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A competitive economic equilibrium model integrated with exchange, consumption, and production is considered. Our goal is
to give an existence result when the utility functions are concave, proper, and upper semicontinuous. To this aim we are able
to characterize the equilibrium by means of a suitable generalized quasi-variational inequality; then we give the existence of
equilibrium by using the variational approach.

1. Introduction

In this paper a competitive economic equilibrium model
integrated with exchange, consumption, and production is
considered. In 1874, Walras [1] laid the foundations for the
study of the general equilibrium theory. However, the first
rigorous result on the existence of general equilibrium is due
to Wald; see, for example, [2]. After this pioneering work,
several authors (including [3–5]), stimulated by the advances
in linear programming, activity analysis, and game theory,
obtained equilibrium existence results. In particular, Arrow
and Debreu considered the application of fixed point theory
to equilibrium problems, establishing the existence of an
equilibrium in an abstract economy that included production
and consumption.

Recently, an alternative approach to the study of general
economic equilibrium has been considered in terms of
variational inequalities. Many economic equilibriummodels,
including the general equilibrium model of Arrow-Debreu,
can be formulated as variational inequalities and/or comple-
mentarity problems. Variational theory was introduced in the
early 1960s with the works of Fichera and Stampacchia; they
study equilibrium problems arising from elastoplastic theory
and frommechanics. Subsequently this theory was applied in
different kinds of equilibrium problems and, now, represents
a powerful tool for the study of a large class of equilibrium

problems arising in mechanics, physics, optimization and
control theory, operations research, and several branches of
engineering sciences. For the state of art about this topic, we
refer the reader to [6–14] and the bibliography therein.

In particular, Jofré et al. in [15] studied the competitive
equilibrium by means of a variational inequality, which
involves the Lagrange multipliers. Our purpose in this paper
is to study the economic competitive equilibrium through
a different variational method. In fact, we can characterize
the equilibrium by means of a generalized quasi-variational
inequality without using the method of Lagrange multipliers.
A competitive equilibrium as solution of a suitable quasi-
variational inequality has already been studied in [16–18],
in which the authors consider a market of exchange and
consumption. In this paper we consider weaker assumptions
on the utility function with respect to those considered in the
lattermentioned economicmodels. In particular, we consider
upper semicontinuous utility functions, instead of 𝐶1 ones
and, consequently, the differentiability assumption is relaxed.
This hypothesis leads to a quasi-variational inequality involv-
ing a multivalued map.

More precisely, an economic market with 𝑙 different
goods, 𝑛 consumers, and𝑚producerswill be here considered.
Each consumer has a starting endowment of goods and
receives a given fraction of the total production, deter-
mined by a system of fixed weights. To each commodity
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a nonnegative price not less than a fixed minimum price
is associated. The purpose of the market is to determine a
price, a production, and a consumption equilibrium: the pro-
duction equilibrium maximizes the profit of producers and
simultaneously the consumption equilibrium maximizes the
preferences of consumers under a natural budget constraint.
Furthermore, these chooses are made so that the total con-
sumption does not exceed the total production plus the total
endowment. Mathematically, the preferences are represented
by a utility function, that is, assumed to be convex, proper,
and upper semi-continuous, and not necessarily monotone
and/or differentiable.We further suppose that the production
set is closed, bounded, and convex; namely, producers, cannot
have an infinite production.

Finally, we would like to stress that in the classical
literature the so-called survivability assumption is required:
each agent has, at the beginning, a positive quantity of each
commodity (see, e.g., [19]). Thanks to the used variational
approach, the novelty of the current paper is mainly to
weaken the described survivability assumption. In fact, in this
market there is the possibility that, at the beginning, some
agent is not endowed with some goods. In this situation, it
is required that at least one of the goods owned by the agent
must have minimum price not zero; namely, this commodity
cannot be a free good. In this way, for any current price the
agent has always the opportunity to earn on the sale of its
endowment; hence, he can survive in the market.

The plan of the paper is as follows. Firstly, for the reader’s
convenience, we recall some basic definitions and properties
which will be useful in the sequel. After, we introduce the
competitive economic equilibrium model integrated with
exchange, consumption, and production and we reformulate
it in terms of a generalized quasi-variational inequality.
Finally, we use this approach to investigate the existence of
equilibrium.

It is worth tomention that this model allows to consider a
wide class of utility functions, which are only convex, proper,
and upper semi-continuous.

2. Preliminaries

In the whole section 𝑋, 𝑌, and 𝑍 are Banach spaces. We
denote with 𝐵

𝑋
(𝑥, 𝜂) the ball in𝑋 centered at 𝑥 and of radius

𝜂.
A multivalued map (multimap) 𝐹 : 𝑋⊸𝑌 is said to be

(a) upper semicontinuous(u.s.c.) if for any 𝑥 ∈ 𝑋 and for
any neighborhood U of 𝐹(𝑥) there exists 𝜂 > 0 such
that for all 𝑥 ∈ 𝐵

𝑋
(𝑥, 𝜂), 𝐹(𝑥) ⊂ U;

(b) lower semicontinuous (l.s.c.) if for any 𝑥 ∈ 𝑋, for any
sequence of elements {𝑥

𝑛
}
∞

𝑛=1
⊂ 𝑋, 𝑥

𝑛
→ 𝑥, and

for any 𝑦 ∈ 𝐹(𝑥), there exists a sequence of elements
{𝑦
𝑛
}
∞

𝑛=1
⊂ 𝑌, with 𝑦

𝑛
∈ 𝐹(𝑥

𝑛
) for all 𝑛, 𝑦

𝑛
→ 𝑦;

(c) closed if for any sequences {𝑥
𝑛
}
∞

𝑛=1
⊂ 𝑋, {𝑦

𝑛
}
∞

𝑛=1
⊂ 𝑌,

if 𝑥
𝑛
→ 𝑥 and 𝑦

𝑛
∈ 𝐹(𝑥

𝑛
), 𝑦
𝑛
→ 𝑦 then 𝑦 ∈ 𝐹(𝑥);

(d) compact if its range 𝐹(𝑋) is relatively compact in 𝑌;
that is, 𝐹(𝑋) is compact in 𝑌;

(e) quasicompact if its restriction to any compact subset
𝑀 ⊂ 𝑋 is compact.

We recall two results useful to obtain upper semicontinuity
and lower semicontinuity (see, e.g., [20] Theorem 1.1.5 and
Corollary 1.2.4.).

Theorem 1. Let 𝐹 : 𝑋⊸𝑌 be a closed and quasicompact
multimap. Then 𝐹 is u.s.c.

Theorem 2. Assume that

(i) 𝑓 : 𝑋×𝑍 → 𝑌 is a continuous map such that 𝑓(𝑥, ⋅) :
𝑍 → 𝑌 is affine for every 𝑥 ∈ 𝑋;

(ii) 𝑇 : 𝑋⊸𝑌 and 𝑈 : 𝑋⊸𝑍 are l.s.c. multimaps with
closed and convex values;

(iii) for every 𝑥 ∈ 𝑋 there exists 𝑢 ∈ 𝑈(𝑥) such that
𝑓(𝑥, 𝑢) ∈ int𝑇(𝑥);

Then the multimap 𝑅 : 𝑋⊸𝑍 defined by

𝑅 (𝑥) = {𝑢 ∈ 𝑈 (𝑥) : 𝑓 (𝑥, 𝑢) ∈ 𝑇 (𝑥)} (1)

is l.s.c. with closed and convex values.

Definition 3. Let 𝑓 : 𝑋 → R be a convex map. For
an arbitrary 𝑥 ∈ 𝑋 the set 𝜕𝑓(𝑥) of all continuous linear
functionals 𝑙 on𝑋 with

𝑓 (𝑥) ≥ 𝑓 (𝑥) + 𝑙 (𝑥 − 𝑥) ∀𝑥 ∈ 𝑋 (2)

is called the subdifferential of 𝑓 at 𝑥. A continuous linear
functional 𝑙 ∈ 𝜕𝑓(𝑥) is called a subgradient of 𝑓 at 𝑥.

Here it follows some properties of the subdifferential.

Proposition4 (see, e.g., [21] Propositions 2.1.2. and 2.1.5). Let
𝑓 : R𝑛 → R be a convex and l.s.c. map. Then

(1) for 𝑥 ∈ R𝑛, 𝜕𝑓(𝑥) is a nonempty convex and compact
set;

(2) 𝜕𝑓 : R𝑛⊸R𝑛 is an u.s.c. multimap.

To prove our main theorem we will rely on the following
existence result for generalized quasi-variational inequalities.

Theorem 5 (see, e.g., [22] Corollary 3.1). Let 𝑓 and 𝐾 be
multimaps from R𝑛 into itself. Suppose that there exists a
nonempty, compact, and convex set 𝐶 such that

(i) 𝐾(𝐶) ⊆ 𝐶;
(ii) 𝑓 is a nonempty, contractible, compact valued, and

upper semicontinuous multimap on 𝐶;
(iii) 𝐾 is a nonempty, continuous, and convex valued

multimap on 𝐶.

Then there exist 𝑥 ∈ 𝐾(𝑥) and a vector 𝑦 ∈ 𝑓(𝑥

) such that

⟨𝑦, 𝑥 − 𝑥

⟩ ≤ 0 ∀𝑥 ∈ 𝐾 (𝑥


) . (3)
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3. Equilibrium Model

We consider a marketplace consisting of two types of agents:
𝑛 consumers, indexed by 𝑎, and 𝑚 producers, indexed by
𝑏. We denote with 𝐴 = {1, . . . , 𝑛}, 𝐵 = {1, . . . , 𝑚}, and
𝐽 = {1, . . . , 𝑙}, respectively, sets of consumers, producers, and
goods. We denote by 𝑒𝑗

𝑎
and 𝑥𝑗

𝑎
the nonnegative quantities of

commodity 𝑗, respectively, owned and consumed by agent 𝑎.
The vectors 𝑒

𝑎
= (𝑒
1

𝑎
, . . . , 𝑒

𝑙

𝑎
) ∈ R𝑙

+
and 𝑥

𝑎
= (𝑥
1

𝑎
, . . . , 𝑥

𝑙

𝑎
) ∈

R𝑙
+
represent, respectively, the initial endowment and the

consumption of agent 𝑎 and 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑙×𝑛

represents the consumption of the market. For each 𝑎 ∈ 𝐴

we denote by 𝐼
𝑎
the set of indexes corresponding to initial

holdings, namely, 𝐼
𝑎
= {𝑗 ∈ 𝐽 : 𝑒

𝑗

𝑎
> 0} and we assume

that he is endowed with at least one positive commodity,
then 𝐼

𝑎
̸= 0. We denote by 𝑦𝑗

𝑏
the quantity of commodity 𝑗

produced by producer 𝑏. We note that the commodity 𝑦
𝑗

𝑏

can also assume negative values: the positive quantity 𝑦
𝑗

𝑏

represents the commodity offered in the market by producer
𝑏, the negative quantity 𝑦𝑗

𝑏
represents the demand required

by the market but not satisfied by producer 𝑏, and 𝑦𝑗
𝑏
equals

zero which means that the producer 𝑏 does not produce
the commodity 𝑗. The vector 𝑦

𝑏
= (𝑦

1

𝑏
, . . . , 𝑦

𝑙

𝑏
) ∈ R𝑙

and the matrix 𝑦 = (𝑦
1
, . . . , 𝑦

𝑚
) ∈ R𝑙×𝑚 represent the

productions, respectively, of producer 𝑏 and of the market.
To each commodity 𝑗 ∈ 𝐽 is a fixed minimum price 𝑞

𝑗

such that 0 ≤ 𝑞
𝑗
< 1/𝑙. More precisely, each commodity

𝑗 has a positive price 𝑝
𝑗, which we suppose 𝑝

𝑗
≥ 𝑞
𝑗

for all 𝑗 ∈ 𝐽. We denote by 𝑝 = (𝑝
1
, . . . , 𝑝

𝑙
) ∈ R𝑙

+

the price vector and we suppose that prices belong to the
set

𝑃 =
{

{

{

𝑝 ∈ R
𝑙

+
:

𝑙

∑

𝑗=1

𝑝
𝑗
= 1, 𝑝

𝑗
≥ 𝑞
𝑗
∀𝑗 ∈ 𝐽

}

}

}

. (4)

We observe that as usual in the economic literature, in
order to survive in the market, it is required that each agent
𝑎 is endowed with each commodity 𝑗, that is, 𝐼

𝑎
= 𝐽.

Thanks to our variational approach and by introduction
of the minima prices, we can weaken this assumption
by requiring the following weak survivability assumption:

“for all agents 𝑎 ∈ 𝐴 there exists 𝑗 ∈ 𝐽 such that 𝑞𝑗 ̸= 0

and 𝑒𝑗
𝑎

̸= 0.”

Each agent 𝑎 is endowed with at least one commodity 𝑒𝑗
𝑎
with

minimum price greater than zero, namely, 𝑞𝑗 > 0. From an
economic point of view thismeans that even if the agent is not
endowed with some goods, he can be active in the market. In
fact each agent has always the opportunity to earn on the sale
of its endowment ⟨𝑝, 𝑒

𝑎
⟩ > 0.

We denote by 𝑌
𝑏
the production set of producer 𝑏, where

𝑌
𝑏
is assumed to be, as usual, a closed, bounded, convex set

of R𝑙 with 0R𝑙 ∈ 𝑌
𝑏
. The boundedness of 𝑌

𝑏
means that

producers cannot have an infinite production and 0R𝑙 ∈ 𝑌
𝑏

includes the possibility that there is no activity for producer
𝑏. We indicate with 𝑌 = ∏

𝑏∈𝐵
𝑌
𝑏
the total market production.

The total production ∑
𝑏∈𝐵

𝑦
𝑗

𝑏
of commodity 𝑗 is shared

between consumers: each consumer 𝑎 receives the given
fraction ∑

𝑏∈𝐵
𝜃
𝑎𝑏
𝑦
𝑗

𝑏
, determined by a system of fixed weights

𝜃
𝑎𝑏

≥ 0 such that ∑
𝑎∈𝐴

𝜃
𝑎𝑏

= 1 for all 𝑏 ∈ 𝐵. Hence, each
consumer 𝑎, relative to commodity 𝑗, has at command the
quantity 𝑒𝑗

𝑎
+∑
𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑗

𝑏
. We note that 𝑦𝑗

𝑏
can assume negative

values, then it is possible that, the holdings of consumer
𝑎, 𝑒
𝑗

𝑎
+∑
𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑗

𝑏
is negative. Given a price vector𝑝, the inner

product ⟨𝑝, 𝑥
𝑎
⟩ represents the value of the consumption plan

𝑥
𝑎
, ⟨𝑝, 𝑦

𝑏
⟩ represents the value of the production plan 𝑦

𝑏
,

and ⟨𝑝, 𝑒
𝑎
⟩+max{0, ⟨𝑝, ∑

𝑏∈𝐵
𝜃
𝑎𝑏
𝑦
𝑏
⟩} represents the wealth of

consumer 𝑎 at the going prices.
We notice that in the considered model, when the

required demand of a commodity is not satisfied, the con-
sumer does not suffer any loss. In this market producers
act to maximize their profit ⟨𝑝, 𝑦

𝑏
⟩, while consumers act to

maximize their preferences described by a utility function
𝑢
𝑎
: R𝑙
+
→ R, subject to budget constraints: the value of the

consumption plan of agent 𝑎 cannot exceed the agent’s wealth
at the going prices. The multimap 𝑀

𝑎
: 𝑃 × 𝑌⊸R𝑙

+
defined

as

𝑀
𝑎
(𝑝, 𝑦)

= {𝑥
𝑎
∈ R
𝑙

+
: ⟨𝑝, 𝑥

𝑎
⟩ ≤ ⟨𝑝, 𝑒

𝑎
⟩ +max{0, ⟨𝑝, ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩}}

(5)

represents the budget constraint set. Previous arguments lead
to the following definition of competitive equilibrium.

Definition 6. Letting 𝑝 ∈ 𝑃, 𝑥 ∈ R𝑙×𝑛
+

and 𝑦 ∈ 𝑌, we say that
(𝑝, 𝑥, 𝑦) is a competitive equilibrium if and only if

∀𝑏 ∈ 𝐵 ⟨𝑝, 𝑦
𝑏
⟩ = max
𝑦𝑏∈𝑌𝑏

⟨𝑝, 𝑦
𝑏
⟩ , (6)

∀𝑎 ∈ 𝐴 𝑢
𝑎
(𝑥
𝑎
) = max
𝑀𝑎(𝑝,𝑦)

𝑢
𝑎
(𝑥
𝑎
) , (7)

∀𝑗 ∈ 𝐽 ∑

𝑎∈𝐴

(𝑥
𝑗

𝑎
− 𝑒
𝑗

𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑗

𝑏
≤ 0. (8)

We consider the equilibrium problem under the following
assumptions:

(H1) for all 𝑏 ∈ 𝐵, 𝑌
𝑏
is a closed, bounded, convex set ofR𝑙

with 0R𝑙 ∈ 𝑌𝑏;
(H2) for all 𝑎 ∈ 𝐴, 𝑢

𝑎
is concave, proper, and upper semi-

continuous.

Denoting with 𝑆 : 𝑃 × R𝑙×𝑛
+

× 𝑌⊸𝑃 × R𝑙×𝑛
+

× 𝑌 themultimap
defined as 𝑆(𝑝, 𝑥, 𝑦) = 𝑃 × ∏

𝑎∈𝐴
𝑀
𝑎
(𝑝, 𝑦) × 𝑌, we give now

a characterization of the competitive equilibrium in terms of
the following generalized quasi-variational inequality:
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“find (𝑝, 𝑥, 𝑦) ∈ 𝑆(𝑝, 𝑥, 𝑦) and ℎ = {ℎ
𝑎
}
𝑎∈𝐴

, with ℎ
𝑎
∈

𝜕(−𝑢
𝑎
(𝑥
𝑎
)) for all 𝑎 ∈ 𝐴:

∑

𝑏∈𝐵

⟨𝑝, 𝑦
𝑏
− 𝑦
𝑏
⟩ + ∑

𝑎∈𝐴

⟨−ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩

+ ⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑝⟩ ≤ 0

∀ (𝑝, 𝑥, 𝑦) ∈ 𝑆 (𝑝, 𝑥, 𝑦) .”
(9)

Theorem7. Let assumptions (H1)-(H2) be satisfied. A solution
to (9), (𝑝, 𝑥, 𝑦), such that

⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑞⟩ ≤ 0, (10)

is a competitive equilibrium, where 𝑞 = (𝑞
1
, . . . , 𝑞

𝑙
) is the vector

of minima prices.

Proof. We divide the proof in several steps.
Step 1. (𝑝, 𝑦, 𝑥) ∈ 𝑆(𝑝, 𝑥, 𝑦) and ℎ

𝑎
∈ {𝜕(−𝑢

𝑎
(𝑥
𝑎
))} are

solutions to the generalized quasi-variational inequality (9)
if and only if, for all 𝑏 ∈ 𝐵, 𝑦

𝑏
is a solution to

⟨𝑝, 𝑦
𝑏
− 𝑦
𝑏
⟩ ≤ 0, ∀𝑦

𝑏
∈ 𝑌
𝑏
, (11)

for all 𝑎 ∈ 𝐴, 𝑥
𝑎
and ℎ
𝑎
are solutions to

⟨−ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ ≤ 0, ∀𝑥

𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦) , (12)

and 𝑝 is a solution to

⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑝⟩ ≤ 0, ∀𝑝 ∈ 𝑃. (13)

This is easily seen by testing (9), respectively, with (𝑝, 𝑦, 𝑥) for
𝑦 ∈ 𝑌 such that

𝑦
𝑠
= {

𝑦
𝑠

if 𝑠 ̸= 𝑏,

𝑦
𝑏

∀𝑦
𝑏
∈ 𝑌
𝑏
,

(14)

with (𝑝, 𝑦, 𝑥) for 𝑥 ∈ ∏
𝑎∈𝐴

𝑀
𝑎
(𝑝, 𝑦) such that

𝑥
𝑠
= {

𝑥
𝑠

if 𝑠 ̸= 𝑎,

𝑥
𝑎

∀𝑥
𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦) ,

(15)

and with (𝑝, 𝑦, 𝑥) for all 𝑝 ∈ 𝑃. Vice versa, let 𝑝, 𝑥, and 𝑦

satisfy (11), (12), and (13), then (9) is verified.
Step 2. The maximization problem (6) is equivalent to the
variational inequality (11).

It follows directly from the definition of the variational
inequality (11).
Step 3. For all 𝑎 ∈ 𝐴, 𝑥

𝑎
∈ 𝑀

𝑎
(𝑝, 𝑦) is a solution to

maximization problem

𝑢
𝑎
(𝑥
𝑎
) = max
𝑀𝑎(𝑝,𝑦)

𝑢
𝑎
(𝑥
𝑎
) , ∀𝑎 ∈ 𝐴 (16)

if and only if there exists ℎ
𝑎
∈ 𝜕(−𝑢

𝑎
(𝑥
𝑎
)) such that

⟨−ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ ≤ 0 ∀𝑥

𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦) . (17)

It is well known that from (H2) −𝑢
𝑎
is locally Lipschitz

continuous. Hence, there exists the generalized directional
derivative, (−𝑢

𝑎
)
0, of −𝑢

𝑎
at 𝑥
𝑎
on the direction (𝑥

𝑎
−𝑥
𝑎
) and

it holds

(−𝑢
𝑎
)
0

(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
)

= max {⟨ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ : ℎ
𝑎
∈ 𝜕 (−𝑢

𝑎
(𝑥
𝑎
))} .

(18)

Furthermore, since −𝑢
𝑎
is convex, there exists the directional

derivative (−𝑢
𝑎
)

(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
); then by (18) we have

(−𝑢
𝑎
)
0

(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
) = (−𝑢

𝑎
)


(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
)

= max {⟨ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ : ℎ
𝑎
∈ 𝜕 (−𝑢

𝑎
(𝑥
𝑎
))} .

(19)

Thus, if 𝑥
𝑎
is a minimal point of −𝑢

𝑎
, it follows that

(−𝑢
𝑎
)


(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
)

= max {⟨ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ : ℎ
𝑎
∈ 𝜕 (−𝑢

𝑎
(𝑥
𝑎
))} ≥ 0,

∀𝑥
𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦) ,

(20)

then there exists ℎ
𝑎
∈ 𝜕(−𝑢

𝑎
(𝑥
𝑎
)) such that (17) holds.

Conversely, let ℎ
𝑎
∈ 𝜕(−𝑢

𝑎
(𝑥
𝑎
)) be such that (17) holds,

then

(−𝑢
𝑎
)


(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
)

= max {⟨ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ : ℎ
𝑎
∈ 𝜕 (−𝑢

𝑎
(𝑥
𝑎
))} ≥ 0,

∀𝑥
𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦) .

(21)

From the convexity of −𝑢
𝑎
it follows that 𝜑(𝑡) = (−𝑢

𝑎
(𝑥
𝑎
+

𝑡(𝑥
𝑎
− 𝑥
𝑎
)) + 𝑢

𝑎
(𝑥
𝑎
))/𝑡 is an increasing function, implying

(−𝑢
𝑎
)

(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
) = inf

𝑡>0
𝜑(𝑡) and

−𝑢
𝑎
(𝑥
𝑎
+ 𝑡 (𝑥

𝑎
− 𝑥
𝑎
)) + 𝑢

𝑎
(𝑥
𝑎
) ≥ 𝑡(−𝑢

𝑎
)


(𝑥
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
) ≥ 0.

(22)

Hence, we get for 𝑡 = 1, −𝑢
𝑎
(𝑥
𝑎
) ≥ −𝑢

𝑎
(𝑥
𝑎
) for all 𝑥

𝑎
∈

𝑀
𝑎
(𝑝, 𝑦). Consequently, 𝑥

𝑎
is a maximum point of 𝑢

𝑎
in

𝑀
𝑎
(𝑝, 𝑦).

Step 4. The equilibrium condition (8) holds.
Indeed, by Step 1, variational inequality (13) holds. We

pose

𝐽
+
= {𝑗 ∈ 𝐽 : ∑

𝑎∈𝐴

(𝑥
𝑗

𝑎
− 𝑒
𝑗

𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑗

𝑏
> 0} ,

𝐽
−

0
= {𝑗 ∈ 𝐽 : ∑

𝑎∈𝐴

(𝑥
𝑗

𝑎
− 𝑒
𝑗

𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑗

𝑏
≤ 0, 𝑝

𝑗
= 𝑞
𝑗
} ,

𝐽
−
= {𝑗 ∈ 𝐽 : ∑

𝑎∈𝐴

(𝑥
𝑗

𝑎
− 𝑒
𝑗

𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑗

𝑏
≤ 0, 𝑝

𝑗
> 𝑞
𝑗
} .

(23)
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We suppose by contradiction that 𝐽+ ̸= 0. We observe that 𝐽−

is nonempty; in fact, if 𝐽− = 0, since ∑
𝑗∈𝐽

𝑞
𝑗
< 1, we have

𝑝 ̸= 𝑞, namely, there exists at least one index 𝑗 ∈ 𝐽
+ such that

𝑝
𝑗
> 𝑞
𝑗, then

⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑞⟩

= ∑

𝑗∈𝐽
+

(∑

𝑎∈𝐴

(𝑥
𝑗

𝑎
− 𝑒
𝑗

𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑗

𝑏
)(𝑝
𝑗
− 𝑞
𝑗
) > 0,

(24)

but this contradicts (10), then 𝐽− ̸= 0. We consider

�̃�
𝑗
=

{{{{

{{{{

{

𝑝
𝑗
+ 𝜀 ∀𝑗 ∈ 𝐽

+
,

𝑝
𝑗

∀𝑗 ∈ 𝐽
−

0
,

𝑝
𝑗
− 𝜀

𝐽
+

|𝐽−|
∀𝑗 ∈ 𝐽

−
,

(25)

where 0 < 𝜀 < min
𝑗∈𝐽
−{(𝑝
𝑗
− 𝑞
𝑗
)(|𝐽
−
|/|𝐽
+
|)}. We have for all

𝑗 ∈ 𝐽 that �̃�𝑗 ≥ 𝑞
𝑗 and

∑

𝑗∈𝐽

�̃�
𝑗
= ∑

𝑗∈𝐽
+

(𝑝
𝑗
+ 𝜀) + ∑

𝑗∈𝐽
−

0

𝑝
𝑗
+ ∑

𝑗∈𝐽
−

(𝑝
𝑗
− 𝜀

𝐽
+

|𝐽−|
)

= 1 + 𝜀
𝐽
+ −

𝐽
− 𝜀

𝐽
+

|𝐽−|
= 1,

(26)

then �̃� ∈ 𝑃. If we replace �̃� in (13), it results in

⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, �̃� − 𝑝⟩

= 𝜀 ∑

𝑗∈𝐽
+

(∑

𝑎∈𝐴

(𝑥
𝑗

𝑎
− 𝑒
𝑗

𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑗

𝑏
)

− 𝜀

𝐽
+

|𝐽−|
∑

𝑗∈𝐽
−

(∑

𝑎∈𝐴

(𝑥
𝑗

𝑎
− 𝑒
𝑗

𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑗

𝑏
) > 0.

(27)

But this is false because𝑝 is a solution to variational inequality
(13). Hence, we have the equilibrium condition (8).

Then we can conclude that (𝑝, 𝑥, 𝑦) is a competitive
equilibrium.

Proposition 8. If (𝑝, 𝑥, 𝑦) ∈ 𝑆(𝑝, 𝑥, 𝑦) is a competitive
equilibrium and in (10) the equality holds, then it is a solution
to (9).

Proof. By equilibrium condition (8), since 𝑝𝑗 ≥ 𝑞
𝑗 for all 𝑗 ∈

𝐽, we have that for all 𝑝 ∈ 𝑃, it results in

⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑝⟩

= ⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑞⟩

+⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) + ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑞 − 𝑝⟩

= ⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑞⟩ ≤ 0.

(28)

Then 𝑝 is a solution to the variational inequality (13).
Moreover, by Steps 2 and 3 of Theorem 7 it follows that, for
all 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, 𝑦

𝑏
and 𝑥

𝑎
are, respectively, solutions

to variational inequalities (11) and (12). Hence, (𝑝, 𝑥, 𝑦) is a
solution to the variational problem (9).

4. Existence Theorems

This section concerns the study of existence of solutions
to the generalized quasi-variational inequality (9). Firstly
we achieve an existence result for the following generalized
quasi-variational inequality:

“find (𝑝, 𝑥, 𝑦) ∈ 𝑃 × ∏
𝑎∈𝐴

𝐾
𝑎
(𝑝, 𝑦) × 𝑌 and ℎ = {ℎ

𝑎
}
𝑎∈𝐴

with ℎ
𝑎
∈𝜕(−𝑢

𝑎
(𝑥
𝑎
)), for all 𝑎 ∈ 𝐴:

∑

𝑏∈𝐵

⟨𝑝, 𝑦
𝑏
− 𝑦
𝑏
⟩ + ∑

𝑎∈𝐴

⟨−ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩

+⟨∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) − ∑

𝑏∈𝐵

𝑦
𝑏
, 𝑝 − 𝑝⟩ ≤ 0

∀ (𝑝, 𝑥, 𝑦) ∈ 𝑃 ×∏

𝑎∈𝐴

𝐾
𝑎
(𝑝, 𝑦) × 𝑌, ”

(29)

where𝐾
𝑎
(𝑝, 𝑦) = 𝑀

𝑎
(𝑝, 𝑦)∩∏

𝑙

𝑗=1
[0, ∑
𝑎∈𝐴

𝑒
𝑗

𝑎
+𝑀], with𝑀 >

0 such that −𝑀 < ∑
𝑏∈𝐵

𝑦
𝑗

𝑏
< 𝑀 for all 𝑗 ∈ 𝐽 (the existence of

𝑀 is ensured by the boundedness of 𝑌
𝑏
for all 𝑏 ∈ 𝐵).

Theorem 9. Let assumptions (H1)-(H2) be satisfied. Then
there exists a solution of (29).

Proof. We prove that all the hypotheses of the existence result
of Theorem 5 are satisfied obtaining the claimed result.

Step 1.Themultimap 𝑓 : R𝑙 ×R𝑙×𝑛
+

×R𝑙×𝑚⊸R𝑙 ×R𝑙×𝑛 ×R𝑙×𝑚

defined as

𝑓 (𝑝, 𝑥, 𝑦) = (∑

𝑎∈𝐴

(𝑥
𝑎
− 𝑒
𝑎
) + ∑

𝑏∈𝐵

𝑦
𝑏
, {−ℎ
𝑎
}
𝑛

𝑎=1
, (𝑝, . . . , 𝑝)) ,

(30)

with ℎ
𝑎
∈ 𝜕(−𝑢

𝑎
(𝑥
𝑎
)) for any 𝑎 ∈ 𝐴, is u.s.c. with compact

and convex values.
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Since, from (H2), the map −𝑢
𝑎
is a convex and l.s.c. map,

from Proposition 4, it follows that the subdifferential 𝜕(−𝑢
𝑎
)

is u.s.c. with compact convex values. Furthermore, the other
two components of𝑓 are single valued continuousmaps, thus
we can conclude that the multimap 𝑓 is u.s.c. with compact
convex values.
Step 2.Themultimap𝐾 : 𝑃×R𝑙×𝑛

+
×𝑌⊸𝑃×R𝑙×𝑛

+
×𝑌 defined

as𝐾(𝑝, 𝑥, 𝑦) = 𝑆(𝑝, 𝑥, 𝑦)∩𝐶, with𝐶 = 𝑃×∏
𝑙

𝑗=1
[0, ∑
𝑎∈𝐴

𝑒
𝑗

𝑎
+

𝑀] × 𝑌, is l.s.c.
Indeed the map 𝑀

𝑎
: 𝑃 × 𝑌⊸R𝑙

+
defined in (5) is

l.s.c. To prove it we apply Theorem 2 with 𝑋 = 𝑃 × 𝑌,
𝑍 = R𝑙

+
, 𝑓(𝑥, 𝑧) = 𝑓(𝑝, 𝑦, 𝑥) = ⟨𝑝, 𝑥⟩ − ⟨𝑝, 𝑒

𝑎
⟩ +

max{0, ⟨𝑝, ∑
𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩}, 𝑇(𝑝, 𝑦) = (−∞, 0], 𝑈(𝑝, 𝑦) =

∏
𝑙

𝑗=1
[0, ∑
𝑎∈𝐴

𝑒
𝑗

𝑎
+𝑀].

To apply the mentioned theorem we only need to verify
that for any (𝑝, 𝑦) ∈ 𝑃 × 𝑌 there exists 𝑥 ∈ 𝑈(𝑝, 𝑦) such that

⟨𝑝, 𝑥⟩ − ⟨𝑝, 𝑒
𝑎
⟩ −max{0,⟨𝑝, ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩} < 0. (31)

This follows easily from the fact that

⟨𝑝, 𝑒
𝑎
⟩ +max{0,⟨𝑝, ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩} > 0, (32)

where the last inequality is due to the fact that, since there
exists 𝑗 = 1, . . . , 𝑙 such that 𝑒𝑗

𝑎
> 0, 𝑞

𝑗
> 0 and 𝑝𝑗 ≥ 𝑞

𝑗 for any
𝑗, we have for any 𝑝 ∈ 𝑃

⟨𝑝, 𝑒
𝑎
⟩ = ∑

𝑗∈𝐼𝑎

𝑝
𝑗
𝑒
𝑗

𝑎
+ ∑

𝑗∉𝐼𝑎

𝑝
𝑗
𝑒
𝑗

𝑎
= ∑

𝑗∈𝐼𝑎

𝑝
𝑗
𝑒
𝑗

𝑎
> 0. (33)

Finally, the map 𝐾 is l.s.c. as cartesian product of l.s.c.
multimaps and trivially it has convex values.
Step 3. 𝐾(𝐶) ⊆ 𝐶.

Follows directly from the definition of 𝐶.
Step 4. The map 𝐾 is u.s.c.

First of all we prove that𝑀
𝑎
is a closed multimap. Indeed

let {𝑝
𝑛
} ⊂ 𝑃, {𝑦

𝑛
} ⊂ 𝑌, and {𝑥

𝑛
}, with 𝑥

𝑛
∈ 𝑀
𝑎
(𝑝
𝑛
, 𝑦
𝑛
) for any

𝑛 ∈ N, such that 𝑝
𝑛
→ 𝑝, 𝑦

𝑛
→ 𝑦, and 𝑥

𝑛
→ 𝑥, one has

𝑥 ∈ 𝑀
𝑎
(𝑝, 𝑦). In fact, since 𝑥

𝑛
∈ 𝑀
𝑎
(𝑝
𝑛
, 𝑦
𝑛
) we have

𝑥
𝑗

𝑛
≥0 ⟨𝑝

𝑛
, 𝑥
𝑛
⟩−⟨𝑝
𝑛
, −𝑒
𝑎
⟩−max{0,⟨𝑝

𝑛
, ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏𝑛
⟩}≤0

(34)

passing to the limit and we have

𝑥
𝑗
≥ 0 ⟨𝑝, 𝑥⟩ − ⟨𝑝, 𝑒

𝑎
⟩ −max{0,⟨𝑝, ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩} ≤ 0,

(35)

so 𝑥
𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦).

Hence, 𝐾
𝑎
is a closed multimap as intersection of closed

multimaps and 𝐾 is a closed multimap as cartesian product
of closed multimaps.

Moreover, from Step 3,𝐾 is a compact multimap, thus, by
Theorem 1 it is u.s.c.

Hence, we can apply Theorem 5, obtaining a solution of
the quasi-variational inequality (29).

Theorem 10. Let assumptions (H1)-(H2) be satisfied, let
(𝑝, 𝑥, 𝑦) and ℎ = {ℎ

𝑎
}
𝑎∈𝐴

with ℎ
𝑎
∈ 𝜕(−𝑢

𝑎
(𝑥
𝑎
)), for all 𝑎 ∈ 𝐴,

be a solution to (29), such that (10) is satisfied. Then (𝑝, 𝑥, 𝑦)
and ℎ are a solution to (9).

Proof. Fix 𝑎 ∈ 𝐴, we prove that 𝑥
𝑎
and ℎ

𝑎
∈ 𝜕(−𝑢

𝑎
(𝑥
𝑎
)) are a

solution to the generalized variational inequality

⟨−ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ ≤ 0 ∀𝑥

𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦) . (36)

We suppose that there exists 𝑥


∈ 𝑀
𝑎
(𝑝, 𝑦) such that

⟨−ℎ
𝑎
, 𝑥

− 𝑥
𝑎
⟩ > 0. Since 𝑥

𝑎
∈ 𝐾
𝑎
(𝑝, 𝑦) ⊆ 𝑀

𝑎
(𝑝, 𝑦),

𝑥

∈ 𝑀
𝑎
(𝑝, 𝑦), and 𝑀

𝑎
(𝑝, 𝑦) are a convex set, then �̃� =

𝜆𝑥

+ (1 − 𝜆)𝑥

𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦), for all 𝜆 ∈ (0, 1). It results in

⟨−ℎ
𝑎
, �̃� − 𝑥

𝑎
⟩ = ⟨−ℎ

𝑎
, 𝜆𝑥

+ (1 − 𝜆) 𝑥

𝑎
− 𝑥
𝑎
⟩

= 𝜆 ⟨−ℎ
𝑎
, 𝑥

− 𝑥
𝑎
⟩ > 0 ∀𝜆 ∈ (0, 1) .

(37)

Observe that

if (𝑥)
𝑗

− 𝑥
𝑗

𝑎
= 0 then �̃�

𝑗
− ∑

𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀

= 𝑥
𝑗

𝑎
− ∑

𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀 ≤ 0;

if (𝑥)
𝑗

− 𝑥
𝑗

𝑎
< 0 then �̃�

𝑗
− ∑

𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀 < 0.

(38)

Finally if (𝑥)𝑗 − 𝑥𝑗
𝑎
> 0, by (10) we can choose

0 < 𝜆 < min{1, −
𝑥
𝑗

𝑎
− ∑
𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀

(𝑥)
𝑗

− 𝑥
𝑗

𝑎

,

with 𝑗 ∈ 𝐽such that (𝑥)
𝑗

− 𝑥
𝑗

𝑎
> 0} .

(39)

obtaining

�̃�
𝑗
− ∑

𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀

= 𝜆 [(𝑥

)
𝑗

− 𝑥
𝑗

𝑎
] + 𝑥
𝑗

𝑎
− ∑

𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀 <

−
𝑥
𝑗

𝑎
− ∑
𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀

(𝑥)
𝑗

− 𝑥
𝑗

𝑎

[(𝑥

)
𝑗

− 𝑥
𝑗

𝑎
]

+ 𝑥
𝑗

𝑎
− ∑

𝑎∈𝐴

𝑒
𝑗

𝑎
−𝑀 = 0.

(40)

Hence, �̃� ∈ ∏
𝑗∈𝐽
[0, ∑
𝑎∈𝐴

𝑒
𝑗

𝑎
+ 𝑀]. Then we have that there

exists �̃� ∈ 𝑀
𝑎
(𝑝, 𝑦) ∩∏

𝑙

𝑗=1
[0, ∑
𝑎∈𝐴

𝑒
𝑗

𝑎
+𝑀] such that ⟨−ℎ

𝑎
, �̃�−

𝑥
𝑎
⟩ > 0, but this contradicts 𝑥

𝑎
solution to

⟨−ℎ
𝑎
, 𝑥
𝑎
− 𝑥
𝑎
⟩ ≤ 0, ∀𝑥

𝑎
∈ 𝐾
𝑎
(𝑝, 𝑦) , (41)
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and by Step 1 in Theorem 7 this contradicts the fact that
(𝑝, 𝑥, 𝑦) is a solution to (29).

Then, we can conclude that 𝑦 is a solution to (11), 𝑥
𝑎
is a

solution to (36), and 𝑝 is a solution to (13); namely, (𝑝, 𝑥, 𝑦)
is a solution to (9).

In conclusion, directly fromTheorems 9 and 10, it follows
the existence result for a competitive equilibrium.

Theorem 11. Let assumptions (H1)-(H2) be satisfied, let
(𝑝, 𝑥, 𝑦) and ℎ = {ℎ

𝑎
}
𝑎∈𝐴

with ℎ
𝑎
∈ 𝜕(−𝑢

𝑎
(𝑥
𝑎
)), for all 𝑎 ∈ 𝐴,

be a solution to (29) such that (10) is satisfied. Then (𝑝, 𝑥, 𝑦)

and ℎ are a competitive equilibrium.

Remark 12. We observe that if each agent is endowed with
each commodity 𝑗, that is, 𝐼

𝑎
= 𝐽, then it is possible to assume

𝑞
𝑗
= 0 for all 𝑗 ∈ 𝐽 and (10) is verified for (𝑝, 𝑥, 𝑦) solution to

(29).
In fact, for all 𝑏 ∈ 𝐵, 0 ∈ 𝑌

𝑏
it results in ⟨𝑝, 𝑦

𝑏
⟩ ≥ 0, then

max{0,⟨𝑝, ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩} = ⟨𝑝, ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩. (42)

Moreover, since 𝑥
𝑎
∈ 𝑀
𝑎
(𝑝, 𝑦) is a solution to (12), for all

𝑎 ∈ 𝐴, namely,

⟨𝑝, 𝑥
𝑎
⟩ ≤ ⟨𝑝, 𝑒

𝑎
− ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
⟩. (43)

Summing for 𝑎 ∈ 𝐴 it follows that

⟨𝑝, ∑

𝑎∈𝐴

𝑥
𝑎
⟩ ≤ ⟨𝑝, ∑

𝑎∈𝐴

(𝑒
𝑎
+ ∑

𝑏∈𝐵

𝜃
𝑎𝑏
𝑦
𝑏
)⟩ ,

⟨𝑝, ∑

𝑎∈𝐴

𝑥
𝑎
⟩ ≤ ⟨𝑝, ∑

𝑎∈𝐴

𝑒
𝑎
+ ∑

𝑏∈𝐵

𝑦
𝑏
∑

𝑎∈𝐴

𝜃
𝑎𝑏
⟩.

(44)

In conclusion, being ∑
𝑎∈𝐴

𝜃
𝑎𝑏
= 1, (10) holds.

Remark 13. If each agent is endowed with all commodities
there exists a competitive equilibrium (𝑝, 𝑥, 𝑦).

5. Summary and Conclusions

Themain result of this paper has been to obtain the existence
of a competitive economic equilibrium for amodel integrated
with exchange, production, and consumption. In order to
obtain a wide applicability in the economic framework, care
was taken to keep a level of generality on the assumptions of
the market. In particular utility functions which are proper,
convex, and upper semi-continuous have been considered,
hence without assuming any differentiability. These assump-
tions allow us to consider a wide range of utility functions
frequently used in the economic literature.

A class of utility functionsmost widely used in economics
consists of Cobb-Douglas utility functions:

𝑢
𝑎
(𝑥
1

𝑎
, . . . , 𝑥

𝑙

𝑎
)

= ∏

𝑗∈𝐽

(𝑥
𝑗

𝑎
)
𝛼
𝑗

𝑎

, ∀𝑥
𝑎
∈ R
𝑙

+
, with 𝛼

𝑗

𝑎
≥ 0, ∑

𝑗∈𝐽

𝛼
𝑗

𝑎
≤ 1,

(45)

where 𝛼𝑗
𝑎
indicates the importance which agent 𝑎 gives to

the commodity 𝑗. This class of utility functions is very much
appreciated in economics, thanks to its analytical tractability
(see, e.g., [23] for an historical overview on Cobb-Douglas
utility functions).

Another very interesting class of utility functions is
represented byConstant Elasticity of Substitution (CES) utility
functions:

𝑢
𝑎
(𝑥
1

𝑎
, . . . , 𝑥

𝑙

𝑎
)

= [

[

∑

𝑗∈𝐽

(𝑐
𝑗

𝑎
)
1/𝑠

(𝑥
𝑗

𝑎
)
(𝑠−1)/𝑠

]

]

𝑠/(𝑠−1)

∀𝑥
𝑎
∈ R
𝑙

+
, with 𝑠 > 0, 𝑠 ̸= 1,

(46)

where coefficients 𝑐
𝑗

𝑎
≥ 0 are distribution parameters.

These functions are characterized by constant elasticity of
substitution 𝑠 between any two differentiated goods. The
CES utility functions were originally introduced by Kenneth
Arrow, as a generalization of Cobb-Douglas utility functions.

The functions, before mentioned, satisfy the assumptions
we have taken in this paper; in fact they are proper, convex,
and upper semi-continuous.However, these functions are not
always differentiable on all their domain. They are defined
and continuous on all of R𝑙

+
, but are only differentiable on

the interior of R𝑙
+
: in particular the Cobb-Douglas utility

function is not differentiable when 𝛼
𝑗

𝑎
< 1 while the CES

utility function is never differentiable.
To conclude we want to stress that, in our opinion,

by using the variational approach, the generalized quasi-
variational inequalities are especially suitable to handle equi-
libriumproblems for amarket of exchange, consumption, and
production, for it allows to take into account a wide class of
models.
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