|

≤ −
1

2
‖𝑢‖

2
+ 𝑘

8 |Ω|

(82)

which implies that

𝜑 (𝑢) 󳨀→ −∞ as ‖𝑢‖ 󳨀→ ∞, in 𝑋
1

𝑚
⊕ 𝑋

2
. (83)

Hence, all the assumptions of Theorem B are verified. Then,
the proof of Theorem 4 is completed.

Proof of Theorem 5. In a way similar to the proof ofTheorems
2 and 4, we can obtain that 𝜑 satisfies (𝑖

1
), (𝑖

2
), (𝑖

3
), and (𝑖

4
) of

Theorem B. Therefore, Theorem 5 holds.
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