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A new fixed point theorem is established under the setting of a generalized finitely continuous topological space (GFC-space)
without the convexity structure. As applications, a weak KKM theorem and aminimax inequalities of Ky Fan type are also obtained
under suitable conditions. Our results are different from known results in the literature.

1. Introduction

In the last decade, the theory of fixed points has been investi-
gated bymany authors; see, for example, [1–11] and references
therein, which has been exploited in the existence study for
almost all areas of mathematics, including optimization and
applications in economics. Now, there have been a lot of
generalizations of the fixed points theorem under different
assumptions and different underlying space, and various
applications have been given in different fields.

On the other hand, the weak KKM-type theorem intro-
duced by Balaj [12] has attracted an increasing amount
of attention and has been applied in many optimization
problems so far; see [12–14] and references therein.

Inspired by the research works mentioned above, we
establish a collectively fixed points theorem and a fixed
point theorem. As applications, a weak KKM theorem and a
minimax inequalities of Ky Fan type are also obtained under
suitable conditions. Our results are new and different from
known results in the literature.

The rest of the paper is organized as follows. In Section 2,
we first recall some definitions and theorems. Section 3 is
devoted to a new collectively fixed points theorem under
noncompact situation on GFC-space and a new fixed point
theorem. In Section 4, we show a new weak KKM theorem
in underlying GFC-space, and, by using the weak KKM

theorem, a new minimax inequality of Ky Fan type is
developed.

2. Preliminaries

Let 𝑋 be a topological space and 𝐶,𝐷 ⊆ 𝑋. Let int𝐶 and
int
𝐷
𝐶 denote the interior of 𝐶 in 𝑋 and in 𝐷, respectively.

Let ⟨𝐴⟩ denote the set of all nonempty finite subsets of a set𝐴,
and let Δ

𝑛
denote the standard 𝑛-dimensional simplex with

vertices {𝑒
0
, 𝑒
1
, . . . , 𝑒

𝑛
}. Let𝑋 and𝑌 be two topological spaces.

A mapping 𝑇 : 𝑋 → 2
𝑌 is said to be upper semicontinuous

(u.s.c.) (resp., lower semicontinuous (l.s.c)) if for every closed
subset 𝐵 of 𝑌, the set {𝑥 ∈ 𝑋 : 𝑇(𝑥) ∩ 𝐵 ̸= 0} (resp., {𝑥 ∈ 𝑋 :

𝑇(𝑥) ⊆ 𝐵}) is closed.
A subset 𝐴 of 𝑋 is said to be compactly open (resp.,

compactly closed) if for each nonempty compact subset𝐾 of
𝑋, 𝐴 ∩ 𝐾 is open (resp., closed) in 𝐾.

These following notionswere introduced byHai et al. [15].

Definition 1. Let 𝑋 be a topological space, 𝑌 a nonempty set,
andΦ a family of continuous mappings 𝜑 : Δ

𝑛
→ 𝑋, 𝑛 ∈ N.

A triple (𝑋, 𝑌,Φ) is said to be a generalized finitely continuous
topological space (GFC-space) if and only if for each finite
subset𝑁 = {𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
} of 𝑌, there is 𝜑

𝑁
: Δ
𝑛
→ 𝑋 of the

familyΦ.
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In the sequel, we also use (𝑋, 𝑌, {𝜑
𝑁
}) to denote (𝑋, 𝑌,Φ).

Definition 2. Let 𝑆 : 𝑌 → 2
𝑋 be a multivalued mapping.

A subset 𝐷 of 𝑌 is called an 𝑆-subset of 𝑌 if and only if for
each 𝑁 = {𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
} ⊆ 𝑌 and each {𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊆

𝑁 ∩ 𝐷, one has 𝜑
𝑁
(Δ
𝑘
) ⊂ 𝑆(𝐷), where Δ

𝑘
is the face of Δ

𝑛

corresponding to {𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
}, that is, the simplex with

vertices {𝑒
𝑖0
, 𝑒
𝑖1
, . . . , 𝑒

𝑖𝑘
}. Roughly speaking, if𝐷 is an 𝑆-subset

of 𝑌, then (𝑆(𝐷), 𝐷,Φ) is a GFC-space.
The class of GFC-space contains a large number of spaces

with various kinds of generalized convexity structures such
as FC-space and G-convex space (see [15–17]).

Definition 3 (see [8]). Let (𝑋, 𝑌, {𝜑
𝑁
}) be a GFC-space and 𝑍

a nonempty set. Let 𝑇 : 𝑋 → 2
𝑍 and 𝐹 : 𝑌 → 2

𝑍 be two
set-valued mappings; 𝐹 is called a weak KKM mapping with
respect to 𝑇, shortly, weak T-KKMmapping if and only if for
each 𝑁 = {𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
} ⊆ 𝑌, {𝑦

𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊆ 𝑁 and

𝑥 ∈ 𝜑
𝑁
(Δ
𝑘
), 𝑇(𝑥) ∩ ⋃𝑘

𝑗=0
𝐹(𝑦
𝑖𝑗
) ̸= 0.

Definition 4 (see [8]). Let𝑋 be aHausdorff space, (𝑋, 𝑌, {𝜑
𝑁
})

aGFC-space,𝑍 a topological space,𝑇 : 𝑋 → 2
𝑍,𝑓 : 𝑌×𝑍 →

R ∪ {−∞, +∞}, and 𝑔 : 𝑋 ×𝑍 → R ∪ {−∞, +∞}. Let 𝜆 ∈ R.
𝑓 is called (𝜆, 𝑇, 𝑔)-GFC quasiconvex if and only if for each
𝑥 ∈ 𝑋, 𝑧 ∈ 𝑇(𝑥), 𝑁 = {𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
} ∈ ⟨𝑌⟩, and 𝑁

𝑘
=

{𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊆ 𝑁, one has the implication 𝑓(𝑦

𝑖𝑗
, 𝑧) < 𝜆,

for all 𝑗 = 0, 1, . . . , 𝑘 implies that 𝑔(𝑥, 𝑧) < 𝜆 for all 𝑥 ∈
𝜑
𝑁
(Δ
𝑘
).

For 𝜆 ∈ R, define 𝛽 ∈ R and 𝐻
𝜆
: 𝑌 → 2

𝑍 by 𝛽 =

inf
𝑥∈𝑋

sup
𝑧∈𝑇(𝑥)

𝑔(𝑥, 𝑧) and 𝐻
𝜆
(𝑦) = {𝑧 ∈ 𝑍 : 𝑓(𝑦, 𝑧) ≥ 𝜆},

respectively.

Lemma 5 (see [8]). For 𝜆 < 𝛽, if 𝑓 is (𝜆, 𝑇, 𝑔)-GFC
quasiconvex, then𝐻

𝜆
is a weak T-KKM mapping.

The following result is the obvious corollary of Theo-
rem 3.1 of Khanh et al. [8].

Lemma 6. Let {(𝑋
𝑖
, 𝑌
𝑖
, {𝜑
𝑁𝑖
})}
𝑖∈𝐼

be a family of GFC-spaces
and 𝑋 = ∏

𝑖∈𝐼
𝑋
𝑖
a compact Hausdorff space. For each 𝑖 ∈ 𝐼,

let𝐺
𝑖
: 𝑋 → 2

𝑋𝑖 and𝐹
𝑖
: 𝑋 → 2

𝑌𝑖 be such that the conditions
hold as follows:

(i) for each 𝑥 ∈ 𝑋, each 𝑁
𝑖
= {𝑦
𝑖

0
, 𝑦
𝑖

1
, . . . , 𝑦

𝑖

𝑛𝑖
} ⊆ 𝑌

𝑖
and

each {𝑦𝑖
𝑖0
, 𝑦
𝑖

𝑖1
, . . . , 𝑦

𝑖

𝑖𝑘𝑖

} ⊆ 𝑁
𝑖
∩𝐹
𝑖
(𝑥), one has 𝜑

𝑁𝑖
(Δ
𝑘
) ⊆

𝐺
𝑖
(𝑥) for all 𝑖 ∈ 𝐼,

(ii) 𝑋 = ⋃
𝑦
𝑖
∈𝑌𝑖

int𝐹−1
𝑖
(𝑦
𝑖
) for all 𝑖 ∈ 𝐼.

Then, there exists 𝑥 = (𝑥
𝑖
)
𝑖∈𝐼

∈ 𝑋 such that 𝑥
𝑖
∈ 𝐺
𝑖
(𝑥) for all

𝑖 ∈ 𝐼.

3. Fixed Points Theorems

Let 𝐼 be an index set,𝑋
𝑖
topological spaces,𝑋 = ∏

𝑖∈𝐼
𝑋
𝑖
, and

𝐺
𝑖
: 𝑋 → 2

𝑋𝑖 .The collectively fixed points problem is to find
𝑥 = (𝑥

𝑖
)
𝑖∈𝐼

∈ 𝑋 such that 𝑥
𝑖
∈ 𝐺
𝑖
(𝑥), for all 𝑖 ∈ 𝐼.

Theorem 7. Let {(𝑋
𝑖
, 𝑌
𝑖
, {𝜑
𝑁𝑖
})}
𝑖∈𝐼

be a family of GFC-spaces
and 𝑋 = ∏

𝑖∈𝐼
𝑋
𝑖
a Hausdorff space. For each 𝑖 ∈ 𝐼, let 𝐺

𝑖
:

𝑋 → 2
𝑋𝑖 ,𝐹
𝑖
: 𝑋 → 2

𝑌𝑖 , and 𝑆
𝑖
: 𝑌
𝑖
→ 2
𝑋𝑖 with the following

properties:

(i) for each 𝑥 ∈ 𝑋, 𝑁
𝑖
= {𝑦
𝑖

0
, 𝑦
𝑖

1
, . . . , 𝑦

𝑖

𝑛𝑖
} ⊆ 𝑌

𝑖
, and

{𝑦
𝑖

𝑗0
, 𝑦
𝑖

𝑗1
, . . . , 𝑦

𝑖

𝑗𝑘𝑖

} ⊆ 𝑁
𝑖
∩ 𝐹
𝑖
(𝑥), one has 𝜑

𝑁𝑖
(Δ
𝑘
) ⊆

𝐺
𝑖
(𝑥) for all 𝑖 ∈ 𝐼,

(ii) for each compact subset 𝐾 of 𝑋 and each 𝑖 ∈ 𝐼, 𝐾 ⊆

⋃
𝑦
𝑖
∈𝑌𝑖

int𝐹−1
𝑖
(𝑦
𝑖
);

(iii) there exists a nonempty compact subset 𝐾
𝑖
of 𝑋
𝑖
and

for each 𝑁
𝑖
∈ ⟨𝑌
𝑖
⟩, there exists an 𝑆

𝑖
-subset 𝐿

𝑁𝑖
of 𝑌
𝑖

containing𝑁
𝑖
with 𝑆

𝑖
(𝐿
𝑁𝑖
) being compact such that

𝑆 (𝐿
𝑁
) \ 𝐾 ⊂ ⋃

𝑦
𝑖
∈𝐿𝑁𝑖

int𝐹−1
𝑖
(𝑦
𝑖
) , (1)

where 𝐿
𝑁

= ∏
𝑖∈𝐼
𝐿
𝑁𝑖
, 𝐾 = ∏

𝑖∈𝐼
𝐾
𝑖
, and 𝑆(𝐿

𝑁
) =

∏
𝑖∈𝐼
𝑆
𝑖
(𝐿
𝑁𝑖
).

Then, there exists 𝑥 = (𝑥
𝑖
)
𝑖∈𝐼

∈ 𝑋 such that 𝑥
𝑖
∈ 𝐺
𝑖
(𝑥) for

all 𝑖 ∈ 𝐼.

Proof. As 𝐾 is a compact subset of 𝑋, by the condition (ii),
there exists a finite set𝑁

𝑖
= {𝑦
𝑖

0
, 𝑦
𝑖

1
, . . . , 𝑦

𝑖

𝑛𝑖
} ⊆ 𝑌
𝑖
, such that

𝐾 ⊆

𝑛𝑖

⋃

𝑘=0

int𝐹−1
𝑖
(𝑦
𝑖

𝑖𝑘
) . (2)

By the condition (iii), there exists an 𝑆
𝑖
-subset 𝐿

𝑁𝑖
of 𝑌
𝑖

containing𝑁
𝑖
such that

𝑆 (𝐿
𝑁
) \ 𝐾 ⊂ ⋃

𝑦
𝑖
∈𝐿𝑁𝑖

int𝐹−1
𝑖
(𝑦
𝑖
) , (3)

and it follows that

𝑆 (𝐿
𝑁
) ⊂ ⋃

𝑦
𝑖
∈𝐿𝑁𝑖

int𝐹−1
𝑖
(𝑦
𝑖
) . (4)

We observe that the family {𝑆
𝑖
(𝐿
𝑁𝑖
), 𝐿
𝑁𝑖
, {𝜑
𝑁𝑖
})}
𝑖∈𝐼

is a family
of GFC-space and 𝑆

𝑖
(𝐿
𝑁𝑖
) is compact for each 𝑖 ∈ 𝐼, defining

set-valued mapping 𝐺
∗

𝑖
: 𝑆
𝑖
(𝐿
𝑁𝑖
) → 2

𝑆𝑖(𝐿𝑁𝑖
) and 𝐹

∗

𝑖
:

𝑆
𝑖
(𝐿
𝑁𝑖
) → 2

𝐿𝑁𝑖 as follows:

𝐺
∗

𝑖
(𝑥) = 𝐺𝑖 (𝑥) ∩ 𝑆𝑖 (𝐿𝑁𝑖

) ,

𝐹
∗

𝑖
(𝑥) = 𝐹𝑖 (𝑥) ∩ 𝐿𝑁𝑖

.

(5)

We check assumptions (i) and (ii) of Lemma 6 for replaced𝐺
𝑖

and 𝐹
𝑖
by 𝐺∗
𝑖
and 𝐹∗
𝑖
, respectively. By (i) and the definition of

𝑆-subset, for each 𝑥 ∈ 𝑆
𝑖
(𝐿
𝑁𝑖
), each 𝑁

𝑖
= {𝑦
𝑖

0
, 𝑦
𝑖

1
, . . . , 𝑦

𝑖

𝑛𝑖
} ⊆

𝐿
𝑁𝑖
and each {𝑦𝑖

𝑗0
, 𝑦
𝑖

𝑗1
, . . . , 𝑦

𝑖

𝑗𝑘𝑖

} ⊆ 𝑁
𝑖
∩𝐹
∗

𝑖
(𝑥) = 𝑁

𝑖
∩𝐹
𝑖
(𝑥)∩𝐿

𝑁𝑖
,

we have

𝜑
𝑁𝑖
(Δ
𝑘
) ⊆ 𝐺
𝑖 (𝑥) ∩ 𝑆𝑖 (𝐿𝑁𝑖

) = 𝐺
∗

𝑖
(𝑥) , (6)

then assumption (i) of Lemma 6 is satisfied.
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By (4), we have

𝑆 (𝐿
𝑁
) = ( ⋃

𝑦
𝑖
∈𝐿𝑁𝑖

int𝐹−1
𝑖
(𝑦
𝑖
)) ∩ 𝑆 (𝐿

𝑁
)

= ⋃

𝑦
𝑖
∈𝐿𝑁𝑖

int
𝑆(𝐿𝑁)

(𝐹
−1

𝑖
(𝑦
𝑖
) ∩ 𝑆 (𝐿

𝑁
)) .

(7)

On the other hand, for all 𝑦𝑖 ∈ 𝐿
𝑁𝑖
,

(𝐹
∗

𝑖
)
−1
(𝑦
𝑖
) = {𝑥 ∈ 𝑋 : 𝑦

𝑖
∈ 𝐹
𝑖 (𝑥)} ∩ 𝑆 (𝐿𝑁)

= 𝐹
−1

𝑖
(𝑦
𝑖
) ∩ 𝑆 (𝐿

𝑁
) .

(8)

Hence,

𝑆 (𝐿
𝑁
) = ⋃

𝑦
𝑖
∈𝐿𝑁𝑖

int
𝑆(𝐿𝑁)

(𝐹
∗
)
−1
(𝑦
𝑖
) . (9)

Thus, (ii) of Lemma 6 is also satisfied. According to Lemma 6,
there exists a point 𝑥 = (𝑥

𝑖
)
𝑖∈𝐼

∈ 𝑋 such that 𝑥
𝑖
∈ 𝐺
𝑖
(𝑥) for

all 𝑖 ∈ 𝐼.

Remark 8. Theorem 7 generalizes Theorem 3.4 of Ding [6]
from FC-space to GFC-space, and our condition (iii) is
different from its condition (iii). Theorem 7 also extends
Theorem 3 in [18]. Note that Theorem 7 is the variation of
Theorem 3.2 in [8].

As a special case of Theorem 7, we have the following
fixed point theorem that will be used to prove a weak KKM
theorem in Section 4.

Corollary 9. Let 𝑋 be the Hausdorff space, (𝑋, 𝑌, {𝜑
𝑁
}) a

GFC-space, 𝐺 : 𝑋 → 2
𝑋, 𝐹 : 𝑋 → 2

𝑌, and 𝑆 : 𝑌 → 2
𝑋

with the following properties:

(i) for each 𝑥 ∈ 𝑋, 𝑁 = {𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑛
} ⊆ 𝑌, and

{𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊆ 𝑁 ∩ 𝐹(𝑥), one has 𝜑

𝑁
(Δ
𝑘
) ⊆ 𝐺(𝑥),

(ii) for each compact subset𝐾 of𝑋, 𝐾 ⊆ ⋃
𝑦∈𝑌

int𝐹−1(𝑦),

(iii) for each 𝑁 ∈ ⟨𝑌⟩, there exists an 𝑆-subset 𝐿
𝑁
of 𝑌

containing𝑁 with 𝑆(𝐿
𝑁
) being compact such that

𝑆 (𝐿
𝑁
) \ 𝐾 ⊂ ⋃

𝑦∈𝐿𝑁

int𝐹−1 (𝑦) . (10)

Then, there exists 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐺(𝑥).

4. Applications

Theorem 10. Let𝑋 be a Hausdorff space, (𝑋, 𝑌, {𝜑
𝑁
}) a GFC-

space, 𝑍 a nonempty set, 𝑇 : 𝑋 → 2
𝑍, 𝐻 : 𝑌 → 2

𝑍, and
𝑆 : 𝑌 → 2

𝑋; assume that

(i) H is a weak T-KKM mapping,
(ii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝑇(𝑥) ∩ 𝐻(𝑦) ̸= 0} is

compactly closed,

(iii) there exists a compact 𝐾 of 𝑋, and, for any 𝑁 ∈ ⟨𝑌⟩,
there exists an 𝑆-subset 𝐿

𝑁
of 𝑌 containing 𝑁 with

𝑆(𝐿
𝑁
) being compact such that

𝑆 (𝐿
𝑁
) \ 𝐾 ⊂ ⋃

𝑦∈𝐿𝑁

int {𝑥 ∈ 𝑋 : 𝑇 (𝑥) ∩ 𝐻 (𝑦) = 0} . (11)

Then, there exists a point 𝑥 ∈ 𝑋 such that 𝑇(𝑥) ∩ 𝐻(𝑦) ̸= 0 for
each 𝑦 ∈ 𝑌.

Proof. Define 𝐹 : 𝑋 → 2
𝑌 and 𝐺 : 𝑋 → 2

𝑋 by

𝐹 (𝑥) = {𝑦 ∈ 𝑌 : 𝑇 (𝑥) ∩ 𝐻 (𝑦) = 0} ,

𝐺 (𝑥) = {𝑥

∈ 𝑋 : ∃𝑦 ∈ 𝐹 (𝑥) , 𝑇 (𝑥


) ∩ 𝐻 (𝑦) ̸= 0} .

(12)

Suppose the conclusion does not hold.Then, for each 𝑥 ∈
𝑋, there exists a 𝑦 ∈ 𝑌 such that

𝑇 (𝑥) ∩ 𝐻 (𝑦) = 0. (13)

It is easy to see that 𝐹 has nonempty values. By (ii), for each
𝑦 ∈ 𝑌,

𝐹
−1
(𝑦) = {𝑥 ∈ 𝑋 : 𝑇 (𝑥) ∩ 𝐻 (𝑦) = 0} (14)

is compactly open. Then,

𝑋 = ⋃

𝑦∈𝑌

int𝐹−1 (𝑦) . (15)

Since 𝐾 is a compact subset of 𝑋, then there exists 𝑁 ∈ ⟨𝑌⟩

such that

𝐾 ⊆ ⋃

𝑦∈𝑁

int𝐹−1 (𝑦) . (16)

Then, assumption (ii) of Corollary 9 is satisfied.
It follows from (iii) that there exists a compact𝐾 of𝑋 and

for any 𝑁 ∈ ⟨𝑌⟩, there exists a 𝑆-subset 𝐿
𝑁
of 𝑌 containing

𝑁 with 𝑆(𝐿
𝑁
) being compact such that

𝑆 (𝐿
𝑁
) \ 𝐾 ⊂ ⋃

𝑦∈𝐿𝑁

int𝐹−1 (𝑦) . (17)

Therefore, assumption (iii) of Corollary 9 is also satisfied.
Furthermore, 𝐺 has no fixed point. Indeed, if 𝑥 ∈ 𝐺(𝑥),

then there exists 𝑦 ∈ 𝐹(𝑥) such that

𝑇 (𝑥) ∩ 𝐻 (𝑦) ̸= 0, (18)

which contracts the definition of 𝐹. Thus, assumption (i) of
Corollary 9 must be violated; that is, there exist an 𝑥 ∈ 𝑋,
𝑁 = {𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑛
} ⊆ 𝑌, and

𝑁
𝑘
= {𝑦
𝑖0
, 𝑦
𝑖1
, . . . , 𝑦

𝑖𝑘
} ⊆ 𝑁 ∩ 𝐹 (𝑥) (19)

such that

𝜑
𝑁
(Δ
𝑘
) ̸⊆ 𝐺 (𝑥) . (20)



4 Abstract and Applied Analysis

That is, for each 𝑦 ∈ 𝐹(𝑥),

𝑇 (𝑥) ∩ 𝐻 (𝑦) = 0. (21)

Hence,

𝑇 (𝑥) ∩ 𝐻(𝑁
𝑘
) = 0. (22)

On the other hand, since 𝐻 is a weak T-KKM mapping
and 𝑥 ∈ 𝜑

𝑁
(Δ
𝑘
), we have

𝑇 (𝑥) ∩ 𝐻(𝑁
𝑘
) ̸= 0, (23)

which is contradict. This completes the proof.

Remark 11. (1) Theorem 10 extends Theorem 1 in [13] from
the G-convex space to GFC-space, and our proof techniques
are different. Theorem 10 also generalizes Theorem 4.1 of [8]
from the compactness assumption to noncompact situation.

(2) If𝑍 is a topological space, condition (ii) inTheorem 10
is fulfilled in any of the following cases (see [13]):

(i) 𝐻 has closed values, and 𝑇 is u.s.c, on each compact
subset of𝑋.

(ii) 𝐻 has compactly closed values, and 𝑇 is u.s.c, on each
compact of subset of𝑋 and its values are compact.

Theorem 12. Let𝑋 be a Hausdorff space, (𝑋, 𝑌, {𝜑
𝑁
}) a GFC-

space, 𝑍 a topological space, 𝑇 : 𝑋 → 2
𝑍 u.s.c., 𝑓 : 𝑌 × 𝑍 →

R ∪ {−∞, +∞}. and 𝑆 : 𝑌 → 2
𝑋; assume that

(i) for each 𝑦 ∈ 𝑌, 𝑓(𝑦, ⋅) is u.s.c. on each compact subset
of 𝑍,

(ii) 𝑓 is (𝜆, 𝑇, 𝑔)-GFC quasiconvex for all 𝜆 < 𝛽 sufficiently
close to 𝛽,

(iii) there exists a compact 𝐾 of 𝑋, and, for any 𝑁 ∈ ⟨𝑌⟩,
there exists an 𝑆-subset 𝐿

𝑁
of 𝑌 containing 𝑁 with

𝑆(𝐿
𝑁
) being compact such that

𝑆 (𝐿
𝑁
) \ 𝐾 ⊂ ⋃

𝑦∈𝐿𝑁

int {𝑥 ∈ 𝑋 : 𝑇 (𝑥) ∩ 𝐻𝜆 (𝑦) = 0} . (24)

Then,

inf
𝑥∈𝑋

sup
𝑧∈𝑇(𝑥)

𝑔 (𝑥, 𝑧) ≤ sup
𝑥∈𝑋

inf
𝑦∈𝑌

sup
𝑧∈𝑇(𝑥)

𝑓 (𝑦, 𝑧) . (25)

Proof. Let 𝜆 < 𝛽 be arbitrary. By Lemma 5 and condition (ii),
𝐻
𝜆
is a weak T-KKM mapping. It follows from condition (i)

that 𝐻
𝜆
has closed values. Hence, the set {𝑥 ∈ 𝑋 : 𝑇(𝑥) ∩

𝐻
𝜆
(𝑦) ̸= 0} is compactly closed for all 𝑦 ∈ 𝑌 (see Remark 11

(2)). Thus, all the conditions of Theorem 10 are satisfied, and
so there exists an 𝑥 ∈ 𝑋 such that

𝑇 (𝑥) ∩ 𝐻𝜆 (𝑦) ̸= 0, ∀𝑦 ∈ 𝑌. (26)

This implies that 𝜆 ≤ inf
𝑦∈𝑌

sup
𝑧∈𝑇(𝑥)

𝑓(𝑦, 𝑧) and so

𝜆 ≤ sup
𝑥∈𝑋

inf
𝑦∈𝑌

sup
𝑧∈𝑇(𝑥)

𝑓 (𝑦, 𝑧) . (27)

Since 𝜆 < 𝛽 is arbitrary, we get the conclusion.This completes
the proof.

Remark 13. Theorem 12 improves Theorem 4.2 of [8] from
the compactness assumption to noncompact situation.
Theorem 12 also extendsTheorem 4 of [12] from compact G-
convex space to noncompact GFC-space. Our result includes
corresponding earlier Fan-type minimax inequalities due to
Tan [19], Park [20], Liu [21], and Kim [22].
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