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This paper is devoted to investigate the fixed points and best proximity points of multivalued cyclic self-mappings on a set of subsets
of complete metric spaces endowed with a partial order under a generalized contractive condition involving a Hausdorff distance.
The existence and uniqueness of fixed points of both the cyclic self-mapping and its associate composite self-mappings on each of
the subsets are investigated, if the subsets in the cyclic disposal are nonempty, bounded and of nonempty convex intersection. The
obtained results are extended to the existence of unique best proximity points in uniformly convex Banach spaces.

1. Introduction

Important attention is being devoted recently to the inves-
tigation of fixed points of self-mappings as well as to
the investigation of associate relevant properties like, for
instance, stability of the iterations [1–3] and existence and
uniqueness of fixed points. On the other hand, the extension
of those topics to the existence of either fixed points of
multivalued self-mappings [1, 4–19], or common fixed points
of several multivalued mappings or operators has received
important attention; see, for example, [15–19] and references
therein.This paper investigates some properties of fixed point
and best proximity point results for multivalued cyclic self-
mappings under a general contractive-type condition based
on the Hausdorff metric between subsets of a metric space
[4, 7–9] and which includes a particular case the contractive
condition for contractive single-valued self-mappings, [1, 4–
10] including the problems related to cyclic self-mappings, see
for example, [7, 8, 11] and references therein. This includes
strict contractive cyclic self-mappings and Meir-Keeler type
cyclic contractions, [20, 21]. There is a rich background
literature available on cyclic self-mappings and related fixed
point and best proximity point results; see, for example,
[22–30] and references therein. Some existing fixed point
results on contractive single and multivalued self-mappings
provided in [1, 4, 5, 9, 10, 31, 32] and references therein, under

various types of contractive conditions, have been revisited
and extended in [4]. There is also a wide sample of fixed
point type results available on fixed points and asymptotic
properties of the iterations for self-mappings satisfying a
number of contractive-type conditions while being endowed
with partial order conditions. See, for instance, [18, 19], and
references therein. The main objective of this paper is the
investigation of fixed point/best proximity point results for
multivalued cyclic self-mappings in complete metric spaces,
or uniformly convex Banach spaces. Such multivalued cyclic
self-mappings satisfy a contractive-type condition, which is
specified on the Hausdorff metric, for all pairs of elements in
the union of the subsets defining the cyclic disposal which are
subject to a partial order.

2. Properties of Distances and Fixed
Points for Multivalued Cyclic Self-Mappings
with a Partial Order

Assume that (𝑋, 𝑑) is a metric space for a set X endowed with
some metric:𝑋 × 𝑋 → R

0+
with R

0+
= R
+
∪ {0}. Let 𝐶𝐿(𝑋)

be the family of all nonempty and closed subsets of the set
𝑋. If 𝐴, 𝐵 ∈ 𝐶𝐿(𝑋) then we can define (𝐶𝐿(𝑋),𝐻) being the
generalized hyperspace of (𝑋, 𝑑) equippedwith theHausdorff
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metric𝐻 : 𝐶𝐿(𝑋) → R
0+
induced by themetric𝑑 : 𝑋×𝑋 →

R
0+
:

𝐻(𝐴, 𝐵) = max{sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵) , sup
𝑦∈𝐵

𝑑 (𝑦, 𝐴)} (1)

for two sets𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑋 which are finite if both sets are
bounded and zero if they have the same closure.The distance
between 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑋 is

𝐷 = 𝑑 (𝐴, 𝐵) = inf
𝑥∈𝐴,𝑦∈𝐵

𝑑 (𝑥, 𝑦)

= inf
𝑥∈𝐴

𝑑 (𝑥, 𝐵) = inf
𝑦∈𝐵

𝑑 (𝑦, 𝐴) .
(2)

Denote by 𝑃(𝑋), 𝐵(𝑋), and 𝐶𝐵(𝑋) the sets of nonempty, and
nonempty, bounded and nonempty, and bounded and closed
sets of𝑋, respectively. The following relations hold:

𝐷 ≤ 𝐻 (𝐴, 𝐵)

≤ 𝛿 (𝐴, 𝐵) = 𝛿 (𝐵, 𝐴) = sup
𝑥∈𝐴,𝑦∈𝐵

𝑑 (𝑎, 𝑏)

≤ 𝛿 (𝐴, 𝐵) + 𝛿 (𝐵, 𝐶) ; ∀𝐴, 𝐵, 𝐶 ∈ 𝐵 (𝑋) ,

(3)

[(𝐴, 𝐵 ∈ 𝐶𝐵 (𝑋)) ∧ 𝐻 (𝐴, 𝐵) < 𝜀]

⇒ [∃𝑏 ∈ 𝐵 : 𝑑 (𝑎, 𝑏) < 𝜀, ∀𝑎 ∈ 𝐴]
(4)

and 𝛿(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵 = {𝑥}. Consider
also a self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
, where 𝐴

𝑖
are

nonempty closed sets of 𝑋; ∀𝑖 ∈ 𝑝 = {1, 2, . . . , 𝑝}, subject to
the constraints 𝑇(𝐴

𝑖
) ⊆ 𝐴

𝑖+1
such that 𝐴

𝑖𝑝+𝑗
≡ 𝐴
𝑗
for any

integer numbers 𝑗 ∈ [1, 𝑝 − 1) ∩ Z and 𝑖 ∈ Z
0+
= Z
+
∪ {0}

with R
0+
= R
+
∪ {0}. If 𝑝 ≥ 2 then 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖

is a 𝑝-cyclic self-mapping. If 𝑝 = 1 then 𝑇 : 𝐴
1
→ 𝐴

1
is,

in particular, a self-mapping on 𝐴
1
. We will also consider a

partial order ⪯ on𝑋 so that (𝑋, ⪯) is a partially ordered space
and will assume, in general, that 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖

is a multivalued 𝑝-cyclic self-mapping so that 𝐴
𝑖
∋ 𝑥 →

𝑇𝑥( ̸=⌀) ⊂ 𝐴
𝑖+1

; ∀𝑖 ∈ 𝑝, ∀𝑥 ∈ ⋃
𝑖∈𝑝
𝐴
𝑖
.The subsequent result

does not assume a contractive condition for each iteration
on adjacent subsets of the contractive mapping but a global
contractive condition for the cyclic mapping for iterations on
multiple strips of the 𝑝 subsets 𝐴

𝑖
⊂ 𝑋; 𝑖 ∈ 𝑝. Therefore,

the result that the distances between any two subsets being
adjacent or not of [33] for nonexpansive self-mappings is not
required.

If 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a multivalued 𝑝-cyclic self-

mapping then the set 𝐵𝑃(𝐴
𝑖
) ⊂ 𝐴

𝑖
will be said to be the set

of best proximity points between 𝐴
𝑖
to 𝐴
𝑖+1

if 𝑑(𝐴
𝑖
, 𝐴
𝑖+1
) =

𝐷
𝑖
= 𝑑(𝑧, 𝑦) for all 𝑧 ∈ 𝐴

𝑖
and some 𝑦 ∈ 𝑇𝑧. This concept

generalizes that of best proximity points of subsets of single
valued cyclic self-mappings which is established as follows. If
𝑇 : 𝐴

1
∪ 𝐴
2
→ 𝐴

1
∪ 𝐴
2
is cyclic and single-valued then

𝑥 ∈ 𝐴
1
and 𝑇𝑥 ∈ 𝐴

2
are best proximity point if 𝑑(𝐴

1
, 𝐴
2
) =

𝑑(𝑥, 𝑇𝑥), [33, 34].The following result extends a previous one
for the case of noncyclic multivalued self-mappings, [18, 19].

Theorem 1. Let (𝑋, ⪯) be a partially ordered space and 𝑑 : 𝑋×
𝑋 → R

0+
with (𝑋, 𝑑) being a complete metric space. Let 𝐴

𝑖

be a set of 𝑝(≥ 2) nonempty, bounded, and closed subsets of
𝑋; ∀𝑖 ∈ 𝑝 (i.e., 𝐴

𝑖
∈ 𝐶𝐵(𝑋); ∀𝑖 ∈ 𝑝) with 𝐷

𝑖
= 𝑑(𝐴

𝑖
, 𝐴
𝑖+1
);

∀𝑖 ∈ 𝑝 and let 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
be a multivalued

𝑝-cyclic self-mapping on⋃
𝑖∈𝑝
𝐴
𝑖
satisfying.

(1) There exist 𝑝 real constants 𝑘
𝑖
∈ R
0+

satisfying 𝑘 =
∏
𝑖∈𝑝
[𝑘
𝑖
] ∈ [0, 1) such that the following condition

holds:

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑘
𝑖
𝑑 (𝑥, 𝑦) + (1 − 𝑘

𝑖
)𝐷
𝑖 (5)

for any given 𝑥 ∈ 𝐴
𝑖
and 𝑦 ∈ 𝐴

𝑖+1
which fulfil 𝑥 ⪯ 𝑦,

∀𝑖 ∈ 𝑝.
(2) If 𝑑(𝑥, 𝑦) < 𝑑

0
for some given 𝑑

0
∈ R
+
, 𝑦 ∈ 𝑇𝑥, and

any given 𝑥 ∈ ⋃
𝑖∈𝑝
𝐴
𝑖
, then 𝑥 ⪯ 𝑦 with 𝑦 ∈ 𝐴

𝑗+1
if

𝑥 ∈ 𝐴
𝑗
for any given 𝑗 ∈ 𝑝.

(3) There are some 𝑖 ∈ 𝑝, some 𝑥 = 𝑥
𝑖
∈ 𝐴
𝑖
, and some

𝑥
𝑖+1
∈ 𝑇𝑥
𝑖
⊂ 𝐴
𝑖+1

such that 𝑑(𝑥
𝑖
, 𝑥
𝑖+1
) < 𝑑
0𝑖
for some

𝑑
0𝑖
> 𝐷
𝑖
.

(4)

𝑑
0
≥ max(max

𝑗∈𝑝

𝑑
0𝑗
,max
𝑗∈𝑝

(𝑘
𝑗
(𝑑
0𝑗
− 𝐷
𝑗
) + 𝐷
𝑗
)) . (6)

Note that (6) implies that 𝑑
0𝑗
≤ min(𝑑

0
, (𝑑
0
− (1 − 𝑘

𝑗
)𝐷
𝑗
)/𝑘
𝑗
);

∀𝑗 ∈ 𝑝. Then, the following properties hold.

(i) There is a partially ordered subsequence 𝑆
𝑖

=

{𝑥
𝑖+𝑗+𝑛𝑘𝑝

}
𝑛𝑘∈Z0+

of the partially ordered sequence
𝑆(𝑥
𝑖
) = {𝑥

𝑖+𝑗
}
𝑗∈Z0+

, both of them of the first element
𝑥
𝑖
, with respect to the partial order (𝑋, ⪯), such that

𝑥
𝑖+𝑗+𝑛𝑘𝑝

∈ 𝑄
𝑖+𝑗

for 𝑗 ∈ 𝑝; ∀𝑘 ≥ 𝑘
0
, 𝑛
𝑘
∈ Z
0+

for some
𝑘
0
∈ Z
0+

and the given 𝑖 ∈ 𝑝, where 𝑄
𝑖+𝑗
⊆ 𝑇𝑥
𝑖+𝑗−1

⊆

𝑇𝑗−1𝑥
𝑖
⊆ 𝐴
𝑖+𝑗
, for any 𝑗 ∈ 𝑝 − 1 ∪ {0} and the given

𝑖 ∈ 𝑝, are 𝑝 closed “quasi-proximity” sets in-between
each pair of adjacent subsets of themultivalued𝑝-cyclic
self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐴
𝑖
such that

𝐷
𝑖+𝑗
≤ 𝑑 (𝑥

𝑛𝑝+𝑖+𝑗+1
, 𝑥
𝑛𝑝+𝑖+𝑗

)

≤ 𝑘
𝑖+𝑗
𝐷 + (1 − 𝑘

𝑖+𝑗
)𝐷 = 𝐷,

∀𝑗 ∈ 𝑝 − 1 ∪ {0} , ∀𝑛 ∈ Z
0+
,

(7)

where 𝐷 = min
𝑗∈𝑝
𝐷
𝑗
with 𝑥

𝑛𝑝+𝑖+𝑗
∈ 𝑇𝑥
𝑛𝑝+𝑖+𝑗−1

⊆

𝐴
𝑖+𝑗
; ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑛 ∈ Z

0+
for the given 𝑖 ∈ 𝑝.

(ii) If 𝐷
𝑗
= 𝐷; ∀𝑗 ∈ 𝑝 then any partially ordered sequence

𝑆(𝑥
𝑖
) of first element 𝑥 = 𝑥

𝑖
∈ 𝐴
𝑖
fulfills

∃ lim
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑖+𝑗+1

, 𝑥
𝑛𝑝+𝑖+𝑗

) = 𝐷; (8)

∀𝑗 ∈ 𝑝 and the given 𝑖 ∈ 𝑝, and 𝑥
𝑛𝑝+𝑗+1

∈ 𝑇𝑥
𝑛𝑝+𝑗

⊆

𝐴
𝑖+𝑗+1

; ∀𝑗 ∈ 𝑝 (i.e., 𝑥
𝑛𝑝+𝑗+1

∈ 𝐴
𝑖+𝑗+1

if 0 ≤ 𝑗 ≤ 𝑝−𝑖−1
and 𝑥

𝑛𝑝+𝑗+1
∈ 𝐴
𝑗−𝑝+𝑖+1

if 𝑝− 𝑖 < 𝑗 ≤ 𝑝 − 1), ∀𝑛 ∈ Z
0+
.
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Let 𝐵𝑃(𝐴
𝑗
) be the set of best proximity points between

𝐴
𝑗
and𝐴

𝑗+1
; ∀𝑗 ∈ 𝑝. Then, there is a sequence {𝑧(𝑗)

𝑛
} ⊂

𝐵𝑃(𝐴
𝑗
); ∀𝑗 ∈ 𝑝 such that the following limit exists:

lim
𝑛→∞

𝑑 ( 𝑥
𝑛𝑝+𝑗+1

, 𝑧
(𝑗)

𝑛
) = 𝐷; ∀𝑗 ∈ 𝑝

with 𝑥
𝑛𝑝+𝑗+1

∈ 𝑇𝑥
𝑛𝑝+𝑗
; ∀𝑛 ∈ Z

0+

(9)

(iii) If assumption (3) is removed and (6) in assumption (4)
is replaced by the stronger condition

(5)

𝑑
0
>max(max

𝑗∈𝑝

(𝐷
𝑗
+ diam (𝐴

𝑗
)) ,

max
𝑗∈𝑝

(𝑘
𝑗
(𝑑
0𝑗
− 𝐷
𝑗
) + 𝐷
𝑗
))

(10)

then, properties (i)-(ii) hold for any 𝑥 ∈ ⋃
𝑖∈𝑝
𝐴
𝑖
.

Proof. Let 𝑥
𝑖
∈ 𝐴
𝑖
for the given 𝑖 ∈ 𝑝 which satisfy

assumption (3). Then, from such an assumption, there is
𝑥
𝑖+1

∈ 𝑇𝑥
𝑖
, which is also in 𝐴

𝑖+1
, since 𝑇𝑥 ∈ 𝐴

𝑖+1
for

any 𝑥 ∈ ⋃
𝑖∈𝑝
𝐴
𝑖
, such that 𝑑(𝑥

𝑖
, 𝑥
𝑖+1
) < 𝑑

0𝑖
≤ 𝑑
0
. Thus,

𝑥
𝑖
⪯ 𝑥
𝑖+1

from assumption (2), since 𝑑
0𝑖
≤ 𝑑
0
. From (6)

and assumptions (1)-(2) by considering the distance between
adjacent subsets,

𝐷
𝑖
≤ 𝐻 (𝑇𝑥

𝑖
, 𝑇)

≤ 𝑘
𝑖
𝑑 (𝑥
𝑖
, 𝑥
𝑖+1
) + (1 − 𝑘

𝑖
)𝐷
𝑖

< 𝑘
𝑖
𝑑
0𝑖
+ (1 − 𝑘

𝑖
)𝐷
𝑖
≤ 𝑑
0𝑖
≤ 𝑑
0
,

(11)

since 𝐷
𝑖
< 𝑑
0𝑖
≤ (1/𝑘

𝑖
)[(𝑘
𝑖
− 1)𝐷

𝑖
+ 𝑑
0
] from assumptions

(3)-(4). From assumption (2) and (11), there is 𝑥
𝑖+2
∈ 𝑇𝑥
𝑖+1
⊂

𝐴
𝑖+2

such that 𝑥
𝑖+1
⪯ 𝑥
𝑖+2

, and then 𝑑(𝑥
𝑖+1
, 𝑥
𝑖+2
) < 𝑑
0,𝑖+1

, and
𝑑(𝑥
𝑖+1
, 𝑥
𝑖+2
) ≤ 𝐻(𝑇𝑥

𝑖
, 𝑇𝑥
𝑖+1
) < 𝑑
0𝑖
≤ 𝑑
0
. Then, one gets from

(11) and assumption (4):

𝐷
𝑖+1
≤ 𝐻 (𝑇𝑥

𝑖+1
, 𝑇𝑥
𝑖+2
)

≤ 𝑘
𝑖+1
𝑑 (𝑥
𝑖+1
, 𝑥
𝑖+2
) + (1 − 𝑘

𝑖+1
)𝐷
𝑖+1

≤ 𝑘
𝑖+1
𝑑
0,𝑖+1

+ (1 − 𝑘
𝑖+1
)𝐷
𝑖+1

< 𝑘
𝑖+1
𝑑
0,𝑖+1

+ (1 − 𝑘
𝑖+1
) [𝑑
0
− 𝑘
𝑖+1
(𝑑
0,𝑖+1

− 𝐷
𝑖+1
)]

≤ 𝑑
0
+ 𝑘
𝑖+1
𝑑
0
− 𝑘
𝑖+1
𝑑
0

+ (1 − 𝑘
𝑖+1
) 𝑘
𝑖+1
(𝐷
𝑖+1
− 𝑑
0𝑖+1
) < 𝑑
0
,

(12a)
𝑑 (𝑥
𝑖+2
, 𝑥
𝑖+3
) ≤ 𝐻 (𝑇𝑥

𝑖+1
, 𝑇𝑥
𝑖+2
)

≤ 𝑘
𝑖+1
𝑑 (𝑥
𝑖+1
, 𝑥
𝑖+2
)

+ (1 − 𝑘
𝑖+1
)𝐷
𝑖+1

≤ 𝑘
𝑖+1
[𝑘
𝑖
𝑑 (𝑥
𝑖
, 𝑥
𝑖+1
) + (1 − 𝑘

𝑖
)𝐷
𝑖
]

+ (1 − 𝑘
𝑖+1
)𝐷
𝑖+1

≤ 𝑘
𝑖+1
𝑘
𝑖
𝑑 (𝑥
𝑖
, 𝑥
𝑖+1
)

+ [𝑘
𝑖+1
(1 − 𝑘

𝑖
)+(1 − 𝑘

𝑖+1
)]max
𝑖∈𝑝

𝐷
𝑖
< 𝑑
0
.

(12b)

Again, from assumption (2), there is 𝑥
𝑖+3
∈ 𝑇𝑥
𝑖+2

such that
𝑥
𝑖
⪯ 𝑥
𝑖+1

⪯ 𝑥
𝑖+2

⪯ 𝑥
𝑖+3

. Now, proceeding by complete
induction with (12a) from 𝑗 = 0 to 𝑗 = 𝑝 − 1, it follows
that the existence of a partially ordered space 𝑥

𝑖
⪯ 𝑥
𝑖+1
⪯

𝑥
𝑖+2
⪯ 𝑥
𝑖+𝑝−2

implies, from assumption (2), the existence of
the partially ordered space 𝑥

𝑖
⪯ 𝑥
𝑖+1
⪯ 𝑥
𝑖+2
⪯ ⋅ ⋅ ⋅ ⪯ 𝑥

𝑖+𝑝−1

satisfying 𝑥
𝑖+𝑗

∈ 𝑇𝑥
𝑖+𝑗−1

⊆ 𝐴
𝑖+𝑗
; ∀𝑗 ∈ 𝑝 with 𝐴

𝑘𝑝+𝑗
≡

𝐴
𝑗
; ∀𝑘 ∈ 𝑝. Also, proceeding recursively with (12b), one

concludes, if 𝑘 = ∏
𝑖∈𝑝
[𝑘
𝑖
] ∈ [0, 1) and 𝐷 = max

𝑖∈𝑝
𝐷
𝑖
, that

there is a partially ordered sequence 𝑥
𝑖
⪯ 𝑥
𝑖+1
⪯ 𝑥
𝑖+2
⪯ ⋅ ⋅ ⋅ ⪯

𝑥
𝑖+𝑝−1

⪯ 𝑥
𝑖+𝑝

such that 𝑥
𝑖+𝑗
∈ 𝑇𝑥
𝑖+𝑗−1

⊆ 𝑇(𝐴
𝑖+𝑗−1

) ⊆ 𝐴
𝑖+𝑗
;

∀𝑗 ∈ 𝑝, and

𝑑 (𝑥
𝑖+𝑝+1

, 𝑥
𝑖+𝑝
) ≤ 𝑘𝑑 (𝑥

𝑖
, 𝑥
𝑖+1
) + (1 − 𝑘)𝐷 (13)

so that there is a partially ordered sequence𝑥
𝑖
⪯ 𝑥
𝑖+1
⪯ 𝑥
𝑖+2
⪯

⋅ ⋅ ⋅ ⪯ 𝑥
𝑖+𝑝−1

⪯ 𝑥
𝑖+𝑛𝑝

⪯ ⋅ ⋅ ⋅ such that 𝑥
𝑖+𝑗
∈ 𝑇𝑥
𝑖+𝑛𝑝+𝑗−1

⊆

𝑇(𝐴
𝑖+𝑗
); ∀𝑗 ∈ 𝑝 − 𝑖:

𝐷
𝑖+1
≤ 𝑑 (𝑥

𝑛𝑝+𝑖+2
, 𝑥
𝑛𝑝+𝑖+1

)

≤ 𝐻(𝑇𝑥
𝑖+𝑛𝑝+1

, 𝑇𝑥
𝑛𝑝+𝑖
) + (1 − 𝑘

𝑖
)𝐷
𝑖

≤ lim sup [𝑘𝑛𝑑 (𝑥
𝑖
, 𝑥
𝑖+1
) + (1 − 𝑘

𝑛
)𝐷]

𝑛→∞

= 𝐷;

∀𝑛 ∈ Z
+

(14)

so that

𝐷
𝑖+𝑗
≤ 𝑑 (𝑥

𝑛𝑝+𝑖+𝑗+1
, 𝑥
𝑛𝑝+𝑖+𝑗

)

≤ 𝑘
𝑖+𝑗
𝐷 + (1 − 𝑘

𝑖+𝑗
)𝐷 = 𝐷;

∀𝑗 ∈ 𝑝 − 1 ∪ {0} , ∀𝑛 ∈ Z
0+
.

(15)

Then, from (15), there are 𝑝 closed “quasi-proximity” sets
𝑄
𝑖
⊆ 𝐴
𝑖
, 𝑄
𝑖+1

⊆ 𝑇𝑥
𝑖
⊆ 𝐴
𝑖+1

, 𝑄
𝑖+𝑝−1

⊆ 𝑇𝑝−1𝑥
𝑖
⊆

𝐴
𝑖+𝑝−1

between each pair of adjacent subsets of the cyclic
self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
in view of (14), such
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that there is a partially ordered subsequence {𝑥
𝑖+𝑗+𝑛𝑘𝑝

}
𝑛𝑘∈Z+

of the partially ordered sequence 𝑥
𝑖
⪯ 𝑥
𝑖+1
⪯ 𝑥
𝑖+2
⪯ ⋅ ⋅ ⋅ ⪯

𝑥
𝑖+𝑝−1

⪯ 𝑥
𝑖+𝑛𝑝

⪯ ⋅ ⋅ ⋅ , being subject to 𝑥
𝑖+𝑗+𝑛𝑘𝑝

∈ 𝑄
𝑖+𝑗

for
∀𝑗 ∈ 𝑝 − 1 ∪ {0}; ∀𝑘 ≥ 𝑘

0
, some 𝑘

0
∈ Z
0+
. Thus, (7)

holds and then the property (i) has been proven.The relation
(8) of property (ii) for 𝑗 = 0 is a direct consequence of
property (i). From (8), it is also proven that the sequence 𝑆

𝑖

of first element 𝑥
𝑖
∈ 𝐴
𝑖
in property (i) satisfies the following

property ∃ lim
𝑛→∞

𝑑(𝑥
𝑗+𝑛𝑝+1

, 𝑥
𝑗+𝑛𝑝
) = 𝐷; ∀𝑗 ∈ 𝑝. Assume

not, then, it follows that

𝐷 ≤ lim inf
𝑛→∞

𝑑 (𝑥
𝑖+𝑗+𝑛𝑝+1

, 𝑥
𝑖+𝑗+𝑛𝑝

)

≤ lim sup
𝑛→∞

𝑑 (𝑥
𝑖+𝑗+𝑛𝑝+1

, 𝑥
𝑖+𝑗+𝑛𝑝

)

≤ 𝑘
𝑗
lim
𝑛→∞

𝑑 (𝑥
𝑖+𝑗+𝑛𝑝

, 𝑥
𝑖+𝑗+𝑛𝑝−1

)

+ (1 − 𝑘
𝑗
)𝐷 ≤ 𝑘

𝑗
𝐷 + (1 − 𝑘

𝑗
)𝐷 = 𝐷;

(16)

∀𝑗 ∈ 𝑝 − 1 ∪ {0} and the given 𝑖 ∈ 𝑝 so that, by using
complete induction, ∃ lim

𝑛→∞
𝑑(𝑥
𝑖+𝑗+𝑛𝑝+1

, 𝑥
𝑖+𝑗+𝑛𝑝

) = 𝐷;
∀𝑗 ∈ 𝑝 − 1∪{0} and the given 𝑖 ∈ 𝑝with {𝑥

𝑘
}
𝑘≥𝑖

being partially
ordered with respect to (X, ⪯ ), that is, 𝑥

𝑖+𝑘
(∈ 𝑇𝑥

𝑖+𝑘−1
⊆

𝐴
𝑖+𝑘
) ⪯ 𝑥

𝑖+𝑘+1
(∈ 𝑇𝑥

𝑖+𝑘
⊆ 𝐴
𝑖+𝑘+1

); ∀𝑘 ∈ Z
0+

and we
can then reformulate the above limits of the distances as
∃ lim
𝑛→∞

𝑑(𝑥
𝑖+𝑗+𝑛𝑝+1

, 𝑥
𝑖+𝑗+𝑛𝑝

) = 𝐷; ∀𝑗 ∈ 𝑝 − 1 ∪ {0} for the
given 𝑖 ∈ 𝑝.

The remaining proof of property (ii) follows by contra-
diction. Suppose that the limit (9) does not exist for some
sequence {𝑧(𝑗)

𝑛
} ⊂ 𝐵𝑃(𝐴

𝑗
) for some 𝑗 ∈ 𝑝. Since {𝑧(𝑗)

𝑛
} ⊂

𝐵𝑃(𝐴
𝑗
), lim inf

𝑛→∞
𝑑(𝑥
𝑛𝑝+𝑗+1

, 𝑧(𝑗)
𝑛
) < 𝐷 is impossible in the

case that lim inf
𝑛→∞

𝑑(𝑥
𝑛𝑝+𝑖+1

, 𝑧(𝑗)
𝑛
)would not exist for some

𝑗 ∈ 𝑝. Then,

lim inf
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑗+1

, 𝑧
(𝑗)

𝑛
) = 𝐷

̸= lim inf
𝑘→∞

𝑑 (𝑥
𝑛𝑘𝑝+𝑗+1

, 𝑧
(𝑗)

𝑛𝑘
) > 𝐷

= 𝑑 (𝐴
𝑗
, 𝐴
𝑗+1
) = 𝑑 (𝑧, 𝑦)

(17)

for some 𝑧 ∈ 𝐵𝑃(𝐴
𝑗
), 𝑦 ∈ 𝑇𝑧 ⊂ 𝐵𝑃(𝐴

𝑗+1
), since 𝐴

𝑗
and

𝐴
𝑗+1

are boundedly compact for all 𝑗 ∈ 𝑝 since they are
bounded and closed and, then, compact, [7, 8]. This leads to
a contradiction, since {𝑧(𝑗)

𝑛
} ⊂ 𝐵𝑃(𝐴

𝑗
) and 𝑥

𝑛𝑝+𝑗+1
∈ 𝑇
𝑛𝑝+𝑗

⊂

𝐴
𝑗+1

; ∀𝑗 ∈ 𝑝. The property (ii) has been proven.
If assumption (3) is removed, while 𝑑

0
satisfies the

stronger constraint (10), then there are infinitely many
sequences 𝑆(𝑥) for any arbitrary first element 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
,

in the partial order ⪯, of an iterated sequence through 𝑇 for
which property (i) and thus property (ii) both hold since
𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑇𝑥) < 𝑑

0
from assumption (2). Hence,

property (iii) follows so that the theorem has been fully
proven.

Note that (5) is not guaranteed to be a cyclic contractive
condition for each restricted map 𝑇 : (⋃

𝑗∈𝑝
𝐴
𝑗
) | 𝐴

𝑖
→

(⋃
𝑗∈𝑝
𝐴
𝑗
) | 𝐴
𝑖+1

, since all the constants are not required to
be less than one in (5), and furthermore, (5) and assumption
(3) are fulfilled for some first element 𝑥

𝑖
∈ 𝐴
𝑖
, 𝑥
𝑖+1
∈ 𝑇𝑥
𝑖
⊆

𝐴
𝑖+1

and some given 𝑖 ∈ 𝑝 in the partial order (𝑋, 𝑑). Note
also that sequences fulfilling the partial order of Theorem 1
can always be built through iterations with the multivalued
𝑝-self-mapping for any arbitrarily chosen 𝐴

𝑖
for any 𝑖 ∈ 𝑝

from (6) characterizing assumption (4) of Theorem 1. The
subsequent particular case of Theorem 1 applies when all
the iterations between the cyclic disposal satisfy a cyclic
contractive condition, that is, 𝑘

𝑖
< 1; ∀𝑖 ∈ 𝑝.

Note that Theorem 1(iii) also holds in the particular case
that the partial order is a total order for all pairs in any
Cartesian product 𝐴

𝑖
×𝐴
𝑖+1

of adjacent subsets 𝐴
𝑖
⊂ 𝑋; ∀𝑖 ∈

𝑝, since both elements of any ordered pair (𝑥, 𝑦) ∈ 𝐴
𝑖
×𝐴
𝑖+1

,
𝑦 ∈ 𝑇𝑥; ∀𝑖 ∈ 𝑝 are comparable with respect to the partial
order ⪯. Theorem 1(iii) establishes that any element in any
subset 𝐴

𝑖
⊂ 𝑋; ∀𝑖 ∈ 𝑝 is a first element of a nondecreasing

(i.e., partially ordered) sequence with respect to the partial
order ⪯ which fulfils properties (i)-(ii) of Theorem 1.

Theorem 2. In addition to assumptions (1)–(4) of Theorem 1,
assume, furthermore,

(6) 𝐷
𝑗
= 𝐷 = 0; ∀𝑗 ∈ 𝑝 (i.e.,⋂

𝑗∈𝑝
𝐴
𝑗
̸= ⌀);

(7) the limit 𝑥 of any converging nondecreasing sequence
{𝑥
𝑛
}
𝑛∈Z0+ is comparable to each 𝑥

𝑛
; ∀𝑛 ∈ Z

0+
in the

partial order (𝑋, ⪯), that is,

[𝑥
𝑛
⪯ 𝑥 ( ̸= 𝑥

𝑛
) 𝑓𝑜𝑟 𝑥 ∈ 𝐴

𝑗
, 𝑥
𝑛
∈ 𝐴
𝑗
, ∀𝑗 ∈ 𝑝, ∀𝑛 ∈ Z

0+
]

⇒ 𝐻(𝑇𝑥, 𝑇𝑥
𝑛
) > 𝑘
𝑖
𝑑 (𝑥, 𝑥

𝑛
) .

(18)

Then, there is a sequence {𝑥
𝑛𝑝+𝑖+𝑗

}
𝑛∈Z0+

satisfying 𝑥
𝑛𝑝+𝑖+𝑗

∈

𝑇𝑛𝑝+𝑗𝑥
𝑖
for some given initial element 𝑥 = 𝑥

𝑖
∈ 𝐴
𝑖
and some

given 𝑖 ∈ 𝑝; ∀𝑗 ∈ 𝑝 − 1 ∪ {0} which is non-decreasing and
ordered with respect to the partial order (𝑋, ⪯) and fulfils the
following properties.

(i) ∃ lim
𝑛→∞

𝑑(𝑥
𝑛𝑝+𝑖+𝑗+2

, 𝑥
𝑛𝑝+𝑖+𝑗+1

) = 0; 𝑗 ∈ 𝑝 − 1 ∪ {0}
and the given 𝑖 ∈ 𝑝 with 𝑥

𝑛𝑝+𝑗+2
∈ 𝑇𝑥

𝑛𝑝+𝑗+1
; 𝑗 ∈

𝑝 − 1 ∪ {0}, ∀𝑛 ∈ Z
0+

and the sequence {𝑥
𝑛𝑝+𝑖+𝑗

}
𝑛∈Z0+

is
a Cauchy sequence; 𝑗 ∈ 𝑝 − 1 ∪ {0}.

(ii) The sequence {𝑥
𝑛𝑝+𝑖+𝑗

}
𝑛∈Z0+

for any 𝑗 ∈ 𝑝 − 1 ∪ {0}
and the given 𝑖 ∈ 𝑝 converge to a limit 𝑥 in ⋂

𝑗∈𝑝
𝐴
𝑗
,

which is a fixed point of the composite self-mapping �̂�
𝑗
:

𝐴
𝑗
→ 𝐴
𝑗
, where �̂�

𝑗
= 𝑇𝑝 = 𝑇 ∘ 𝑇 ∘ ⋅ ⋅ ⋅ 𝑇 (𝑝 times) =

𝑇𝑝 | 𝐴
𝑗
of domain 𝐴

𝑗
; ∀𝑗 ∈ 𝑝 and also a fixed point

of the self-mapping 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
, that is,

𝑥 ∈ �̂�
𝑗
𝑥 (⊆ ⋂

𝑗∈𝑝
𝐴
𝑗
) and 𝑥 ∈ 𝑇𝑝 𝑥(⊆ ⋂

𝑗∈𝑝
𝐴
𝑗
);

∀𝑗 ∈ 𝑝.
(iii) If, in addition, (𝑋, 𝑑) is a convex metric space, what

holds, in particular, if 𝑋 is a Euclidean vector space
and 𝑑 : 𝑋 × 𝑋 → R

0+
is the Euclidean metric, and
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⋂
𝑗∈𝑝
𝐴
𝑗
is convex, then 𝑥 ∈ 𝑇 𝑥(⊆ ⋂

𝑗∈𝑝
𝐴
𝑗
) is the

unique fixed point of 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
and

�̂�
𝑗
: 𝐴
𝑗
→ 𝐴

𝑗
; ∀𝑗 ∈ 𝑝 and also the unique fixed

point of 𝑇𝑝 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐴
𝑖
.

(iv) If assumption (4) of Theorem 1 is replaced by assump-
tion (5) then properties (i)–(iii) hold for any 𝑥 ∈

⋃
𝑖∈𝑝
𝐴
𝑖
.

(v) If𝑋 is a Euclidean vector space then property (iii) holds
also if the condition of (𝑋, 𝑑) being a convex metric
space is removed.

Proof. The property (i) follows from Theorem 1 when 𝐷
𝑗
=

𝐷 = 0; ∀𝑗 ∈ 𝑝. To address the proof of property (ii), it is first
proven that {𝑥

𝑛𝑝+𝑗
}
𝑖∈Z0+

is a Cauchy sequence in 𝑋; ∀𝑗 ∈ 𝑝.
Take𝑚 ∈ Z

+
so that one gets from (10) that

𝑑 (𝑥
(𝑛+𝑚+1)𝑝+𝑖+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑖+𝑗

)

≤ 𝑘𝑑 (𝑥
(𝑛+𝑚)𝑝+𝑖+𝑗

, 𝑥
(𝑛+𝑚−1)𝑝+𝑖+𝑗

)

≤ ⋅ ⋅ ⋅ ≤ 𝑘
𝑚
𝑑 (𝑥
𝑛𝑝+𝑖+𝑗

, 𝑥
(𝑛+1)𝑝+𝑖+𝑗

)

(19)

for some 𝑥 = 𝑥
𝑖
∈ 𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} for any given 𝑖 ∈ 𝑝

from assumption (1) of Theorem 1, where 𝑘 = ∏𝑝
𝑖=1
𝑘
𝑖
. Then,

𝑑(𝑥
(𝑛+𝑚+1)𝑝+𝑖+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑖+𝑗

) → 0 as 𝑚 → ∞; ∀𝑗 ∈ 𝑝 − 1 ∪
{0}. Thus, {𝑥

𝑛p+𝑖+𝑗} is a Cauchy sequence for the given 𝑖 ∈ 𝑝;
∀𝑗 ∈ 𝑝 − 1 ∪ {0}. Then, {𝑥

𝑛𝑝+𝑗
} is a Cauchy sequence; ∀𝑗 ∈

[𝑖, 𝑝 + 𝑖]. Then, such a sequence converges to some 𝑥
𝑖+𝑗
∈

𝑇𝑥
𝑖+𝑗−1

∩ 𝐴
𝑖+𝑗
; ∀𝑗 ∈ 𝑝 − 1 ∪ {0} and any given 𝑖 ∈ 𝑝, such

that 𝑥
𝑛𝑝+𝑖+𝑗

⪯ 𝑥
𝑖+𝑗
; ∀𝑛 ∈ Z

0+
from (18), since all the elements

of the generated non-decreasing sequence in the partial order
(𝑋, ⪯) are comparable from (18) and (𝑋, 𝑑) is complete. The
property (i) has been proven.

To prove property (ii), assume that there are two distinct
limits𝑥

𝑖
∈ 𝑇𝑥
𝑖−1
∩𝐴
𝑖
and𝑥
𝑗
∈ 𝑇𝑥
𝑗−1
∩𝐴
𝑗
for some distinct 𝑖, 𝑗

in 𝑝. Since the restricted composite self-mapping �̂�
𝑗
(≡ 𝑇𝑝 |

𝐴
𝑗
) : 𝐴

𝑗
→ 𝐴

𝑗
is a cyclic contraction on the nonempty

closed set 𝐴
𝑗
for any 𝑗 ∈ 𝑝, then we can built uniquely a

restricted composite self-mapping �̂�
𝑗
: 𝐴
𝑖
→ 𝐴

𝑖
defining

the partially ordered sequence {𝑥
𝑛𝑝+𝑖
}, with first element 𝑥 =

𝑥
𝑖
∈ 𝐴 i , which converges to 𝑥

𝑖
as 𝑛 → ∞, since such a

restricted composite self-mapping satisfies also assumptions
(1)-(2) of Theorem 1. Then, we can proceed, in the same way,
with �̂�

𝑗
: 𝐴
𝑗
→ 𝐴
𝑗
generating {𝑥

𝑛𝑝+𝑗
} converging to 𝑥

𝑗
̸= 𝑥
𝑖

as 𝑛 → ∞ for any 𝑗 ∈ 𝑝. Both such composite self-mappings
are Lipschitz-continuous, since they are contractive with the
Lipschitz constant being the contractive constant 𝑘 < 1,
so that the limit of the distance can be permuted with the
distance of the limits. Then, since 𝑥

ℓ
= �̂�
𝑗
𝑥
ℓ
for ℓ = 𝑖, 𝑗 and

since 𝑥
ℓ
is a fixed point of �̂�

ℓ
: 𝐴
ℓ
→ 𝐴

ℓ
for ℓ = 𝑖, 𝑗( ̸= 𝑖) ∈

𝑝, the following contradiction holds to the existence of two

distinct fixed points 𝑥
𝑖
(∈ �̂�𝑛
𝑖
𝑥
𝑖
) ̸= 𝑥
𝑗
(∈ �̂�𝑛
𝑗
𝑥
𝑗
) for some ℓ =

𝑖, 𝑗( ̸= 𝑖) ∈ 𝑝; ∀𝑛 ∈ Z
0+
:

0 = 𝐻( lim
𝑛→∞

�̂�
𝑛

𝑖
𝑥
𝑖
, lim
𝑛→∞

�̂�
𝑛

𝑗
𝑥
𝑗
)

= 𝐻( lim
𝑛→∞

𝑇
𝑛𝑝
𝑥
𝑖
, lim
𝑛→∞

𝑇
𝑛𝑝
𝑥
𝑗
)

= lim
𝑛→∞

𝐻(𝑇
𝑛𝑝
𝑥
𝑖
, 𝑇
𝑛𝑝
𝑥
𝑗
)

≤ lim
𝑛→∞

(𝑘
𝑛
) 𝑑 (𝑥

𝑖
, 𝑥
𝑗
) = 0 ⇒ 𝑥

𝑖
= 𝑥
𝑗

for 𝑖, 𝑗 ( ̸= 𝑖) ∈ 𝑝.
(20)

Since any existing fixed point in 𝐴
𝑖
∩ 𝐴
𝑗
of �̂�
ℓ
(= 𝑇𝑝 | 𝐴

ℓ
) :

𝐴
ℓ
→ 𝐴

ℓ
for ℓ = 𝑖, 𝑗; ∀𝑖, 𝑗( ̸= 𝑖) ∈ 𝑝 is comparable in the

partial order (𝑋, ⪯) to any element of 𝐴
𝑖
∩ 𝐴
𝑗
, diam(𝐴

𝑖
∩

𝐴
𝑗
) < 𝑑

0
and 𝑥

𝑖
∈ �̂�
𝑖
𝑥
𝑖
⊆ 𝐴
𝑖
, 𝑥
𝑗
∈ �̂�
𝑗
𝑥
𝑗
⊆ 𝐴
𝑗
; ∀𝑖, 𝑗( ̸= 𝑖) ∈

𝑝. Assuming, with no loss in generality, that 𝑥
𝑖
⪯ 𝑥
𝑗
, one

can build, from the assumptions ofTheorem 1 and the current
comparability assumption (7), a nondecreasing, converging
and partially ordered sequence:

𝑧
1
= 𝑥
𝑖
⪯ 𝑧
2
= 𝑥
𝑗
⪯ ⋅ ⋅ ⋅ ⪯ 𝑧

𝑛
⋅ ⋅ ⋅ ⪯ 𝑧 = lim

𝑛→∞
𝑧
𝑛 (21)

such that

𝑧
2𝑛+1

∈ 𝑇
(2𝑛+1)𝑝

⊆ 𝐴
𝑖
, 𝑧
2𝑛
∈ 𝑇
(2𝑛+𝑗−𝑖)𝑝

⊆ 𝐴
𝑗
, ∀𝑛 ∈ Z

0+
.

(22)

Thus, lim
𝑛→∞

𝑇𝑛𝑝𝑥
𝑖
(⊆ 𝐴

𝑖
) = lim

𝑛→∞
𝑇𝑛𝑝𝑥
𝑗
(⊆ 𝐴

𝑗
) for

any 𝑖, 𝑗( ̸= 𝑖) ∈ 𝑝. Since, 𝐴
𝑖
and 𝐴

𝑖
are closed and nonempty

for any distinct 𝑖, 𝑗 in 𝑝, then 𝑧 ∈ 𝐴
𝑖
∩ 𝐴
𝑗
. Since the pair

(𝑖, 𝑗) is arbitrary and the set⋂
𝑖∈𝑝
𝐴
𝑖
is nonempty and closed,

then 𝑧 ∈ �̂�
𝑗
𝑧(⊆ ⋂

𝑖∈𝑝
𝐴
𝑖
) for any 𝑗 ∈ 𝑝. Then, 𝑧 ∈ �̂�

𝑖
𝑧 is a

fixed point of �̂�
𝑖
: 𝐴
𝑖
→ 𝐴

𝑖
; ∀𝑖 ∈ 𝑝. But, since 𝑥

𝑖
∈ �̂�
𝑖
𝑥
𝑖
is

a fixed point of �̂�
𝑖
: 𝐴
𝑖
→ 𝐴

𝑖
, it cannot converge through

an iterated sequence to another distinct fixed point of the
same self-mapping or to be distinct of it. Thus, 𝑥 = 𝑥

𝑖
= 𝑥
𝑗

is a fixed point of the restricted composite self-mapping of
�̂�
𝑖
: 𝐴
𝑖
→ 𝐴

𝑖
; ∀𝑖 ∈ 𝑝 which is in the closed nonempty set

⋂
𝑗∈𝑝
𝐴
𝑗
. Then, 𝑇𝑝𝑛𝑥 = 𝑇𝑝𝑥 = Fix(𝑇𝑝) ⊆∈ ⋂

𝑖∈𝑝
𝐴
𝑖
; ∀𝑛 ∈ Z

+
.

Also, note that, since 𝑥 ⪯ 𝑥, 𝑥 ∈ 𝑇𝑥 and 𝐷
𝑗
= 0, ∀𝑗 ∈ 𝑝, one

gets from (10) that

0 = 𝑑 (𝑥, 𝑇
𝑝+1
𝑥) = 𝐻(𝑇𝑥, 𝑇

𝑝+1
𝑥)

≤ 𝑘
𝑗
𝑑 (𝑥, 𝑥) = 𝑘

𝑗
𝑑 (𝑥, 𝑇

𝑝
𝑥) = 0,

(23)

since 𝑥 ∈ 𝑇𝑝+1𝑥 from 𝐻(𝑇𝑥, 𝑇𝑝+1𝑥) = 0. Thus, Fix(𝑇𝑝) =
Fix(�̂�𝑝
𝑖
) ⊆ Fix(𝑇𝑝+1) ⊆ 𝑇𝑥.

It remains to be proven that 𝑥 ∈ 𝑇𝑥 ⊆ ⋂
𝑗∈𝑝
𝐴
𝑗
is the

unique fixed point of 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
, since 𝑑

0
>

diam(𝐴
𝑖
∩𝐴
𝑗
) ≥ diam (⋂

𝑘∈𝑝
𝐴
𝑘
) and any existing fixed point

in ⋂
𝑘∈𝑝
𝐴
𝑘
is comparable, with respect to the partial order

(𝑋, ⪯), to any element of ⋂
𝑘∈𝑝
𝐴
𝑘
. This is a consequence of
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assumption (2) ofTheorem 1, so that 𝑑(𝑥
𝑖
, 𝑇𝑛𝑝+𝑗𝑥

𝑖+𝑗
) → 0 as

𝑛 → ∞, and

𝑑 (𝑥
𝑖
, 𝑇
𝑛𝑝+𝑗
𝑥
𝑖+𝑗
) ≤ 𝐻(𝑇

𝑛𝑝
𝑥
𝑖
, 𝑇
𝑛𝑝+𝑗
𝑥
𝑖+𝑗
)

≤ 𝑘
𝑛
(

𝑖+𝑗−1

∏
ℓ=𝑖

[𝑘
ℓ
]) 𝑑 (𝑥

𝑖
, 𝑇
𝑗−1
𝑥
𝑖+𝑗
)

< 𝑑 (𝑥
𝑖
, 𝑥
𝑖+𝑗
) ; ∀𝑛 ∈ Z

0+
,

(24)

if 𝑥
𝑖
( ̸= 𝑥
𝑖+𝑗
) ∉ 𝑇𝑗−1𝑥

𝑖+𝑗
, since 𝑘 < 1, and then 𝑘𝑛(∏𝑖+𝑗−1

ℓ=𝑖
𝑘
ℓ
) <

1; ∀𝑗 ∈ 𝑝, ∀𝑛(≥ 𝑛
0
) and some 𝑛

0
∈ Z
+
. Thus, 𝑥

𝑖
∈ 𝑇𝑥
𝑖
⊆

𝑇𝑝𝑛𝑥
𝑖
⊆ 𝐴
𝑖
and 𝑥

𝑖+𝑗
∈ 𝑇𝑥
𝑖+𝑗
⊆ 𝑇𝑝𝑛+𝑗𝑥

𝑖+𝑗
(= 𝑇𝑗𝑥

𝑖+𝑗
) ⊆ 𝐴

𝑖+𝑗
.

Thus, 𝑥
𝑖
∈ 𝑇 𝑥

𝑖
⇒ 𝑥
𝑖+𝑗
∈ 𝑇𝑗𝑥

𝑖+𝑗
. It can be also proven in

the same way by interchanging the roles of both fixed points
that 𝑥

𝑖+𝑗
∈ 𝑇𝑗𝑥

𝑖+𝑗
⇒ 𝑥
𝑖
∈ 𝑇𝑥
𝑖
. As a result, 𝑇𝑗𝑥

𝑖+𝑗
= 𝑇𝑥
𝑖
=

Fix(𝑇) ⊆ ⋂
𝑖∈𝑝
𝐴
𝑖
.

On the other hand, since any fixed point of the self-
mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
; ∀𝑖 ∈ 𝑝 has to be also

a fixed point of each restricted composite self-mapping 𝑇
𝑗
:

𝐴
𝑗
→ 𝐴

𝑗
, ∀𝑗 ∈ 𝑝, which is a unique 𝑥 ∈ 𝑇𝑥, ∀𝑖 ∈ 𝑝,

then, Fix(𝑇) = Fix(𝑇𝑝) = Fix(𝑇𝑝
𝑗
) ⊆ ⋂

𝑖∈𝑝
𝐴
𝑖
; ∀𝑗 ∈ 𝑝. Hence,

property (ii) is proven.
The property (iii) is proven as follows. Assume that there

are 𝑥
𝑖
∈ 𝑇𝑥
1
(⊆ ⋂
𝑗∈𝑝

𝐴
𝑗
) for 𝑖 = 1, 2with 𝑥

1
̸= 𝑥
2
, since it has

been proven that 𝑇𝑥
1
= 𝑇𝑥
2
if 𝑥
𝑖
∈ Fix(𝑇); 𝑖 = 1, 2. Then,

since (𝑋, 𝑑) is a convex metric space (which is guaranteed,
in particular, under a sufficiency-type condition, if the vector
space 𝑋 is Euclidean and the metric is the Euclidean norm)
and⋂

𝑗∈𝑝
𝐴
𝑗
is convex, there is a sequence {𝑥(𝑛)

1
} ⊂ [𝑥

1
, 𝑥
2
] ⊂

⋂
𝑗∈𝑝
𝐴
𝑗
, for some 𝑥(1)

1
∈ 𝑇𝑥
1
being such that 𝑑(𝑥

1
, 𝑥
(1)

1
) =

𝑑(𝑥
2
, 𝑥
(1)

1
) = 𝑑(𝑥

1
, 𝑥
2
)/2, fulfilling

0 = 𝑑 (𝑥
(𝑛+1)

1
, 𝑥
2
)

≤ 𝑑 (𝑥
(𝑛)

1
, 𝑥
2
)

≤ 2
𝑛
𝑑 (𝑥
(𝑛)

1
, 𝑥
2
)

= 2𝑑 (𝑥
(1)

1
, 𝑥
2
)

≤ 𝐻 (𝑇𝑥
1
, 𝑇𝑥
2
)

= 𝐻 (𝑇
𝑝
𝑥
1
, 𝑇
𝑝
𝑥
2
) = 0

≤ 𝑘𝑑 (𝑥
1
, 𝑥
2
) < 𝑑 (𝑥

1
, 𝑥
2
) < 𝑑
0
;

(25)

∀𝑛 ∈ Z
+
such 𝑥(1)

1
∈ 𝑇𝑥
1
always exists, since 𝑥

1
= 𝑥
(0)

1
⪯ 𝑥
2
,

since all elements in ⋂
𝑗∈𝑝
𝐴
𝑗
are pair wise comparable by

hypothesis, 𝑇𝑥
1
= 𝑇𝑥
2
, 𝑥
1,2
∈ 𝑇𝑥
1
, [𝑥
1
, 𝑥
2
] ⊂ ⋂

𝑗∈𝑝
𝐴
𝑗
(𝑋, 𝑑)

is a convex metric space, and ⋂
𝑗∈𝑝
𝐴
𝑗
is nonempty and

convex. Then, from the convexity of ⋂
𝑗∈𝑝
𝐴
𝑗
and (25), one

gets that [𝑥(𝑛+1)
1

, 𝑥
2
] ⊂ [𝑥

(𝑛)

1
, 𝑥
2
] ⊂ ⋂

𝑗∈𝑝
𝐴
𝑗
, 𝑥(𝑛)
1
= 𝑥
2
and

𝑥
(𝑛)

1
⪯ 𝑥
2
; ∀𝑛 ∈ Z

0+
and then there are infinitely many

fixed points of 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
so that 𝑇𝑥

1
has

infinite cardinal and 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
would not be

a multivalued self-mapping, a contradiction.Thus, 𝑥
1
= 𝑥
2
=

𝑥 is the unique fixed point of 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
and

also the unique fixed point of 𝑇𝑝 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐴
𝑖
using

a similar argument to the above one to prove the uniqueness.
Hence, property (iii) follows.

The proof of property (iv) follows directly from the above
properties (i)–(iii) and property (iii) of Theorem 1; property
(v) follows directly, since 𝐴

𝑖
⊂ 𝑋; ∀𝑖 ∈ 𝑝 being closed

implies that ⋂
𝑖∈𝑝
𝐴
𝑖
is also closed, which together with the

condition that ⋂
𝑖∈𝑝
𝐴
𝑖
is convex, leads to the property that

(⋂
𝑖∈𝑝
𝐴
𝑖
, 𝑑) is a convex metric space if 𝑋 is an Euclidean

vector space while the complementary to⋂
𝑖∈𝑝
𝐴
𝑖
in𝑋 is not

invoked in the proof of the uniqueness of the fixed point so
that if (⋂

𝑖∈𝑝
𝐴
𝑖
, 𝑑) is a convex metric space the uniqueness

proof follows as that of property (v).

Remarks 1. (1) Note that the restricted compositemultivalued
self-mapping �̂�

𝑗
: 𝐴
𝑗
→ 𝐴

𝑗
; ∀𝑗 ∈ 𝑝 can be extended in a

natural way to the composite self-mapping 𝑇𝑝 : ⋃
𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝
𝐴
𝑖
in the sense that 𝑇𝑝 | 𝐴

𝑗
= �̂�
𝑗
; ∀𝑗 ∈ 𝑝.

(2) The convexity of the subsets 𝐴
𝑖
; 𝑖 ∈ 𝑝 is not required

inTheorem 2(iii) but that of their intersection.
(3) Finally, note that a convex set in a Euclidean space

is convex metric space under the Euclidean induced norm
and that closed subsets of Euclidean spaces are convexmetric
spaces if and only if they are convex. This property is used
in the proof of property (v) of Theorem 2. Finally, note
that Theorem 2(v) holds independently of the metric (not
necessarily for a norm-induced metric) and that properties
(iii)-(iv) do not require that the subsets 𝐴

𝑖
⊂ 𝑋 for 𝑖 ∈ 𝑝 are

convex but that their intersection is convex.

3. The Main Result on Best Proximity
Points for Nonintersecting Subsets

An “ad hoc” version of Theorem 2 will be obtained in this
section for the case of nonintersecting subsets by proving
the convergence to unique best proximity points within each
subset 𝐴

𝑖
, which are also unique fixed points of each of the

composed self-mappings �̂�
𝑖
: 𝐴
𝑖
→ 𝐴

𝑖
; ∀𝑖 ∈ 𝑝. It is

assumed that (𝑋, ‖ ‖) is a uniformly convex Banach space
endowed with the partial order ⪯ and that the subsets 𝐴

𝑖
;

∀𝑖 ∈ 𝑝 are nonempty, closed, and convex sets. The following
remark describes conditions to characterize a class of Banach
spaces from complete metric spaces provided that the norm
is induced from a metric.

Remark 3. It is well known that a norm defines a metric.
In this sense, a Banach space (𝑋, ‖ ‖) can be considered
also a complete metric space (𝑋, 𝑑) under the norm-induced
metric. To practical effects, the induced metric is identical
to the norm. The contrary is not true in general since
metrics are subject to less restrictive conditions than norms.
However, under certain conditions, as for instance, if the
metric is homogeneous and translation-invariant, then it can
be considered as a norm in a natural way, say, a metric-
induced norm. In this case, we can also consider the norm
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to be identical to the metric-induced norm. If (𝑋, 𝑑) is a
complete metric space and 𝑋 is a vector space and 𝑑 : 𝑋 ×
𝑋 → R

0+
is a homogeneous and translation invariantmetric,

then (𝑋, ‖ ‖) is also a Banach space under such a metric-
induced norm 𝑑 : 𝑋 × 𝑋 → R

0+
.

The next result is an “ad hoc” version for this paper of
previous technical results. See Lemma 3.7, Lemma 3.8 and
Theorem 3.10 in [33].

Lemma 4 (Lemma 3.7 and Lemma 3.8 of [33]). Let 𝐴
𝑖
⊆ 𝑋

for 𝑖 ∈ 𝑝 be nonempty closed subsets of the vector space 𝑋 of
a uniformly convex Banach space (𝑋, ‖ ‖) with norm-induced
metric 𝑑 : 𝑋 × 𝑋 → R

0+
and 𝑑(𝐴

𝑖
, 𝐴
𝑖+1
) = 𝐷

𝑖
and

either 𝐴
𝑖
or 𝐴
𝑖+1

for 𝑖 ∈ 𝑝 are, furthermore, convex (i.e., at
least one of each two adjacent subsets is, in addition, convex).
Consider sequences {𝑥

𝑛𝑝+𝑖
}
𝑛∈Z0+

⊂ 𝐴
𝑖
and {𝑧

𝑛𝑝+i}𝑛∈Z0+
⊂ 𝐴
𝑖

and {𝑦
𝑛𝑝+𝑖+1

}
𝑛∈Z0+

⊂ 𝐴
𝑖+1

satisfying

(1) ‖𝑧
𝑛𝑝+𝑖

− 𝑦
𝑛𝑝+𝑖
‖ → 𝐷

𝑖
as 𝑛 → ∞ for any given 𝑖 ∈ 𝑝.

(2) For every 𝜀 ∈ R
+
, there is 𝑛

0
∈ Z
0+

such that ‖𝑥
𝑚𝑝+𝑖

−

𝑦
𝑛𝑝+𝑖+1

‖ ≤ 𝐷 + 𝜀 for all 𝑚, 𝑛 ∈ Z
0+

with 𝑚 > 𝑛 ≥ 𝑛
0

for any given 𝑖 ∈ 𝑝.

Then, the following properties hold:

(i) For every 𝜀 ∈ R
+
, there is 𝑛

1
∈ Z
0+

such that ‖𝑥
𝑚𝑝+𝑖

−

𝑧
𝑛𝑝+𝑖
‖ ≤ 𝜀 for all 𝑚, 𝑛 ∈ Z

0+
with 𝑚 > 𝑛 ≥ 𝑛

1
for any

given 𝑖 ∈ 𝑝.
(ii) If ‖𝑧

𝑛𝑝+𝑖
− 𝑦
𝑛𝑝+𝑖
‖ → 𝐷

𝑖
as 𝑛 → ∞ and ‖𝑥

𝑛𝑝+𝑖
−

y
𝑛𝑝+𝑖
‖ → 𝐷

𝑖
as 𝑛 → ∞ then ‖𝑥

𝑛𝑝+𝑖
− 𝑧
𝑛𝑝+𝑖
‖ → 0 as

𝑛 → ∞ for any given 𝑖 ∈ 𝑝.
(iii) {𝑥

𝑛𝑝+𝑖+𝑗
}
𝑛∈Z0+

and {𝑧
𝑛𝑝+𝑖+𝑗

}
𝑛∈Z0+

are Cauchy sequences;
∀𝑗 ∈ 𝑝 − 1 ∪ {0} and the given 𝑖 ∈ 𝑝.

The proof of Lemma 4(i)-(ii) is supported by the
nonemptiness, closeness, and convexity of the subsets 𝐴

𝑗
⊆

𝑋; 𝑗 ∈ 𝑝 and the uniform convexity of the Banach
space (𝑋, ‖ ‖) [33]. The following main result for multivalued
𝑝-cyclic self-mappings is obtained from Theorem 1 and
Lemma 4 while taking into account Remark 3.

Theorem 5. Let 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
be a multivalued

𝑝(≥ 2)-cyclic self-mapping on ⋃
𝑖∈𝑝
𝐴
𝑖
with 𝐴

𝑖
∈ 𝐶𝐵(𝑋) ⊆ 𝑋;

∀𝑖 ∈ 𝑝 being all nonempty and convex with 𝐷
𝑖
= 𝑑(𝐴

𝑖
, 𝐴
𝑖+1
);

∀𝑖 ∈ 𝑝. Assume the following:

(1) Let 𝑋 be a vector space and let (𝑋, 𝑑) be a convex
complete metric space with 𝑑 : 𝑋 × 𝑋 → R

0+
being

a homogeneous translation-invariant metric which
induces a norm ‖ ‖ on 𝑋 such that (𝑋, ‖ ‖) is a Banach
space.

(2) (𝑋, ‖ ‖) is a uniformly convex Banach space withmetric
convexity.

(3) The complete metric space (𝑋, 𝑑), equivalently, the
Banach space (𝑋, ‖ ‖), is endowedwith a partial order⪯
defined by (5) with 𝑥 = 𝑥

𝑖
(∈ 𝐴
𝑖
) ⪯ 𝑦 ∈ 𝑇𝑥(⊆ 𝐴

𝑖+1
) for

any (𝑥, 𝑦) ∈ 𝐴
𝑖
× 𝐴
𝑖+1

and some given 𝑖 ∈ 𝑝 such that
the resulting (𝑋, ⪯) partially ordered space is subject to
assumptions (1)–(4) of Theorem 1 and assumption (7)
of Theorem 2.

Then, the following properties hold.

(i) There are unique best proximity points 𝑥
𝑗+1
∈ 𝑇𝑥
𝑗
⊆

𝐴
𝑗+1

with 𝑑(𝑥
𝑗
, 𝑥
𝑗+1
) = 𝑑(𝑥

𝑗
, 𝑇𝑥
𝑗+1
) = 𝐷

𝑗
, for each

𝑗 ∈ 𝑝 which are also unique fixed points of each of
the restricted composite self-mappings �̂�

𝑗
(≡ 𝑇𝑝 | 𝐴

𝑗
) :

𝐴
𝑗
→ 𝐴
𝑗
; ∀𝑗 ∈ 𝑝.

(ii) Take any 𝑥 = 𝑥
𝑖
(∈ 𝐴
𝑖
) ⪯ 𝑦 = 𝑥

𝑖+1
∈ 𝑇𝑥
𝑖
for any given

𝑖 ∈ 𝑝 (i.e., 𝑥 and 𝑦 are partially ordered with respect to
the partial ordered set (𝑋, ⪯) and consider the partially
ordered sequences {𝑥

𝑛𝑝+𝑗
}, being nondecreasing with

respect to ⪯ while satisfying 𝑥
𝑛𝑝+𝑗+1

∈ 𝑇𝑥
𝑛𝑝+𝑗

; ∀𝑗 ∈ 𝑝
of first element subject to 𝑥 = 𝑥

𝑖
(∈ 𝐴
𝑖
) ⪯ 𝑦 = 𝑥

𝑖+1
∈

𝑇𝑥
𝑖
for any given 𝑖 ∈ 𝑝. Then, each of such sequences

{𝑥
𝑛𝑝+𝑗
} converges to the unique best proximity point 𝑥

𝑗

in 𝐴
𝑗
; ∀𝑗 ∈ 𝑝 which is also the unique fixed point

of each of the restricted composite self-mapping �̂�
𝑗
:

𝐴
𝑗
→ 𝐴

𝑗
. If ⋂

𝑖∈𝑝
𝐴
𝑖
̸= ⌀, then 𝑥 = 𝑥

𝑗
∈ ⋂
𝑖∈𝑝
𝐴
𝑖

is the unique fixed point of 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
,

�̂�
𝑗
(≡ 𝑇𝑝 | 𝐴

𝑗
) and a fixed point of 𝑇𝑝 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝
𝐴
𝑖
; ∀𝑗 ∈ 𝑝.

(iii) If assumption (4) of Theorem 1 is replaced by its
assumption (5), then the convergence to the above
unique best proximity points holds for partially ordered
sequences of first element 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
.

Proof. Note from the various hypothesis the uniformly con-
vex Banach space (𝑋, ‖ ‖) possesses the metric convexity
property with respect to the norm metric ‖ ‖ while it is
endowed with a partial order ⪯ under assumptions (1)–(4)
of Theorem 1. From property (ii) of Theorem 1, (8), the
nonemptiness and closeness of the subsets 𝐴

𝑖
⊆ 𝑋; ∀𝑖 ∈ 𝑝,

and Lemma 4(i)-(ii), it follows that

∃ lim
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑖+𝑗+1

, 𝑥
𝑛𝑝+𝑖+𝑗

) = 𝐷
𝑖+𝑗
;

∃ lim
𝑛→∞

𝑑 (𝑥
(𝑛+1)𝑝+𝑖+𝑗

, 𝑥
𝑛𝑝+𝑖+𝑗

) = 0;

∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(26)

where 𝑥
𝑛𝑝+𝑖+𝑗

∈ 𝑇𝑥
𝑛𝑝+𝑖+𝑗−1

⊆ 𝐴
𝑖+𝑗
, 𝑥
(𝑛+1)𝑝+𝑖+𝑗

∈

𝑇𝑝𝑥
𝑛𝑝+𝑖+𝑗−1

⊆ 𝑇𝑥
(𝑛+1)𝑝+𝑖+𝑗−1

⊆ 𝐴
𝑖+𝑗
; ∀𝑗 ∈ 𝑝 − 1 ∪ {0},

∀𝑛 ∈ Z
0+

for the given 𝑖 ∈ 𝑝 and the iterated sequences;
{𝑥
𝑛𝑝+𝑖+𝑗

}
𝑛∈Z0+

;∀𝑗 ∈ 𝑝 − 1∪{0} and the given 𝑖 ∈ 𝑝 are partially
orderedwith respect to the partial order⪯, fromTheorem 1, of
first element 𝑥

𝑖+𝑗
= 𝑥
𝑗
generated from the iteration 𝑥

𝑛𝑝+𝑖+𝑗
∈

𝑇𝑥
𝑛𝑝+𝑖+𝑗−1

; ∀𝑗 ∈ 𝑝 − 1∪{0} and the given 𝑖 ∈ 𝑝 are all Cauchy
sequences. Since (𝑋, 𝑑) ≡ (𝑋, ‖ ‖) is complete, it follows that
𝑥
𝑛𝑝+𝑖+𝑗

→ 𝑥
𝑖+𝑗
(∈ 𝑇𝑝𝑥

(𝑛−1)𝑝+𝑖+𝑗
⊆ 𝑇𝑥
𝑛𝑝+𝑖+𝑗−1

⊆ 𝐴
𝑖+𝑗
) and

𝑥
𝑛𝑝+𝑖+𝑗+1

→ 𝑥
𝑖+𝑗+1

(∈ 𝑇𝑝𝑥
(𝑛−1)𝑝+𝑖+𝑗+1

⊆ 𝑇𝑥
𝑛𝑝+𝑖+𝑗

⊆ 𝐴
𝑖+𝑗+1

) as
𝑛 → ∞; ∀𝑗 ∈ 𝑝 − 1 ∪ {0} and the given 𝑖 ∈ 𝑝 since 𝐴

𝑗
⊆ 𝑋
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is nonempty, bounded and closed; ∀𝑗 ∈ 𝑝 and the given
𝑖 ∈ 𝑝. Thus, one gets from (26), since 𝐴

𝑗
⊆ 𝑋 is nonempty,

bounded and closed, and then boundedly compact, and also
approximatively compact with respect to 𝐴

𝑗−1
[8, 35], that:

𝐷
𝑖+𝑗
≤ 𝑑 (𝑥

𝑛𝑝+𝑖+𝑗+1
, 𝑥
𝑛𝑝+𝑖+𝑗

)

→ 𝑑 (𝑥
𝑖+𝑗
, 𝑥
𝑖+𝑗+1

) = 𝐷
𝑖+𝑗

= 𝑑 (𝑥
𝑖+𝑗
, 𝑇𝑥
𝑖+𝑗
) as 𝑛 → ∞;

(27)

∀𝑗 ∈ 𝑝 − 1 ∪ {0} and the given 𝑖 ∈ 𝑝, where 𝑥
𝑖+𝑗+1

∈

𝑇𝑝𝑥
𝑖+𝑗+1−𝑝

⊆ 𝑇𝑥
𝑖+𝑗
; ∀𝑗 ∈ 𝑝 − 1 ∪ {0} and the given 𝑖 ∈ 𝑝.

Since all the subsets 𝐴
𝑗
⊂ 𝑋; ∀𝑗 ∈ 𝑝 are nonempty, closed,

and boundedly compact; ∀𝑗 ∈ 𝑝 then 𝑥
𝑗
∈ 𝐴
𝑗
is a best

proximity point in 𝐴
𝑗
of 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
and it is

also a fixed point of the restricted composite self-mapping
�̂�
𝑗
: ⋃
𝑖∈𝑝
𝐴
𝑖
| 𝐴
𝑗
→ ⋃

𝑖∈𝑝
𝐴
𝑖
| 𝐴
𝑗
; ∀𝑗 ∈ 𝑝. Thus, there are

Cauchy, then convergent since (𝑋, 𝑑) is complete, sequences
{𝑥
𝑛𝑝+𝑖+𝑗

}
𝑛∈Z0+

with respective first elements 𝑥
𝑖+𝑗
∈ 𝑇𝑥
𝑖+𝑗−1

;
∀𝑗 ∈ 𝑝 − 1 ∪ {0} and the given 𝑖 ∈ 𝑝, each being convergent
to 𝑥
𝑖+𝑗

∈ 𝐴
𝑖+𝑗
, such that 𝑥 = 𝑥

𝑖
is the first element of

{𝑥
𝑛𝑝+𝑖
}
𝑛∈Z0+

⊆ 𝐴
𝑖
which consists of partially ordered elements

with respect to the partial order ⪯ such that

𝑥
𝑖+𝑗
⪯ ⋅ ⋅ ⋅ ⪯ 𝑥

(𝑛+1)𝑝+𝑖+𝑗
(∈ 𝑇
𝑝
𝑥
𝑛𝑝+𝑖+𝑗

⊆ 𝑇𝑥
(𝑛+1)𝑝+𝑖+𝑗−1

)

⪯ 𝑥
(𝑛+1)𝑝+𝑖+𝑗

⪯ ⋅ ⋅ ⋅ ⪯ 𝑥
𝑖+𝑗

= lim
𝑛→∞

𝑥
𝑛𝑝+𝑖+𝑗

,

(28)

with {𝑥
ℓ𝑝+𝑖+𝑗

} ⊆ 𝐴
𝑖+𝑗
; 𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀ℓ ∈ Z

0+
for the

given 𝑖 ∈ 𝑝. But 𝑥
𝑖+𝑗
∈ 𝐴
𝑖+𝑗
; ∀𝑗 ∈ 𝑝 − 1 ∪ {0} and the given

𝑖 ∈ 𝑝, is a fixed point of the restricted composite self-mapping
�̂�
𝑗
: ⋃
𝑖∈𝑝
𝐴
𝑖
| 𝐴
𝑗
→ ⋃
𝑖∈𝑝
𝐴
𝑖
| 𝐴
𝑗
, ∀𝑗 ∈ 𝑝 and a fixed point

of the composite self-mapping𝑇𝑝 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐴
𝑖
from

Lemma 4(iii) to which the partially ordered sequences of first
element 𝑥 = 𝑥

𝑖
∈ 𝐴
𝑖
converge. It is also a best proximity

point in 𝐴
𝑖+𝑗

of the self-mapping 𝑇 : ⋃
𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖

from Lemma 4(iii) and the second part of Lemma 4(ii).Then,
𝑥
𝑗
∈ 𝑇𝑥

𝑗
⊆ 𝑇𝑝𝑥

𝑗
; ∀𝑗 ∈ 𝑝. The uniqueness property of

each of those 𝑝 best proximity points 𝑥
𝑗
∈ 𝑇𝑥
𝑗
in each of

the subsets 𝐴
𝑗
⊆ 𝑋 follows from their uniqueness as fixed

points of the restricted self-mappings �̂�
𝑗
: ⋃
𝑖∈𝑝
𝐴
𝑖
| 𝐴
𝑗
→

⋃
𝑖∈𝑝
𝐴
𝑖
| 𝐴
𝑗
fromTheorem 2, since (𝑋, 𝑑) is a convex metric

space and the subsets 𝐴
𝑗
⊆ 𝑋 are convex; ∀𝑗 ∈ 𝑝. On the

other hand, it turns out that if all the subsets have nonempty
intersection, such an intersection is convex so that the best
proximity points are all identical and the unique fixed point
of𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐴
𝑖
and𝑇𝑝 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃
𝑖∈𝑝
𝐴
𝑖
from

Theorem 2, this leads to the proofs of properties (i)–(iii).

Remarks 2. (1) Theorem 5 proves the uniqueness of the best
proximity points for any partially ordered sequenceswith first
elements in any of the subsets of the multivalued 𝑝-cyclic
self-mapping on ⋃

𝑖∈𝑝
𝐴
𝑖
satisfying assumptions (1)–(4) of

Theorem 1 as it was commented, in Section 2 concerning such
a theorem, the given 𝐴

𝑖
⊂ 𝑋 for some 𝑖 ∈ 𝑝 to select the first

two elements of the partial order can be chosen arbitrarily
by construction from (6), namely, from assumption (4) of
Theorem 1.

(2)The value of the individual contractive constants being
less than, equal to, or larger than one for each pair of adjacent
subsets is irrelevant in Theorem 5 provided that its product
is less than one. Note also that Theorem 5 holds also if
the distances between each pair of adjacent subsets are not
necessarily identical.

(3)Note also that, for Euclideanmetric, the convexity of𝑋
is kept as hypothesis for the uniqueness of the best proximity
points of the multivalued self-mapping, since although the
subsets 𝐴

𝑖
of 𝑋, 𝑖 ∈ 𝑝 are convex, the existence of points

belonging to such subsets guaranteeing the equality in the
triangle inequality for the metric would not be otherwise
guaranteed, since such sets are disjoint and pair-wise disjoint.

(4) It can be observed that the metric convexity of the
space (𝑋, 𝑑) cannot be relaxed to that of (⋂

𝑖∈𝑝
𝐴
𝑖
, 𝑑), since

the subsets 𝐴
𝑖
⊂ 𝑋 do not necessarily intersect.

(5) Note that the results of Sections 2 and 3 obtained from
the contractive condition (5) also hold for multivalued self-
mappings 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
which are not cyclic; that

is, 𝑇(𝐴
𝑖
) ∩ 𝐴
𝑖+1

̸= ⌀ for some 𝑖 ∈ 𝑝 but fulfil the condition
𝑇𝑥 ∩ 𝐴

𝑖+1
̸= ⌀; ∀𝑥 ∈ 𝐴

𝑖
, ∀𝑖 ∈ 𝑝.

4. Example

Consider two bounded and closed real subsets 𝐴
1
=

[𝜀,𝑀]; 𝐴
2
= [−𝑀, −𝜀] = −𝐴

1
for nonnegative positive real

constants 𝜀,𝑀with 𝜀 ≤ 𝑀 under the Euclideanmetric so that
𝐷 = 𝑑(𝐴

1
, 𝐴
2
) = 2𝜀.

Consider also a scalar discrete dynamic system of state
𝑥
𝑘
operating at each state value under 𝑁 tentative feedback

controls 𝑢(𝑖𝑘)
𝑘
= −𝐾
(𝑖𝑘)

𝑘
𝑥
(𝑖𝑘)

𝑘
; ∀𝑖
𝑘
∈ 𝐼
𝑘
, where the indexing set of

tentative states at the (𝑘 + 1)-th sampling point is defined by

𝐼
𝑘+1
= 𝐼
𝑘
× 𝑁

= 𝐼
0
× 𝑁 × ⋅ ⋅ ⋅ × 𝑁

= {1} × 𝑁
𝑘

, ∀𝑘 ∈ Z
0+
,

(29)

where “×” stands for the Cartesian product of sets, 𝑥(𝑖0)
0

=

𝑥
(1)

0
= 𝑥 ∈ [−𝑀, −𝜀]∪[𝜀,𝑀] is the initial point of an iteration

through a self-mapping 𝑇 from [−𝑀, −𝜀] ∪ [𝜀,𝑀] to itself
and 𝐼
0
= {1}. Then the discrete state trajectory takes values in

alternated points at𝐴
1
and𝐴

2
from the initial state condition

𝑥 such that 𝑥(𝑖𝑘+1)
𝑘+1

∈ 𝑇𝑥
(𝑖𝑘)

𝑘
= {𝑥
(𝑖𝑘 ,1)

𝑘+1
, . . . , 𝑥

(𝑖𝑘,𝑁)

𝑘+1
}; ∀𝑘 ∈ Z

0+

obtained as follows:
𝑥
(𝑖𝑘+1)

𝑘+1

=

{{{{

{{{{

{

𝑥
(𝑖𝑘+1)

𝑘+1
if 𝑥
(𝑖𝑘+1)

𝑘+1


∈ [𝜀,𝑀] ,

𝑀 sgn𝑥(𝑖𝑘+1)
𝑘+1

if 𝑥
(𝑖𝑘+1)

𝑘+1


> 𝑀, ∀𝑖

𝑘
∈ 𝐼
𝑘
, ∀𝑘 ∈ Z

0+
,

𝜀 sgn𝑥(𝑖𝑘+1)
𝑘+1

if 𝑥
(𝑖𝑘+1)

𝑘+1


< 𝜀,

(30)
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where

𝑥
(𝑖𝑘+1)

𝑘+1
= 𝑎
𝑘
𝑥
(𝑖𝑘)

𝑘
+ 𝑏
𝑘
𝑢
(𝑖𝑘)

𝑘

= (𝑎
𝑘
− 𝑏
𝑘
𝐾
(𝑖𝑘)

𝑘
) 𝑥
(𝑖𝑘)

𝑘
; ∀𝑖
𝑘
∈ 𝐼
𝑘
, ∀𝑘 ∈ Z

0+

(31)

with 𝑎
𝑘
̸= 0 and 𝑏

𝑘
> 0 being nonzero real numbers under a

sequence of controllers of gains

𝐾
(𝑖𝑘)

𝑘
=
𝜌
(𝑖𝑘)

𝑘
+ 𝑎
𝑘

𝑏
𝑘

, 𝜌
(𝑖𝑘)

𝑘
∈ [0, 𝜌] ; ∀𝑖

𝑘
∈ 𝐼
𝑘
, ∀𝑘 ∈ Z

0+
(32)

for some nonnegative real constant 𝜌 so that, after replacing
(32) into (31), this leads to the controlled closed-loop trajec-
tory sequence given by (30) subject to 𝑥(𝑖𝑘+1)

𝑘+1
= −𝜌

(𝑖𝑘)

𝑘
𝑥
(𝑖𝑘)

𝑘
;

∀𝑖
𝑘
∈ 𝐼
𝑘
with |𝑥(𝑖𝑘+1)

𝑘+1
| ≤ min (max(𝜌(𝑖𝑘)

𝑘
|𝑥
(𝑖𝑘)

𝑘
|, 𝜀),𝑀 );∀𝑖

𝑘
∈ 𝐼
𝑘
,

∀𝑘 ∈ Z
0+
. Assume that (5) holds for 𝑥 ⪯ 𝑦 so that, for some

𝑦 ∈ 𝑇𝑥 and some 𝑧 ∈ 𝑇𝑦, one gets

𝑑 (𝑧, 𝑦) ≤ 𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝐾𝑑 (𝑥, 𝑦) + 2 (1 − 𝐾) 𝜀 (33)

for some 𝐾 ∈ (0, 1). Note also from (30)-(31) that (5) is
guaranteed under the set of constraints below:

2𝜀 ≤ 𝑑 (𝑥
(𝑖𝑘+1)

𝑘+2
, 𝑥
(𝑖𝑘)

𝑘+1
)

≤ 𝑑 (𝑥
(𝑖𝑘+1)

𝑘+2
, 𝑥
(𝑖𝑘)

𝑘+1
)

=

𝑥
(𝑖𝑘+1)

𝑘+2
− 𝑥
(𝑖𝑘)

𝑘+1


=

𝑥
(𝑖𝑘+1)

𝑘+2


+

𝑥
(𝑖𝑘)

𝑘+1



=

𝑎
𝑘+1
− 𝑏
𝑘+1
𝐾
(𝑖𝑘+1)

𝑘+1
− 1



𝑥
(𝑖𝑘+1)

𝑘+1



≤

𝑎
𝑘+1
− 𝑏
𝑘+1
𝐾
(𝑖𝑘+1)

𝑘+1
− 1

min (𝑥

(𝑖𝑘+1)

𝑘+1


,𝑀)

≤

𝑎
𝑘+1
− 𝑏
𝑘+1
𝐾
(𝑖𝑘+1)

𝑘+1
− 1

min (𝜌(𝑖𝑘)

𝑘


𝑥
(𝑖𝑘)

𝑘


,𝑀)

≤ min (𝑑
0
, 𝐾𝑑 (𝑥

(𝑖𝑘+1)

𝑘+1
, 𝑥
(𝑖𝑘)

𝑘
) + 2 (1 − 𝐾) 𝜀)

= min (𝑑
0
, 𝐾

𝑎
𝑘
− 𝑏
𝑘
𝐾
(𝑖𝑘)

𝑘
− 1



𝑥
(𝑖𝑘)

𝑘


+ 2 (1 − 𝐾) 𝜀)

≤ min (𝑑
0
, 𝐾

𝑎
𝑘
− 𝑏
𝑘
𝐾
(𝑖𝑘)

𝑘
− 1

𝑀 + 2 (1 − 𝐾) 𝜀)

≤ 𝑑
0
; for some 𝑖

𝑘
∈ 𝐼
𝑘
, ∀𝑘 ∈ Z

0+

(34)

which hold provided that there is at least a controller gain
sequence {𝐾(𝑖𝑘)

𝑘
}
𝑖𝑘∈𝐼𝑘

subject to the constraints:

𝑑
0
> max (2𝜀,𝑀 (𝑎

𝑘
+
𝑎𝑘 − 1

)) , (35a)

0 < 𝜌
(𝑖𝑘)

𝑘
≤

{{{{{{{{

{{{{{{{{

{

min(1,
𝑑
0

𝑀
− 𝑎
𝑘
−
𝑎𝑘 − 1

 ,
𝐾

𝑎k+1 − 𝑏𝑘 𝐾

(𝑖𝑘)

𝑘
− 1

+ (2𝜀 (1 − 𝐾) /

𝑥𝑘
)


𝑎
𝑘+2
− 𝑏
𝑘+1
𝐾
(𝑖𝑘+1)

𝑘+1
− 1


) if 𝜀 > 0

min(1,
𝑑
0

𝑀
− 𝑎
𝑘
−
𝑎𝑘 − 1

 ,
𝐾

𝑎
𝑘+1
− 𝑏
𝑘
𝐾
(𝑖𝑘)

𝑘
− 1



𝑎
𝑘+2
− 𝑏
𝑘+1
𝐾
(𝑖𝑘+1)

𝑘+1
− 1


) if 𝜀 = 0
(35b)

for some 𝑖
𝑘
∈ 𝐼
𝑘
; ∀𝑘 ∈ Z

0+
. The above constraints guarantee

the generation of an iterated nondecreasing partially ordered
sequence 𝑆(𝑥) = {𝑥 = 𝑥

(1)

0
, 𝑥
(𝑖𝑖)

1
, . . . , 𝑥(𝑖𝑛)

𝑛
, . . .} by the self-

mapping 𝑇 on [−𝑀, −𝜀] ∪ [𝜀,𝑀] with respect to the partial
order “⪯” under a sequence of control gains satisfying 0 <
𝐾
(𝑖𝑘)

𝑘
= (𝜌
(𝑖𝑘)

𝑘
+ 𝑎
𝑘
)/𝑏
𝑘
≤ (1/|𝑏

𝑘
|)((𝑑
0
/𝑀) − |𝑎

𝑘
− 1|) and

|𝑎
𝑘
− 1| < 2𝜀/𝑀 ≤ 𝑑

0
/𝑀; ∀𝑘 ∈ Z

0+
.

It follows from Theorem 5 that such a sequence has two
subsequences, built by keeping the same orderwith alternated
terms of 𝑆(𝑥), converging, respectively, to the unique best
proximity points, 𝑥∗

1
= 𝜀 ∈ 𝐴

1
and 𝑥∗

2
= −𝜀 ∈ 𝐴

2
of the self-

mapping. If 𝜀 = 0 both such sequences and 𝑆(𝑥) converge to
the resulting unique fixed point of the 2-cyclic composite self-
mapping 𝑇 on [−𝑀, −𝜀 ] ∪ [𝜀,𝑀]. If the considered subsets
are 𝐴

1
= [−𝜀,𝑀]; 𝐴

2
= [−𝑀, 𝜀] = −𝐴

1
, the first term of

the chain of inequalities (34) is valid with the replacement
2𝜀 → 0 while the terms 2(1 − 𝐾)𝜀 are all zeroed in such a

chain of inequalities.Thus, (34) holds if there is a sequence of
controller gains satisfying

0 < 𝐾
(𝑖𝑘)

𝑘

=
𝜌
(𝑖𝑘)

𝑘
+ 𝑎
𝑘

𝑏
𝑘

≤
1
𝑏𝑘

(

d
0

𝐾𝑀
−
𝑎𝑘 − 1

) for some 𝑖
𝑘
∈ 𝐼
𝑘
; ∀𝑘 ∈ Z

0+

(36)

under sufficiency-type constraints 𝑑
0
> 𝐾𝑀 if |𝑎

𝑘
| <

𝑑
0
/𝐾𝑀−1; ∀𝑘 ∈ Z

0+
or 𝑑
0
< 𝐾𝑀 and 𝑎

𝑘
> 1−𝑑

0
/𝐾𝑀 if 𝑎

𝑘
∈

[0, 1]; ∀𝑘 ∈ Z
0+
. Thus, 𝑆(𝑥) = {𝑥 = 𝑥(1)

0
, 𝑥
(𝑖𝑖)

1
, . . . , 𝑥(𝑖𝑛)

𝑛
, . . .}

converges to 𝑥∗ = 0 which is the a unique fixed point of 𝑇 on
[−𝑀, −𝜀] ∪ [𝜀,𝑀].
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The following extension of the example is direct. Assume
that (31) is replaced by the second-order uncoupled discrete
dynamic system:

𝑥
(𝑖𝑘+1)

𝑘+1
= (𝑥
(𝑖𝑘+1)

1𝑘+1
, 𝑥
(𝑖𝑘+1)

2𝑘+1
)
𝑇

= 𝐴
𝑘
𝑥
(𝑖𝑘)

𝑘
+ 𝐵
𝑘
𝑢
(𝑖𝑘)

𝑘

= (𝐴
𝑘
− 𝐵
𝑘
𝐾
(𝑖𝑘)

𝑘

𝑇

)𝑥
(𝑖𝑘)

𝑘
; ∀𝑖
𝑘
∈ 𝐼
𝑘
, ∀𝑘 ∈ Z

0+
, (37)

where the superscript 𝑇 stands for transposition and 𝑥(𝑖𝑘+1)
𝑘+1

=

(𝑥
(𝑖𝑘+1)

1𝑘+1
, 𝑥
(𝑖𝑘+1)

2𝑘+1
)
𝑇

, subject to the tentative scalar feedback con-
trols 𝑢(𝑖𝑘)

𝑘
= −𝐾

(𝑖𝑘)
𝑇

𝑘
𝑥
(𝑖𝑘)

𝑘
, where 𝐴

𝑘
= Diag(𝑎

1𝑘
, 𝑎
2𝑘
) is a

sequence of real 2 × 2 diagonal matrices, 𝐵
𝑘
= (𝑏
1𝑘
, 𝑏
2𝑘
)
𝑇 is

a sequence of two dimensional real column vectors,𝐾(𝑖𝑘)
𝑘

𝑇

are
sequences of two-dimensional real row vectors. The set
of inequalities (34) are replaced by parallel ones by using
the maxima for norms/distances of the two state vector
components.The resulting inequalities are obtained from the
initial basic constraints:

2𝜀 ≤ 𝑑 (𝑥
(𝑖𝑘+1)

𝑘+2
, 𝑥
(𝑖𝑘)

𝑘+1
)

≤ 𝑑 (𝑥
(𝑖𝑘+1)

𝑘+2
, 𝑥
(𝑖𝑘)

𝑘+1
)

= max
1≤𝑗≤2

𝑑 (𝑥
(𝑖𝑘+1)

𝑗𝑘+2
, 𝑥
(𝑖𝑘)

𝑗,𝑘+1
)

(38)

for some 𝑖
𝑘
∈ 𝐼
𝑘
, ∀𝑘 ∈ Z

0+
. To keep the validity of (30)

for each state component, the constraints (35a) and (35b) are
replaced by

𝑑
0
> max
1≤𝑗≤2

max (2𝜀,𝑀 (𝑎
𝑗𝑘
+

𝑎
𝑗𝑘
− 1

)) , (39a)

0 < 𝜌
(𝑖𝑘)

𝑘
≤

{{{{{{{{{{

{{{{{{{{{{

{

min(1, min
1≤𝑗≤2

(
𝑑
0

𝑀
− 𝑎
𝑗𝑘
−

𝑎
𝑗𝑘
− 1

) , min
1≤𝑗≤2

𝐾

𝑎
𝑗,𝑘+1

− 𝑏
𝑗𝑘
𝐾
(𝑖𝑘)

𝑗𝑘
− 1

+ (2𝜀 (1 − 𝐾) /


𝑥
𝑗𝑘


)


𝑎
𝑗,𝑘+2

− 𝑏
𝑗,𝑘+1

𝐾
(𝑖𝑘+1)

𝑗,𝑘+1
− 1


) if 𝜀 > 0

min(1, min
1≤𝑗≤2

(
𝑑
0

𝑀
− 𝑎
𝑗𝑘
−

𝑎
𝑗𝑘
− 1

) , min
1≤𝑗≤2

𝐾

𝑎
𝑗,𝑘+1

− 𝑏
𝑗𝑘
𝐾
(𝑖𝑘)

𝑗𝑘
− 1



𝑎
𝑗,𝑘+2

− 𝑏
𝑗,𝑘+1

𝐾
(𝑖𝑘+1)

𝑗,𝑘+1
− 1


) if 𝜀 = 0

(39b)

for some 𝑖
𝑘
∈ 𝐼
𝑘
; ∀𝑘 ∈ Z

0+
.
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