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We introduce the concept of the generalized 𝑤
𝛼
-contraction mappings and establish the existence of fixed point theorem for such

mappings by using the properties of 𝑤-distance and 𝛼-admissible mappings. We also apply our result to coincidence point and
common fixed point theorems in metric spaces. Further, the fixed point theorems endowed with an arbitrary binary relation are
also derived from our results. Our results generalize the result of Kutbi, 2013, and several results in the literature.

1. Introduction

It is well known that many problems in many branches of
mathematics can be transformed to a fixed point problem of
the form 𝑇𝑥 = 𝑥 for self-mapping 𝑇 defined on framework of
metric space (𝑋, 𝑑). In 1992, Banach [1] introduced the con-
cept of contractionmapping and proved the fixed point theo-
rem for suchmapping, which is called the Banach contraction
principle, which opened an avenue for further development
of analysis in this field. Several mathematicians used different
conditions on self-mappings and proved several fixed point
theorems in metric spaces and other spaces.

In 1969, Nadler [2] established the fixed point theorem
for multivalued contraction mapping by using the concept
of Hausdorff metric which in turn is a generalization of the
classical Banach contraction principle. Afterward, Kaneko [3]
extended the corresponding results of Nadler [2] to single
valued mapping and multivalued mapping which is also gen-
eralization of the result of Jungck [21]. Subsequently, there are
a number of results that extend this result in many different
directions (see in [4–13]).

On the other hand, Kada et al. [14] introduced the concept
of 𝑤-distance on a metric space. Using this concept, they

improved Caristi’s fixed point theorem, Ekland’s variational
principle, and Takahashi’s existence theorem. Afterward,
Suzuki and Takahashi [15] established the fixed point result
for multivalued mapping with respect to 𝑤-distance. In fact,
this result is an improvement of the Nadler’s fixed point
theorem. Several fixed point theorems have been proved by
many mathematicians in framework of metric spaces via 𝑤-
distance; for example, see [16–19]. Recently, Kutbi [20] estab-
lished useful lemma for𝑤-distance which is an improved ver-
sion of the lemmagiven in [21] andproved a key lemmaon the
existence of 𝑓-orbit for generalized 𝑓-contraction mappings.
Also, he gave the existence of coincidence points and com-
mon fixed points for generalized𝑓-contractionmappings not
involving the extended Hausdorff metric.

The purpose of this work is to introduce the generalized
𝑤
𝛼
-contraction mapping and prove fixed point theorem for

such mapping via the concept of 𝛼-admissible mapping of
Mohammadi et al. [22], which is multivalued mapping ver-
sion of𝛼-admissiblemapping of Samet et al. [23] anddifferent
from the notion of 𝛼

∗
-admissible which has been provided in

[24] (also seen in [25–28]). The applications for coincidence
point and common fixed point theorems in metric spaces
and fixed point theorems endowed with an arbitrary binary
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relation are also derived fromour results. Our results improve
and complement the main result of Kutbi [20] and many
results in the literature.

2. Preliminaries

In this section, we recall some definitions and lemmas of
𝑤-distance that will be required in the sequel. For metric
space (𝑋, 𝑑), let 2𝑋, 𝐶𝑙(𝑋), and 𝐶𝐵(𝑋) denote the collection
of nonempty subsets of 𝑋, nonempty closed subsets of 𝑋,
and nonempty closed bounded subsets of𝑋, respectively. For
𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), we define the Hausdorff distance with respect
to 𝑑 by

𝐻(𝐴, 𝐵) = max{sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵) , sup
𝑦∈𝐵

𝑑 (𝑦, 𝐴)} (1)

for every 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), where 𝑑(𝑥, 𝐵) = inf
𝑦∈𝐵

𝑑(𝑥, 𝑦). It is
well known that (𝐶𝐵(𝑋),𝐻) is a metric space.

Definition 1. Let (𝑋, 𝑑) be ametric space,𝑓 : 𝑋 → 𝑋 a single
valued mapping, and 𝑇 : 𝑋 → 2

𝑋 a multivalued mapping.

(1) A point 𝑥 ∈ 𝑋 is called a fixed point of 𝑇 if 𝑥 ∈ 𝑇(𝑥)

and the set of fixed points of 𝑇 is denoted byF(𝑇).
(2) A point 𝑥 ∈ 𝑋 is called a coincidence point of 𝑓 and

𝑇 if 𝑓(𝑥) ∈ 𝑇(𝑥). One denotes byC(𝑓 ∩ 𝑇) the set of
coincidence points of 𝑓 and 𝑇.

(3) A point𝑥 ∈ 𝑋 is called a commonfixed point of𝑓 and
𝑇 if 𝑥 = 𝑓(𝑥) ∈ 𝑇(𝑥). One denotes by F(𝑓 ∩ 𝑇) the
set of common fixed points of 𝑓 and 𝑇.

Definition 2. Let (𝑋, 𝑑) be ametric space,𝑓 : 𝑋 → 𝑋 a single
valued mapping, and 𝑇 : 𝑋 → 2

𝑋 a multivalued mapping.
The sequence {𝑥

𝑛
} in𝑋 is said to be an𝑓-orbit of𝑇 at𝑥

0
∈ 𝑋 if

𝑓(𝑥
𝑛
) ∈ 𝑇(𝑥

𝑛−1
) for all 𝑛 ∈ N. In particular case, the sequence

{𝑥
𝑛
} in𝑋 is said to be an orbit of𝑇 at𝑥

0
∈ 𝑋 if𝑓 is the identity

mapping on𝑋; that is, 𝑥
𝑛
∈ 𝑇(𝑥

𝑛−1
) for all 𝑛 ∈ N.

Definition 3. Let (𝑋, 𝑑) a metric space, 𝑓 : 𝑋 → 𝑋 a single
valued mapping, and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) a multivalued map-
ping.

(1) 𝑇 is said to be a contraction [2] if there exists a
constant 𝜆 ∈ (0, 1) such that for each 𝑥, 𝑦 ∈ 𝑋,

𝐻(𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝜆𝑑 (𝑥, 𝑦) . (2)

(2) 𝑇 is said to be an 𝑓-contraction [3] if there exists
constant 𝜆 ∈ (0, 1), and for each 𝑥, 𝑦 ∈ 𝑋,

𝐻(𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝜆𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) . (3)

Definition 4 (see [14]). Let (𝑋, 𝑑) be a metric space. A
function 𝜔 : 𝑋 × 𝑋 → [0,∞) is called 𝑤-distance on 𝑋

if it satisfies the following for each 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(𝑤
1
) 𝜔(𝑥, 𝑧) ≤ 𝜔(𝑥, 𝑦) + 𝜔(𝑦, 𝑧);

(𝑤
2
) a mapping 𝜔(𝑥, ⋅) : 𝑋 → [0,∞) is lower semicontin-
uous;

(𝑤
3
) for any 𝜖 > 0, there exists 𝛿 > 0 such that 𝜔(𝑧, 𝑥) ≤ 𝛿

and 𝜔(𝑧, 𝑦) ≤ 𝛿 imply 𝑑(𝑥, 𝑦) ≤ 𝜖.
Let us give some examples of 𝑤-distance.

Example 5. Let (𝑋, 𝑑) be a metric space.Then, the metric 𝑑 is
𝑤-distance on𝑋, but the converse is not true in general case.
Therefore, the 𝑤-distance is a generalization of the metric.

Example 6. Let (𝑋, 𝑑) be a metric space. Then, a function 𝜔 :

𝑋 × 𝑋 → [0,∞) defined by 𝜔(𝑥, 𝑦) = 𝑐 for all 𝑥, 𝑦 ∈ 𝑋 is
𝑤-distance on𝑋, where 𝑐 is a positive real number.

Example 7. Let (𝑋, ‖ ⋅ ‖) be a normed linear space. Then, a
function 𝜔 : 𝑋×𝑋 → [0,∞) defined by 𝜔(𝑥, 𝑦) = ‖𝑥‖+ ‖𝑦‖

for all 𝑥, 𝑦 ∈ 𝑋 is 𝑤-distance on𝑋.

Example 8. Let (𝑋, ‖ ⋅ ‖) be a normed linear space. Then, a
function 𝜔 : 𝑋 × 𝑋 → [0,∞) defined by 𝜔(𝑥, 𝑦) = ‖𝑦‖ for
all 𝑥, 𝑦 ∈ 𝑋 is 𝑤-distance on𝑋.

Remark 9. We obtain that in general for 𝑥, 𝑦 ∈ 𝑋,
𝜔(𝑥, 𝑦) ̸= 𝜔(𝑦, 𝑥) and neither of the implications 𝜔(𝑥, 𝑦) =

0 ⇔ 𝑥 = 𝑦 necessarily holds.

Definition 10 (see [29]). Let (𝑋, 𝑑) be ametric space. One says
that the 𝑤-distance 𝜔 on𝑋 is a 𝑤

0
-distance if 𝜔(𝑥, 𝑥) = 0 for

all 𝑥 ∈ 𝑋.
For more details of other examples and properties of the

𝑤-distance, one can refer to [14, 15, 29].The following lemmas
are useful for the main results in this paper.

Lemma 11 (see [14]). Let (𝑋, 𝑑) be a metric space and 𝜔 a
𝑤-distance on 𝑋. Suppose that {𝑥

𝑛
} and {𝑦

𝑛
} are sequences in

𝑋 and {𝛼
𝑛
} and {𝛽

𝑛
} are sequences in [0,∞) converging to 0.

Then, the following hold for every 𝑥, 𝑦, 𝑧 ∈ 𝑋:
(1) if 𝜔(𝑥

𝑛
, 𝑦) ≤ 𝛼

𝑛
and 𝜔(𝑥

𝑛
, 𝑧) ≤ 𝛽

𝑛
for any 𝑛 ∈ N, then

𝑦 = 𝑧; in particular, if 𝜔(𝑥, 𝑦) = 0 and 𝜔(𝑥, 𝑧) = 0,
then 𝑦 = 𝑧;

(2) if𝜔(𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝛼
𝑛
and𝜔(𝑥

𝑛
, 𝑧) ≤ 𝛽

𝑛
for any 𝑛 ∈ N, then

{𝑦
𝑛
} converges to 𝑧;

(3) if 𝜔(𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝛼
𝑛
for any 𝑛,𝑚 ∈ N with 𝑚 > 𝑛, then

{𝑥
𝑛
} is a Cauchy sequence;

(4) if 𝜔(𝑦, 𝑥
𝑛
) ≤ 𝛼
𝑛
for any 𝑛 ∈ N, then {𝑥

𝑛
} is a Cauchy

sequence.

Next, we give the definition of some type of mapping.
Before giving next definition, we give the following notation.
Let (𝑋, 𝑑) be a metric space and 𝜔 a 𝑤-distance on 𝑋. For
𝑥 ∈ 𝑋 and 𝐴 ∈ 2

𝑋, we denote 𝜔(𝑥, 𝐴) := inf
𝑦∈𝐴

𝜔(𝑥, 𝑦).

Definition 12. Let (𝑋, 𝑑) be a metric space, 𝑓 : 𝑋 → 𝑋 a
singlevalued mapping, and 𝑇 : 𝑋 → 𝐶𝑙(𝑋) a multivalued
mapping.

(1) 𝑇 is a 𝑤-contraction [15] if there exist a 𝑤-distance 𝜔

on 𝑋 and 𝜆 ∈ (0, 1) such that, for any 𝑥, 𝑦 ∈ 𝑋 and
𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝜔 (𝑢, V) ≤ 𝜆𝜔 (𝑥, 𝑦) . (4)
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(2) 𝑇 is a generalized 𝑓-contraction [20] if there exist a
𝑤
0
-distance 𝜔 on 𝑋 and 𝜆 ∈ (0, 1) such that, for any

𝑥, 𝑦 ∈ 𝑋 and 𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝜔 (𝑢, V) ≤ 𝜆max {𝜔 (𝑓 (𝑥) , 𝑓 (𝑦)) ,

𝜔 (𝑓 (𝑥) , 𝑇 (𝑥)) , 𝜔 (𝑓 (𝑦) , 𝑇 (𝑦)) ,

1

2

[𝜔 (𝑓 (𝑥) , 𝑇 (𝑦)) + 𝜔 (𝑓 (𝑦) , 𝑇 (𝑥))]} .

(5)

Definition 13 (see [22, 24]). Let𝑋 be a nonempty set,𝑇 : 𝑋 →

2
𝑋, where 2

𝑋 is a collection of subset of 𝑋 and 𝛼 : 𝑋 × 𝑋 →

[0,∞). One says that

(1) 𝑇 is an 𝛼
∗
-admissible if, for all 𝑥, 𝑦 ∈ 𝑋, one has

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼
∗
(𝑇 (𝑥) , 𝑇 (𝑦)) ≥ 1, (6)

where 𝛼
∗
(𝑇(𝑥), 𝑇(𝑦)) := inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝑇(𝑥), 𝑏 ∈

𝑇(𝑦)};
(2) 𝑇 is an 𝛼-admissible whenever, for each 𝑥 ∈ 𝑋 and

𝑦 ∈ 𝑇𝑥 with 𝛼(𝑥, 𝑦) ≥ 1, one has 𝛼(𝑦, 𝑧) ≥ 1 for all
𝑧 ∈ 𝑇𝑦.

Remark 14. It is easy to see that 𝑇 is an 𝛼
∗
-admissible

mapping which implies 𝑇 as an 𝛼-admissible mapping.

3. Fixed Point Results

In this section, we introduce the new mapping, the so-called
generalized 𝑤

𝛼
-contraction mapping, and prove the fixed

point results for this mapping by using 𝑤-distance.

Definition 15. Let (𝑋, 𝑑) be a metric space and 𝛼 : 𝑋 × 𝑋 →

[0,∞) a given mapping. The multivalued mapping 𝑇 : 𝑋 →

𝐶𝑙(𝑋) is said to be a generalized 𝑤
𝛼
-contraction if there exist

a𝑤
0
-distance𝜔 on𝑋 and𝜆 ∈ (0, 1) such that, for any𝑥, 𝑦 ∈ 𝑋

and 𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝛼 (𝑢, V) 𝜔 (𝑢, V)

≤ 𝜆max {𝜔 (𝑥, 𝑦) , 𝜔 (𝑥, 𝑇 (𝑥)) , 𝜔 (𝑦, 𝑇 (𝑦)) ,

1

2

[𝜔 (𝑥, 𝑇 (𝑦)) + 𝜔 (𝑦, 𝑇 (𝑥))]} .

(7)

Theorem 16. Let (𝑋, 𝑑) be a complete metric space, 𝛼 : 𝑋 ×

𝑋 → [0,∞), and 𝑇 : 𝑋 → 𝐶𝑙(𝑋) a generalized 𝑤
𝛼
-

contraction mapping. Suppose that the following conditions
hold:

(a) 𝑇 is an 𝛼-admissible mapping;
(b) there exist 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝑇(𝑥

0
) such that

𝛼(𝑥
0
, 𝑥
1
) ≥ 1;

(c) if for every 𝑦 ∈ 𝑋 with 𝑦 ∉ 𝑇(𝑦), one has

inf {𝜔 (𝑥, 𝑦) + 𝜔 (𝑥, 𝑇 (𝑥)) : 𝑥 ∈ 𝑋} > 0, (8)

then,F(𝑇) ̸= 0.

Proof. For 𝑥
0
∈ 𝑋 and 𝑥

1
∈ 𝑇(𝑥

0
) in (b), by the definition of

generalized𝑤
𝛼
-contraction of 𝑇, there exists 𝑥

2
∈ 𝑇(𝑥

1
) such

that

𝛼 (𝑥
1
, 𝑥
2
) 𝜔 (𝑥

1
, 𝑥
2
)

≤ 𝜆max {𝜔 (𝑥
0
, 𝑥
1
) , 𝜔 (𝑥

0
, 𝑇 (𝑥
0
)) , 𝜔 (𝑥

1
, 𝑇 (𝑥
1
)) ,

1

2

[𝜔 (𝑥
0
, 𝑇 (𝑥
1
)) + 𝜔 (𝑥

1
, 𝑇 (𝑥
0
))]} .

(9)

Since 𝑥
1
∈ 𝑇(𝑥

0
), 𝛼(𝑥

0
, 𝑥
1
) ≥ 1, and 𝑇 is 𝛼-admissible map-

ping, we have

𝛼 (𝑥
1
, 𝑥
2
) ≥ 1. (10)

From (9) and (10), we have

𝜔 (𝑥
1
, 𝑥
2
)

≤ 𝛼 (𝑥
1
, 𝑥
2
) 𝜔 (𝑥

1
, 𝑥
2
)

≤ 𝜆max {𝜔 (𝑥
0
, 𝑥
1
) , 𝜔 (𝑥

0
, 𝑇 (𝑥
0
)) , 𝜔 (𝑥

1
, 𝑇 (𝑥
1
)) ,

1

2

[𝜔 (𝑥
0
, 𝑇 (𝑥
1
)) + 𝜔 (𝑥

1
, 𝑇 (𝑥
0
))]} .

(11)

Similarly, using the definition of generalized 𝑤
𝛼
-contraction

of 𝑇, there exists 𝑥
3
∈ 𝑇(𝑥

2
) such that

𝛼 (𝑥
2
, 𝑥
3
) 𝜔 (𝑥

2
, 𝑥
3
)

≤ 𝜆max {𝜔 (𝑥
1
, 𝑥
2
) , 𝜔 (𝑥

1
, 𝑇 (𝑥
1
)) , 𝜔 (𝑥

2
, 𝑇 (𝑥
2
)) ,

1

2

[𝜔 (𝑥
1
, 𝑇 (𝑥
2
)) + 𝜔 (𝑥

2
, 𝑇 (𝑥
1
))]} .

(12)

From 𝑥
2

∈ 𝑇(𝑥
1
), 𝛼(𝑥

1
, 𝑥
2
) ≥ 1, and 𝑇 is 𝛼-admissible

mapping; we have

𝛼 (𝑥
2
, 𝑥
3
) ≥ 1. (13)

From (12) and (13), we have

𝜔 (𝑥
2
, 𝑥
3
) ≤ 𝛼 (𝑥

2
, 𝑥
3
) 𝜔 (𝑥

2
, 𝑥
3
)

≤ 𝜆max {𝜔 (𝑥
1
, 𝑥
2
) , 𝜔 (𝑥

1
, 𝑇 (𝑥
1
)) ,

𝜔 (𝑥
2
, 𝑇 (𝑥
2
)) ,

1

2

[𝜔 (𝑥
1
, 𝑇 (𝑥
2
)) + 𝜔 (𝑥

2
, 𝑇 (𝑥
1
))]} .

(14)
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Continuing this process, we can construct the sequence {𝑥
𝑛
}

in𝑋 such that 𝑥
𝑛
∈ 𝑇(𝑥

𝑛−1
),

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, (15)

𝜔 (𝑥
𝑛
, 𝑥
𝑛+1

)

≤ 𝜆max {𝜔 (𝑥
𝑛−1

, 𝑥
𝑛−2

) , 𝜔 (𝑥
𝑛−1

, 𝑇 (𝑥
𝑛−1

)) ,

𝜔 (𝑥
𝑛−2

, 𝑇 (𝑥
𝑛−2

)) ,

1

2

[𝜔 (𝑥
𝑛−1

, 𝑇 (𝑥
𝑛−2

)) + 𝜔 (𝑥
𝑛−2

, 𝑇 (𝑥
𝑛−1

))]}

(16)

for all 𝑛 ∈ N. Therefore, for each 𝑛 ∈ N, we have

𝜔 (𝑥
𝑛
, 𝑥
𝑛+1

)

≤ 𝜆max {𝜔 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜔 (𝑥

𝑛−1
, 𝑇 (𝑥
𝑛−1

)) , 𝜔 (𝑥
𝑛
, 𝑇 (𝑥
𝑛
)) ,

1

2

[𝜔 (𝑥
𝑛−1

, 𝑇 (𝑥
𝑛
)) + 𝜔 (𝑥

𝑛
, 𝑇 (𝑥
𝑛−1

))]}

≤ 𝜆max {𝜔 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜔 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝜔 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

1

2

[𝜔 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝜔 (𝑥
𝑛
, 𝑥
𝑛
)]}

= 𝜆max {𝜔 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜔 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

1

2

[𝜔 (𝑥
𝑛−1

, 𝑥
𝑛+1

)]}

≤ 𝜆max {𝜔 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜔 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

1

2

[𝜔 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝜔 (𝑥

𝑛
, 𝑥
𝑛+1

)]}

≤ 𝜆max {𝜔 (𝑥
𝑛−1

, 𝑥
𝑛
) ,𝜔 (𝑥

𝑛
, 𝑥
𝑛+1

)} .

(17)

If there exists 𝑛
∗

∈ N such that max{𝜔(𝑥
𝑛
∗
−1
, 𝑥
𝑛
∗

),

𝜔(𝑥
𝑛
∗

, 𝑥
𝑛
∗
+1
)} = 𝜔(𝑥

𝑛
∗

, 𝑥
𝑛
∗
+1
), then we have 𝜔(𝑥

𝑛
∗

, 𝑥
𝑛
∗
+1
) =

0, and then, 𝜔(𝑥
𝑛
∗
−1
, 𝑥
𝑛
∗

) = 0. By property of 𝑤-distance, we
get

𝜔 (𝑥
𝑛
∗
−1
, 𝑥
𝑛
∗
+1
) ≤ 𝜔 (𝑥

𝑛
∗
−1
, 𝑥
𝑛
∗

) + 𝜔 (𝑥
𝑛
∗

, 𝑥
𝑛
∗
+1
) = 0.

(18)

Since 𝜔(𝑥
𝑛
∗
−1
, 𝑥
𝑛
∗

) = 0 and 𝜔(𝑥
𝑛
∗
−1
, 𝑥
𝑛
∗
+1
) = 0, using

Lemma 11, we get 𝑥
𝑛
∗

= 𝑥
𝑛
∗
+1
, and thus, 𝑥

𝑛
∗

∈ 𝑇(𝑥
𝑛
∗

). This
implies that 𝑥

𝑛
∗

is fixed point of 𝑇.Therefore, we may assume
thatmax{𝜔(𝑥

𝑛−1
, 𝑥
𝑛
), 𝜔(𝑥

𝑛
, 𝑥
𝑛+1

)} = 𝜔(𝑥
𝑛−1

, 𝑥
𝑛
) for all 𝑛 ∈ N.

From (17), we get

𝜔 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜆𝜔 (𝑥
𝑛−1

, 𝑥
𝑛
) (19)

for all 𝑛 ∈ N. By Lemma 11, we have that {𝑥
𝑛
} converges in𝑋.

By repeating (19), we obtain that

𝜔 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜆
𝑛

𝜔 (𝑥
0
, 𝑥
1
) (20)

for all 𝑛 ∈ N.

For𝑚, 𝑛 ∈ N for which𝑚 > 𝑛, we get

𝜔 (𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝜔 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝜔 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝜔 (𝑥
𝑚−1

, 𝑥
𝑚
)

≤ 𝜆
𝑛

𝜔 (𝑥
0
, 𝑥
1
) + 𝜆
𝑛+1

𝜔 (𝑥
0
, 𝑥
1
)

+ ⋅ ⋅ ⋅ + 𝜆
𝑚−1

𝜔 (𝑥
0
, 𝑥
1
)

≤

𝜆
𝑛

1 − 𝜆

𝜔 (𝑥
0
, 𝑥
1
) .

(21)

Since 0 < 𝜆 < 1, we get (𝜆𝑛/(1−𝜆))𝜔(𝑥
0
, 𝑥
1
) → 0 as 𝑛 → ∞.

Using Lemma 11, we get {𝑥
𝑛
} as Cauchy sequence in 𝑋. By

completeness of 𝑋, we get 𝑥
𝑛

→ 𝑧 as 𝑛 → ∞ for some
𝑧 ∈ 𝑋. Since 𝜔(𝑥

𝑛
, ⋅) is lower semicontinuous, we have

𝜔 (𝑥
𝑛
, 𝑧) ≤ lim inf

𝑚→∞

𝜔 (𝑥
𝑛
, 𝑥
𝑚
)

≤

𝜆
𝑛

1 − 𝜆

𝜔 (𝑥
0
, 𝑥
1
) .

(22)

Assuming that 𝑧 ∉ 𝑇(𝑧), then by hypothesis, we get

0 < inf {𝜔 (𝑥, 𝑧) + 𝜔 (𝑥, 𝑇 (𝑥)) : 𝑥 ∈ 𝑋}

≤ inf {𝜔 (𝑥
𝑛
, 𝑧) + 𝜔 (𝑥

𝑛
, 𝑇 (𝑥
𝑛
)) : 𝑛 ∈ N}

≤ inf {𝜔 (𝑥
𝑛
, 𝑧) + 𝜔 (𝑥

𝑛
, 𝑥
𝑛+1

) : 𝑛 ∈ N}

≤ inf { 𝜆
𝑛

1 − 𝜆

𝜔 (𝑥
0
, 𝑥
1
) + 𝜆
𝑛

𝜔 (𝑥
0
, 𝑥
1
) : 𝑛 ∈ N}

= ({

2 − 𝜆

1 − 𝜆

}𝜔 (𝑥
0
, 𝑥
1
)) inf {𝜆𝑛 : 𝑛 ∈ N}

= 0,

(23)

which is contradicting. Therefore, 𝑧 ∈ 𝑇(𝑧); that is, 𝑧 is fixed
point of 𝑇. This completes the proof.

Corollary 17 (see Corollary 2.1 in [20]). Let (𝑋, 𝑑) be a
complete metric space, let 𝜔 be 𝑤

0
-distance on 𝑋, and let 𝑇 :

𝑋 → 𝐶𝑙(𝑋) be a multivalued map satisfying the following:

(a) for each 𝑥, 𝑦 ∈ 𝑋 and 𝑢 ∈ 𝑇(𝑥), there exists V ∈ 𝑇(𝑦)

such that

𝜔 (𝑢, V) ≤ 𝜆max {𝜔 (𝑥, 𝑦) , 𝜔 (𝑥, 𝑇 (𝑥)) , 𝜔 (𝑦, 𝑇 (𝑦)) ,

1

2

[𝜔 (𝑥, 𝑇 (𝑦)) + 𝜔 (𝑦, 𝑇 (𝑥))]} ,

(24)

where 𝜆 ∈ (0, 1);
(b) for every 𝑦 ∈ 𝑋 with 𝑦 ∉ 𝑇(𝑦), one has

inf {𝜔 (𝑥, 𝑦) + 𝜔 (𝑥, 𝑇 (𝑥)) : 𝑥 ∈ 𝑋} > 0. (25)

Then,F(𝑇) ̸= 0.
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Proof. Setting 𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 in Theorem 16, we
obtain the desired result.

Next, we give the notion of 𝑤
𝛼
-contraction mapping and

prove the existence of fixed point theorem for such mapping.

Definition 18. Let (𝑋, 𝑑) be a metric space and 𝛼 : 𝑋 × 𝑋 →

[0,∞). The multivalued mapping 𝑇 : 𝑋 → 𝐶𝑙(𝑋) is said
to be 𝑤

𝛼
-contraction if there exist a 𝑤-distance 𝜔 on 𝑋 and

𝜆 ∈ (0, 1) such that for any 𝑥, 𝑦 ∈ 𝑋 and 𝑢 ∈ 𝑇(𝑥), there is
V ∈ 𝑇(𝑦) with

𝛼 (𝑢, V) 𝜔 (𝑢, V) ≤ 𝜆𝜔 (𝑥, 𝑦) . (26)

Theorem 19. Let (𝑋, 𝑑) be a complete metric space, 𝛼 : 𝑋 ×

𝑋 → [0,∞), and 𝑇 : 𝑋 → 𝐶𝑙(𝑋) a 𝑤
𝛼
-contraction map-

ping. Suppose that the following conditions hold:
(a) 𝑇 is 𝛼-admissible mapping;
(b) there exist 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝑇(𝑥

0
) such that

𝛼(𝑥
0
, 𝑥
1
) ≥ 1;

(c) for every 𝑦 ∈ 𝑋 with 𝑦 ∉ 𝑇(𝑦), one has
inf {𝜔 (𝑥, 𝑦) + 𝜔 (𝑥, 𝑇 (𝑥)) : 𝑥 ∈ 𝑋} > 0. (27)

Then,F(𝑇) ̸= 0.

Proof. We obtain that this result can be proven by using
similar method in Theorem 16. Then, in order to avoid
repetition, the details are omitted.

4. Applications

4.1. Application to Coincidence Point and Common Fixed Point
Results. First of all, we introduce the following concept.

Definition 20. Let 𝑋 be a nonempty set, 𝑓 : 𝑋 → 𝑋, 𝑇 :

𝑋 → 𝐶𝑙(𝑋) such that 𝑇(𝑋) ⊆ 𝑓(𝑋), where

𝑇 (𝑋) := ⋃

𝑥∈𝑋

𝑇 (𝑥) (28)

and 𝛼 : 𝑓(𝑋) × 𝑓(𝑋) → [0,∞). One says that 𝑇 is (𝑓, 𝛼)-
admissible whenever, for each 𝑓(𝑥) ∈ 𝑓(𝑋) and 𝑓(𝑦) ∈

𝑇(𝑓(𝑥)) with 𝛼(𝑓(𝑥), 𝑓(𝑦)) ≥ 1, one has 𝛼(𝑓(𝑦), 𝑓(𝑧)) ≥ 1

for all 𝑓(𝑧) ∈ 𝑇(𝑓(𝑦)).

Remark 21. If 𝑇 is (𝑓, 𝛼)-admissible and 𝑓 is the identity
mapping, then 𝑇 is 𝛼-admissible.

Definition 22. Let (𝑋, 𝑑) be a metric space, 𝑓 : 𝑋 → 𝑋, and
𝛼 : 𝑓(𝑋) × 𝑓(𝑋) → [0,∞). The multivalued mapping 𝑇 :

𝑋 → 𝐶𝑙(𝑋) is said to be generalized (𝑤
𝛼
, 𝑓)-contraction if

there exist a 𝑤
0
-distance 𝜔 on 𝑋 and 𝜆 ∈ (0, 1) such that, for

any 𝑥, 𝑦 ∈ 𝑋 and 𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝛼 (𝑓 (𝑥) , 𝑓 (𝑦)) 𝜔 (𝑢, V)

≤𝜆max{𝜔 (𝑓 (𝑥), 𝑓 (𝑦)), 𝜔 (𝑓 (𝑥), 𝑇 (𝑥)), 𝜔 (𝑓 (𝑦) , 𝑇 (𝑦)),

1

2

[𝜔 (𝑓 (𝑥) , 𝑇 (𝑦)) + 𝜔 (𝑓 (𝑦) , 𝑇 (𝑥))]} .

(29)

Remark 23. If 𝑇 is generalized (𝑤
𝛼
, 𝑓)-contraction and 𝑓 is

the identity mapping, then 𝑇 is generalized 𝑤
𝛼
-contraction.

Next, we give useful lemma of Haghi et al. [30].

Lemma 24 (see [30]). Let 𝑋 be a nonempty set and 𝑓 : 𝑋 →

𝑋 a mapping. Then, there exists a subset 𝐸 ⊆ 𝑋 such that
𝑓(𝐸) = 𝑓(𝑋) and 𝑓 : 𝐸 → 𝑋 is one-to-one.

Now, we apply our result in Section 3 to the coincidence
point theorem by using Lemma 24.

Theorem 25. Let (𝑋, 𝑑) be a complete metric space, 𝑓 : 𝑋 →

𝑋, 𝛼 : 𝑓(𝑋) × 𝑓(𝑋) → [0,∞), and 𝑇 : 𝑋 → 𝐶𝑙(𝑋)

a generalized (𝑤
𝛼
, 𝑓)-contraction. Suppose that the following

conditions hold:

(A) 𝑇(𝑋) ⊆ 𝑓(𝑋);
(B) 𝑇 is (𝑓, 𝛼)-admissible;
(C) there exist 𝑥

0
, 𝑥
1

∈ 𝑋 such that 𝑓(𝑥
1
) ∈ 𝑇(𝑥

0
) and

𝛼(𝑓(𝑥
0
), 𝑓(𝑥

1
)) ≥ 1;

(D) for all 𝑦 ∈ 𝑋 with 𝑓(𝑦) ∉ 𝑇(𝑦), one has

inf {𝜔 (𝑓 (𝑥) , 𝑓 (𝑦)) + 𝜔 (𝑓 (𝑥) , 𝑇 (𝑥)) : 𝑥 ∈ 𝑋} > 0.

(30)

Then,C(𝑓 ∩ 𝑇) ̸= 0.

Proof. Consider the mapping 𝑓 : 𝑋 → 𝑋. Using Lemma 24,
there exists 𝐸 ⊆ 𝑋 such that 𝑓(𝐸) = 𝑓(𝑋) and 𝑓|

𝐸
is one-

to-one. Now, we can define a mapping H : 𝑓(𝐸) → 𝐶𝑙(𝑋)

by

H (𝑓 (𝑥)) = 𝑇 (𝑥) (31)

for all 𝑥 ∈ 𝐸. Follows from 𝑓|
𝐸
is one-to-one thatH is well-

defined.
Since 𝑇 is a generalized (𝑤

𝛼
, 𝑓)-contraction, there exist a

𝑤
0
-distance 𝜔 on𝑋 and 𝜆 ∈ (0, 1) such that, for any 𝑥, 𝑦 ∈ 𝑋

and 𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝛼 (𝑓 (𝑥) , 𝑓 (𝑦)) 𝜔 (𝑢, V)

≤𝜆max{𝜔 (𝑓 (𝑥), 𝑓 (𝑦)), 𝜔 (𝑓 (𝑥) , 𝑇 (𝑥)), 𝜔 (𝑓 (𝑦), 𝑇 (𝑦)),

1

2

[𝜔 (𝑓 (𝑥) , 𝑇 (𝑦)) + 𝜔 (𝑓 (𝑦) , 𝑇 (𝑥))]} .

(32)

By the construction of H, for any 𝑓(𝑥), 𝑓(𝑦) ∈ 𝑓(𝐸), and
𝑢 ∈ H(𝑓(𝑥)), there is V ∈ H(𝑓(𝑦)) such that

𝛼 (𝑓 (𝑥) , 𝑓 (𝑦)) 𝜔 (𝑢, V)

≤ 𝜆max {𝜔 (𝑓 (𝑥) , 𝑓 (𝑦)) , 𝜔 (𝑓 (𝑥) ,H (𝑓 (𝑥))) ,

𝜔 (𝑓 (𝑦) ,H (𝑓 (𝑦))) ,

1

2

[(𝑓 (𝑥) ,H (𝑓 (𝑦))) + 𝜔 (𝑓 (𝑦) ,H (𝑓 (𝑥)))]} .

(33)



6 Abstract and Applied Analysis

This implies thatH is a generalized 𝑤
𝛼
-contraction. Since 𝑇

is (𝑓, 𝛼)-admissible, we haveH as 𝛼-admissible. It is obtained
that condition (C) implies condition (B) inTheorem 16. From
(D), for all 𝑓(𝑦) ∈ 𝑓(𝐸) with 𝑓(𝑦) ∉ H(𝑓(𝑦)), we have

inf {𝜔 (𝑓 (𝑥) , 𝑓 (𝑦)) + 𝜔 (𝑓 (𝑥) ,H (𝑓 (𝑥))) : 𝑥 ∈ 𝑋} > 0.

(34)

UsingTheorem 16 with mappingH, we can find a fixed point
of mappingH.

Let 𝑧 be fixed point of H; that is, 𝑧 ∈ H(𝑧). Since 𝑧 ∈

𝑓(𝐸), we can find 𝑧̂ ∈ 𝐸 such that 𝑧 = 𝑓(𝑧̂). Now, we have

𝑓 (𝑧̂) = 𝑧 ∈ H (𝑧) = H (𝑓 (𝑧̂)) = 𝑇 (𝑧̂) . (35)

Therefore, 𝑧̂ is a coincident point of 𝑓 and 𝑇; that is, C(𝑓 ∩

𝑇) ̸= 0. This completes the proof.

Finally, we obtain a common fixed point result. Before
giving our results, we need a few definitions.

Definition 26. Let (𝑋, 𝑑) be a metric space, 𝑓 : 𝑋 → 𝑋, and
𝑇 : 𝑋 → 𝐶𝑙(𝑋). Mappings 𝑓 and 𝑇 are said to commute
weakly if

𝑓 (𝑇 (𝑥)) ⊆ 𝑇 (𝑓 (𝑋)) (36)

for all 𝑥 ∈ 𝑋.

Theorem 27. Suppose that all the hypotheses of Theorem 25
hold. Further, if 𝑓 and 𝑇 commute weakly and satisfy the fol-
lowing condition for 𝑥 ∈ 𝑋:

𝑓 (𝑥) ̸= 𝑓
2

(𝑥) 󳨐⇒ 𝑓 (𝑥) ∉ 𝑇 (𝑥) , (37)

then,F(𝑓 ∩ 𝑇) ̸= 0.

Proof. From Theorem 25, 𝑓 and 𝑇 have a coincidence point
𝑧̂ ∈ 𝑋; that is, 𝑓(𝑧̂) ∈ 𝑇(𝑧̂). By the hypothesis, we get 𝑓(𝑧̂) =

𝑓
2

(𝑧̂). It follows from 𝑓 and 𝑇 which commute weakly that

𝑓 (𝑧̂) = 𝑓 (𝑓 (𝑧̂)) ∈ 𝑓 (𝑇 (𝑧̂)) ⊆ 𝑇 (𝑓 (𝑧̂)) . (38)

This implies that 𝑓(𝑧̂) is a common fixed point of 𝑓 and 𝑇,
and thus,F(𝑓 ∩ 𝑇) ̸= 0. This completes the proof.

Remark 28. If we set 𝛼(𝑎, 𝑏) = 1 for all 𝑎, 𝑏 ∈ 𝑓(𝑋) in
Theorems 25 and 27, then we get Theorems 2.1 and 2.2 of
Kutbi [20].

4.2. Application to Fixed Point on Metric Space Endowed with
an Arbitrary Binary Relation. In this section, we give the
existence of fixed point theorems on a metric space endowed
with an arbitrary binary relation.

Before presenting our results, we need a few definitions.
Let (𝑋, 𝑑) be a metric space andR a binary relation over 𝑋.
Denote that

S := R ∪R
−1

; (39)

this is the symmetric relation attached toR. Clearly,

𝑥, 𝑦 ∈ 𝑋, 𝑥S𝑦 ⇐⇒ 𝑥R𝑦 or 𝑦R𝑥. (40)

Definition 29. Let (𝑋, 𝑑) be a metric space and R a binary
relation over 𝑋. One says that 𝑇 : 𝑋 → 𝐶𝑙(𝑋) is a
comparative mapping with respect to S if, for each 𝑥 ∈ 𝑋

and 𝑦 ∈ 𝑇(𝑥), 𝑥S𝑦 implies 𝑦S𝑧 for all 𝑧 ∈ 𝑇(𝑦).

Definition 30. Let (𝑋, 𝑑) be a metric space and R a binary
relation over 𝑋. The multivalued mapping 𝑇 : 𝑋 → 𝐶𝑙(𝑋)

is said to be a generalized 𝑤-contraction with respect to S if
there exist a 𝑤

0
-distance 𝜔 on 𝑋 and 𝜆 ∈ (0, 1) such that, for

any 𝑥, 𝑦 ∈ 𝑋 for 𝑥S𝑦 and 𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝜔 (𝑢, V) ≤ 𝜆max {𝜔 (𝑥, 𝑦) , 𝜔 (𝑥, 𝑇 (𝑥)) , 𝜔 (𝑦, 𝑇 (𝑦)) ,

1

2

[𝜔 (𝑥, 𝑇 (𝑦)) + 𝜔 (𝑦, 𝑇 (𝑥))]} .

(41)

Theorem 31. Let (𝑋, 𝑑) be a complete metric space, R a
binary relation over 𝑋, and 𝑇 : 𝑋 → 𝐶𝑙(𝑋) a generalized
𝑤-contraction with respect to S. Suppose that the following
conditions hold:

(A) 𝑇 is a comparative mapping with respect to S;
(B) there exist 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝑇(𝑥

0
) such that 𝑥

0
S𝑥
1
;

(C) for all 𝑦 ∈ 𝑋 with 𝑦 ∉ 𝑇(𝑦), one has

inf {𝜔 (𝑥, 𝑦) + 𝜔 (𝑥, 𝑇 (𝑥)) : 𝑥 ∈ 𝑋} > 0. (42)

Then,F(𝑇) ̸= 0.

Proof. Consider the mapping 𝛼 : 𝑋 × 𝑋 → [0,∞) defined
by

𝛼 (𝑥, 𝑦) = {

1, 𝑥S𝑦

0, otherwise.
(43)

From condition (B), we get 𝛼(𝑥
0
, 𝑥
1
) ≥ 1. It follows from 𝑇 as

comparativemappingwith respect toS that𝑇 is𝛼-admissible
mapping. Since𝑇 is generalized𝑤-contractionwith respect to
S, for any 𝑥, 𝑦 ∈ 𝑋 and 𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝛼 (𝑥, 𝑦) 𝜔 (𝑢, V) ≤ 𝜆max{𝜔 (𝑥, 𝑦), 𝜔 (𝑥, 𝑇 (𝑥)), 𝜔 (𝑦, 𝑇 (𝑦)) ,

1

2

[𝜔 (𝑥, 𝑇 (𝑦)) + 𝜔 (𝑦, 𝑇 (𝑥))]} .

(44)

This implies that 𝑇 is generalized 𝑤
𝛼
-contraction mapping.

Now, all the hypotheses of Theorem 16 are satisfied, and so
the existence of the fixed point of𝑇 follows fromTheorem 16.
Therefore,F(𝑇) ̸= 0.

Next, we deduce Theorem 31 to the special case in the
context of partially ordered metric spaces. Before studying
the next results, we give the following concepts.

Definition 32. Let 𝑋 be a nonempty set. Then, (𝑋, 𝑑, ⪯) is
called a partially ordered metric space if (𝑋, 𝑑) is a metric
space and (𝑋, ⪯) is a partially ordered set.
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For partially ordered metric space (𝑋, 𝑑, ⪯) and 𝑥, 𝑦 ∈ 𝑋,
we denote that

≍ := {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥} . (45)

Definition 33. Let (𝑋, 𝑑, ⪯) be a partially ordered metric
space. One says that 𝑇 : 𝑋 → 𝐶𝑙(𝑋) is a comparative
mapping with respect to ≍ if, for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇(𝑥),
𝑥 ≍ 𝑦 implies 𝑦 ≍ 𝑧 for all 𝑧 ∈ 𝑇(𝑦).

Definition 34. Let (𝑋, 𝑑, ⪯) be a partially ordered metric
space.Themultivaluedmapping𝑇 : 𝑋 → 𝐶𝑙(𝑋) is said to be
a generalized 𝑤-contraction with respect to ≍ if there exist a
𝑤
0
-distance 𝜔 on𝑋 and 𝜆 ∈ (0, 1) such that, for any 𝑥, 𝑦 ∈ 𝑋

for which 𝑥 ≍ 𝑦 and 𝑢 ∈ 𝑇(𝑥), there is V ∈ 𝑇(𝑦) with

𝜔 (𝑢, V) ≤ 𝜆max {𝜔 (𝑥, 𝑦) , 𝜔 (𝑥, 𝑇 (𝑥)) , 𝜔 (𝑦, 𝑇 (𝑦)) ,

1

2

[𝜔 (𝑥, 𝑇 (𝑦)) + 𝜔 (𝑦, 𝑇 (𝑥))]} .

(46)

Corollary 35. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space
and 𝑇 : 𝑋 → 𝐶𝑙(𝑋) a generalized 𝑤-contraction with respect
to ≍. Suppose that the following conditions hold:

(A) 𝑇 is a comparative mapping with respect to ≍;
(B) there exist 𝑥

0
∈ 𝑋 and 𝑥

1
∈ 𝑇(𝑥

0
) such that 𝑥

0
≍ 𝑥
1
;

(C) for all 𝑦 ∈ 𝑋 with 𝑦 ∉ 𝑇(𝑦),

inf {𝜔 (𝑥, 𝑦) + 𝜔 (𝑥, 𝑇 (𝑥)) : 𝑥 ∈ 𝑋} > 0. (47)

Then,F(𝑇) ̸= 0.

Proof. Since ⪯ is a binary operation on 𝑋, this result follows
fromTheorem 31.
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