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By using fractional power of operators and Sadovskii fixed point theorem, we study the complete controllability of fractional neutral
differential systems in abstract space without involving the compactness of characteristic solution operators introduced by us.

1. Introduction

Recently, fractional differential systems have been proved to
be valuable tools in the modeling of many phenomena in
various fields of science and engineering. Indeed, we can find
numerous applications in viscoelasticity, electrochemistry,
control, porous media, electromagnetic, and so forth (see [1–
5]). There has been a great deal of interest in the solutions
of fractional differential systems in analytic and numerical
sense. One can see the monographs of Kilbas et al. [6],
Miller and Ross [7], Podlubny [8], Lakshmikantham et al. [9],
Tarasov [10], Wang et al. [11–13] and the survey of Agarwal et
al. [14] and the reference therein. In order to study the frac-
tional systems in the infinite dimensional space, the first
important step is how to introduce a new concept of mild
solutions. A pioneering work has been reported by EI-Borai
[15] and Zhou and Jiao [16].

In recent years, controllability problems for various types
of nonlinear fractional dynamical systems in infinite dimen-
sional spaces have been considered in many publications. An
extensive list of these publications focused on the complete
and approximate controllability of the fractional dynamical
systems can be found (see [17–34]). Although the controlla-
bility of fractional differential systems in abstract space has
been discussed, Hernández et al. [35] point out that some
papers on controllability of abstract control systems contain
a similar technical error when the compactness of semigroup

and other hypotheses is satisfied, more precisely, in this case
the application of controllability results are restricted to the
finite dimensional space. Ji et al. [32] find some conditions
guaranteeing the controllability of impulsive differential sys-
tem when the Banach space is nonseparable and evolution
systems are not compact, by means of Möch fixed point
theorem and the measure of noncompactness. Meanwhile,
Wang et al. [19, 20] have researched the complete control-
lability of fractional evolution systems without involving the
compactness of characteristic solution operators. Neutral dif-
ferential equations arise in many areas of applied mathemat-
ics and for this reason these equations have received much
attention in the last decades. Sakthivel and Ren [29] have
established a new set of sufficient conditions for the complete
controllability for a class of fractional order neutral systems
with bounded delay under the natural assumption that the
associated linear control is completely controllable. To the
author’s knowledge, there are few papers on the complete
controllability of the abstract neutral fractional differential
systems with unbounded delay.

In the present paper, we introduce a suitable concept of
the mild solutions including characteristic solution operators
𝜑(⋅) and 𝑆(⋅) which are associated with operators semigroup
{𝑇(𝑡); 𝑡 ≥ 0} and some probability density functions 𝜉𝑞.
Then also without involving the compactness of character-
istic solution operators, we obtain the controllability of the



2 Abstract and Applied Analysis

following abstract neutral fractional differential systems with
unbounded delay:

𝑐
𝐷
𝑞

𝑡
(𝑥 (𝑡) + 𝐹 (𝑡, 𝑥𝑡)) + 𝐴𝑥 (𝑡) = 𝐶𝑢 (𝑡) + 𝐺 (𝑡, 𝑥𝑡) ,

𝑡 ∈ (0, 𝑎] ,

𝑥0 (𝜗) = 𝜙 (𝜗) ∈ 𝐵, 𝜗 ∈ (−∞, 0] ,

(1)

where the state variable 𝑥(⋅) takes values in Banach space
𝑋, 𝑥𝑡 : (−∞, 0] → 𝑋, 𝑥𝑡(𝜗) = 𝑥(𝑡 + 𝜗) belongs to some
abstract phase space𝐵, and𝐵 is the phase space to be specified
later. The control function 𝑢(⋅) is given in 𝐿2([0, 𝑎]; 𝑈), with
𝑈 as a Banach spaces. 𝐶 is a bounded linear operator from 𝑈

to𝑋. The operator −𝐴 is a generator of a uniformly bounded
analytic semigroup {𝑇(𝑡), 𝑡 ≥ 0} in which 𝑋, 𝐹, 𝐺 : [0, 𝑎] ×

𝐵 → 𝑋 are appropriate functions.

2. Preliminaries

Throughout this paper 𝑋 will be a Banach space with norm
‖ ⋅ ‖ and 𝑌 is another Banach space, 𝐿𝑏(𝑋, 𝑌) denote the
space of bounded linear operators from 𝑋 to 𝑌. We also use
‖𝑓‖𝐿𝑝([0,𝑎],𝑅+) to denote the 𝐿

𝑝
([0, 𝑎], 𝑅

+
) of norm of 𝑓 when-

ever 𝑓 ∈ 𝐿
𝑝
([0, 𝑎], 𝑅

+
) for some 𝑝 with 1 ≤ 𝑝 < ∞.

Let 𝐿𝑝([0, 𝑎], 𝑅+) denote the Banach space of functions
𝑓: [0, 𝑎] → 𝑋 which are Bochner integrable normed by
‖𝑓‖𝐿𝑝([0,𝑎],𝑅+). Let −𝐴 :𝐷(𝐴) → 𝑋 be the infinitesimal gen-
erator of a uniformly bounded analytic semigroup 𝑇(𝑡). Let
0 ∈ 𝜌(𝐴), then it is possible to define the fractional power
𝐴
𝛼, for 0 < 𝛼 ≤ 1, as a closed linear operator on its domain

𝐷(𝐴
𝛼
). Furthermore, the subspace 𝐷(𝐴𝛼) is dense in 𝑋 and

the expression

‖𝑥‖𝛼 =
󵄩󵄩󵄩󵄩𝐴
𝛼
𝑥
󵄩󵄩󵄩󵄩 , 𝑥 ∈ 𝐷 (𝐴

𝛼
) (2)

defines a norm on 𝐷(𝐴
𝛼
). Hereafter we denote by 𝑋𝛼 the

Banach space 𝐷(𝐴𝛼) normed with ‖𝑥‖𝛼. Then for each 0 <

𝛼 ≤ 1, 𝑋𝛼 the Banach space, and ‖𝑥‖𝛼 󳨅→ ‖𝑥‖𝛽 for 0 < 𝛽 <

𝛼 ≤ 1 and the imbedding is compact whenever the resolvent
operator of 𝐴 is compact. For a uniformly bounded analytic
semigroup {𝑇(𝑡); 𝑡 ≥ 0} the following properties will be used:

(a) there is a𝑀 ≥ 0 such that ‖𝑇(𝑡)‖ ≤ 𝑀 for all 𝑡 ≥ 0.
(b) for any 𝛼 ≥ 0, there exists a positive constant 𝐶𝛼 such

that

󵄩󵄩󵄩󵄩𝐴
𝛼
𝑇 (𝑡)

󵄩󵄩󵄩󵄩 ≤
𝐶𝛼

𝑡𝛼
, 0 < 𝑡 ≤ 𝑎. (3)

For more details about the above preliminaries, we can refer
to [16].

Although the semigroup {𝑇(𝑡); 𝑡 ≥ 0} is only the uni-
formly bounded analytic semigroup but not compact, we can
also give the definition of mild solution for our problem by
using the similar method introduced in [36].

Definition 1. We say that a function 𝑥(⋅) : (−∞, 𝑎] → 𝑋 is a
mild solution of the system (1) if 𝑥0 = 𝜙, the restriction of 𝑥(⋅)
to the interval [0, 𝑎] is continuous and for each 0 ≤ 𝑡 ≤ 𝑎, the

function 𝐴𝑆(𝑡 − 𝑠)𝐹(𝑠, 𝑥𝑠), 𝑠 ∈ [0, 𝑡] is integrable and satisfies
the following integral equation:

𝑥 (𝑡) = 𝜑 (𝑡) [𝜙 (0) + 𝐹 (0, 𝜙)] − 𝐹 (𝑡, 𝑥𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑥𝑠)] 𝑑𝑠,

(4)

where 𝜑(𝑡) and 𝑆(𝑡) are called characteristic solution opera-
tors and are given by

𝜑 (𝑡) = ∫

∞

0

𝜉𝑞 (𝜃) 𝑇 (𝑡
𝑞
𝜃) 𝑑𝜃,

𝑆 (𝑡) = 𝑞∫

∞

0

𝜃𝜉𝑞 (𝜃) 𝑇 (𝑡
𝑞
𝜃) 𝑑𝜃,

(5)

and for 𝜃 ∈ (0,∞), 𝜉𝑞(𝜃) = (1/𝑞)𝜃
−1−1/𝑞

𝑤𝑞(𝜃
−1/𝑞

) ≥ 0,

𝑤𝑞 (𝜃) =
1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1
𝜗
−𝑞𝑛−1

Γ (𝑛𝑞 + 1)

𝑛!
sin (𝑛𝜋𝑞) . (6)

Here, 𝜉𝑞 is a probability density function defined on (0,∞),
that is, 𝜉𝑞(𝜃) ≥ 0, 𝜃 ∈ (0,∞), and ∫∞

0
𝜉𝑞(𝜃)𝑑𝜃 = 1.

Definition 2 (complete controllability). The fractional system
(1) is said to be completely controllable on the interval [0, 𝑎]
if, for every initial function 𝜙 ∈ 𝐵 and 𝑥1 ∈ 𝑋 there exists a
control 𝑢 ∈ 𝐿

2
([0, 𝑎], 𝑈) such that the mild solution 𝑥(⋅) of

(1) satisfies 𝑥(𝑎) = 𝑥1.

The following results of 𝜑(𝑡) and 𝑆(𝑡) will be used
throughout this paper.

Lemma3. Theoperators𝜑(𝑡) and 𝑆(𝑡) have the following prop-
erties:

(i) for any fixed 𝑡 ≥ 0, 𝜑(𝑡) and 𝑆(𝑡) are linear and bound-
ed operators, that is, for any 𝑥 ∈ 𝑋,

󵄩󵄩󵄩󵄩𝜑 (𝑡) 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝑀0 ‖𝑥‖ ,

‖𝑆 (𝑡) 𝑥‖ ≤
𝑞𝑀0

Γ (1 + 𝑞)
‖𝑥‖ ;

(7)

(ii) {𝜑(𝑡), 𝑡 ≥ 0} and {𝑆(𝑡), 𝑡 ≥ 0} are strongly continuous
and there exists 𝑀1,𝑀2 such that ‖𝜑(𝑡)‖ ≤ 𝑀1,
‖𝑆(𝑡)‖ ≤ 𝑀2 for any 𝑡 ∈ [0, 𝑎];

(iii) for 𝑡 ∈ [0, 𝑎] and any bounded subsets 𝐷 ⊂ 𝑋, 𝑡 →

{𝜑(𝑡)𝑥 : 𝑥 ∈ 𝐷} and 𝑡 → {𝑆(𝑡)𝑥 : 𝑥 ∈ 𝐷} are
equicontinuous if ‖𝑇(𝑡𝑞

2
𝜃)𝑥 − 𝑇(𝑡

𝑞

1
𝜃)𝑥‖ → 0 with

respect to 𝑥 ∈ 𝐷 as 𝑡2 → 𝑡1 for each fixed 𝜃 ∈ [0,∞].

The proof of Lemma 3 we can see in [33].
To end this section, we recall Kuratowski’s measure of

noncompactness, which will be used in the next section to
study the complete controllability via the fixed points of con-
densing operator.
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Definition 4. Let 𝑋 be a Banach space and Ω𝑋 the bounded
set of𝑋. The Kuratowski’s measure of noncompactness is the
map 𝛼 : Ω𝑋 → [0,∞) defined by

𝛼 (𝐷) = inf {𝑑 > 0 : 𝐷 ⊆

𝑛

⋃

𝑖=1

𝐷𝑖, diam (𝐷𝑖) ≤ 𝑑} , (8)

here𝐷 ∈ Ω𝑋.

One will use the following basic properties of the 𝛼

measure and Sadovskii’s fixed point theorem here (see [37–
39]).

Lemma 5. Let 𝐷1 and 𝐷2 be two bounded sets of a Banach
space 𝑋. Then

(i) 𝛼(𝐷1) = 0 if and only if𝐷1 is relatively compact;
(ii) 𝛼(𝐷1) ≤ 𝛼(𝐷2) if𝐷1 ⊆ 𝐷2;
(iii) 𝛼(𝐷1 + 𝐷2) ≤ 𝛼(𝐷1) + 𝛼(𝐷2).

Lemma 6 (sadovskii’s fixed point theorem). Let 𝑁 be a
condensing operator on a Banach space 𝑋, that is, 𝑁 is
continuous and takes bounded sets into bounded sets, and
𝛼(𝑁(𝐷)) < 𝛼(𝐷) for every bounded set𝐷 of𝑋 with 𝛼(𝐷) > 0.
If𝑁(𝑆) ⊂ 𝑆 for a convex closed and bounded set 𝑆 of𝑋, then𝑁
has a fixed point in 𝑆.

3. Complete Controllability Result

To study the system (1), we assume the function 𝑥𝑡 represents
the history of the state from −∞ up to the present time 𝑡
and 𝑥𝑡 : (−∞, 0] → 𝑋, 𝑥𝑡(𝜗) = 𝑥(𝑡 + 𝜗) belongs to some
abstract phase space 𝐵, which is defined axiomatically. In this
article, we will employ an axiomatic definition of the phase
space 𝐵 introduced by Hale and Kato [40] and follow the
terminology used in [41]. Thus, 𝐵 will be a linear space of
functionsmapping (−∞, 0] into𝑋 endowedwith a seminorm
‖ ⋅ ‖𝐵. We will assume that 𝐵 satisfies the following axioms:

(A) If 𝑥 ∈ (−∞, 𝜎 + 𝑎) → 𝑋, 𝑎 > 0, is continuous on
[𝜎, 𝜎 + 𝑎] and 𝑥𝜎 ∈ 𝐵, then for every 𝑡 ∈ [𝜎, 𝜎 + 𝑎] the
following conditions hold:

(i) 𝑥𝑡 is in 𝐵;
(ii) ‖𝑥(𝑡)‖ ≤ 𝐻‖𝑥𝑡‖𝐵;
(iii) ‖𝑥𝑡‖𝐵 ≤ 𝐾(𝑡 − 𝜎) sup{‖𝑥(𝑡)‖ : 𝜎 ≤ 𝑠 ≤ 𝑡} + 𝑀(𝑡 −

𝜎)‖𝑥𝜎‖𝐵.

Here 𝐻 ≥ 0 is a constant, 𝐾,𝑀 : [0, +∞) → [0, +∞),
𝐾 is continuous and𝑀 is locally bounded, and 𝐻,𝐾,𝑀 are
independent of 𝑥(𝑡).

(B) For the function 𝑥(⋅) in (A), 𝑥𝑡 is a 𝐵-valued continu-
ous function on [𝜎, 𝜎 + 𝑎].

(C) The space 𝐵 is complete.

Now we give the basic assumptions on the system (1).

(𝐻0) (i) 𝐴 generates a uniformly bounded analytic semi-
group {𝑇(𝑡), 𝑡 ≥ 0} in 𝑋; (ii) for all bounded subsets

𝐷 ⊂ 𝑋 and 𝑥 ∈ 𝐷, ‖𝑇(𝑡𝑞
2
𝜃)𝑥 − 𝑇(𝑡

𝑞

1
𝜃)𝑥‖ → 0 as

𝑡2 → 𝑡1 for each fixed 𝜃 ∈ [0,∞].

(𝐻1) 𝐹: [0, 𝑎] × 𝐵 → 𝑋 is continuous function, and there
exists a constant 𝛽 ∈ (0, 1) and 𝐿, 𝐿1 > 0 such that
the function 𝐹 is𝑋𝛽-valued and satisfies the Lipschitz
condition:

󵄩󵄩󵄩󵄩󵄩
𝐴
𝛽
𝐹 (𝑠1, 𝜙1) − 𝐴

𝛽
𝐹 (𝑠2, 𝜙2)

󵄩󵄩󵄩󵄩󵄩

≤ 𝐿 (
󵄨󵄨󵄨󵄨𝑠1 − 𝑠2

󵄨󵄨󵄨󵄨 +
󵄩󵄩󵄩󵄩𝜙1 − 𝜙2

󵄩󵄩󵄩󵄩𝐵) ,

(9)

for 0 ≤ 𝑠1, 𝑠2 ≤ 𝑎, 𝜙1, 𝜙2 ∈ 𝐵, and the inequality

󵄩󵄩󵄩󵄩󵄩
𝐴
𝛽
𝐹 (𝑡, 𝜙)

󵄩󵄩󵄩󵄩󵄩
≤ 𝐿1 (

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐵 + 1) (10)

holds for 𝑡 ∈ [0, 𝑎], 𝜙 ∈ 𝐵.

(𝐻2) The function𝐺 : [0, 𝑎]×𝐵 → 𝑋 satisfies the following
conditions:

(i) for each 𝑡 ∈ [0, 𝑎], the function 𝐺(𝑡, ⋅) : 𝐵 → 𝑋 is
continuous and for each 𝜙 ∈ 𝐵 the function 𝐺(⋅, 𝜙) :
[0, 𝑎] → 𝑋 is strongly measureable;

(ii) for each positive number 𝑘, there is a positive function
𝑔𝑘 ∈ 𝐿

1/𝑞1([0, 𝑎]), 0 < 𝑞1 < 𝑞 such that

sup
‖𝜙‖𝐵≤𝑘

󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝜙)
󵄩󵄩󵄩󵄩 ≤ 𝑔𝑘 (𝑡) ,

lim inf 1
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩𝐿1/𝑞1 [0,𝑎] = 𝛾 < ∞.

(11)

(𝐻3) The linear operator 𝐶 is bounded, 𝑊 from 𝑈 into 𝑋
is defined by

𝑊𝑢 = ∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1
𝑆 (𝑎 − 𝑠) 𝐶𝑢 (𝑠) 𝑑𝑠 (12)

and there exists a bounded invertible operator 𝑊−1
defined on 𝐿

2
([0, 𝑎]; 𝑈)/ ker𝑊 and there exist two

positive constants𝑀3,𝑀4 > 0 such that ‖𝐵‖𝐿𝑏(𝑈,𝑋) ≤
𝑀3, ‖𝑊

−1
‖𝐿𝑏(𝑋,𝐿

2([0,𝑎],𝑈)/ ker𝑊) ≤ 𝑀4.

(𝐻4) For all bounded subsets𝐷 ⊆ 𝑋, the set

Πℎ,𝛿 (𝑡) = {𝑄2,ℎ,𝛿𝑧 (𝑡) | 𝑧 ∈ 𝐷} , (13)

where

𝑄2,ℎ,𝛿𝑧 (𝑡) = ∫

𝑡−ℎ

0

∫

∞

𝛿

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠) 𝑑𝜃 𝑑𝑠

(14)

is relatively compact in 𝑋 for arbitrary ℎ ∈ (0, 𝑡) and
𝛿 > 0.
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Theorem 7. Let 𝜙 ∈ 𝐵. If the assumptions (𝐻0)–(𝐻4) are
satisfied, then the system (1) is controllable on interval [0, 𝑎]
provided that

𝑀5𝐿𝐾𝑎 +
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿𝐾𝑎 < 1,

(15)

(1 + 𝑎𝑀2𝑀3𝑀4)

× (𝐿1𝑀5𝐾𝑎 +𝑀2((
1 − 𝑞1

𝑞 − 𝑞1

)𝑎
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1

𝐾𝑎𝛾

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1𝐾𝑎) < 1,

(16)

where𝑀5 = ‖𝐴
−𝛽
‖, 𝐾𝑎 = sup{𝐾(𝑡) : 0 ≤ 𝑡 ≤ 𝑎} and 𝐶1−𝛽 is

from (3).

Proof. Using the assumption (𝐻3), for arbitrary function 𝑥(⋅)
define the control

𝑢 (𝑡) = 𝑊
−1
[𝑥1 − 𝜑 (𝑎) (𝜙 (0) + 𝐹 (0, 𝜙)) + 𝐹 (𝑎, 𝑥𝑎)

+ ∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1
𝐴𝑆 (𝑎 − 𝑠) 𝐹 (𝑠, 𝑥𝑠) 𝑑𝑠

−∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1
𝑆 (𝑎 − 𝑠) 𝐺 (𝑠, 𝑥𝑠) 𝑑𝑠] (𝑡) .

(17)

It will be shown that when using this control the operator 𝑃
defined by

𝑃𝑥 (𝑡) = 𝜑 (𝑡) [𝜙 (0) + 𝐹 (0, 𝜙)] − 𝐹 (𝑡, 𝑥𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑥𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑥𝑠)] 𝑑𝑠

(18)

has a fixed point 𝑥(⋅). Then 𝑥(⋅) is a mild solution of system
(1), and it is easy to verify that 𝑥(𝑎) = 𝑃𝑥(𝑎) = 𝑥1, which
implies that the system is controllable.

Next we will prove that 𝑃 has a fixed point using the fixed
point theorem of Sadovskii [38].

Let 𝑦(⋅) : (−∞, 𝑎] → 𝑋 be the function defined by

𝑦 (𝑡) = {
𝜑 (𝑡) 𝜙 (0) , 𝑡 ∈ [0, 𝑎] ,

𝜙 (𝑡) , −∞ < 𝑡 < 0,
(19)

then 𝑦0 = 𝜙 and the map 𝑡 → 𝑦𝑡 is continuous. We can
assume 𝑁 = sup{‖𝑦𝑡‖ : 0 ≤ 𝑡 ≤ 𝑎}. For each 𝑧 ∈ 𝐶([0, 𝑎] :

𝑋), 𝑧(0) = 0. We can denote by 𝑧 the function defined by

𝑧 (𝑡) = {
𝑧 (𝑡) , 0 ≤ 𝑡 ≤ 𝑎,

0, −∞ < 𝑡 < 0.
(20)

If 𝑥(⋅) satisfies (18), we can decompose it as 𝑥(𝑡) = 𝑧(𝑡) +𝑦(𝑡),
0 ≤ 𝑡 ≤ 𝑎, which implies 𝑥𝑡 = 𝑧𝑡 + 𝑦𝑡 for every 0 ≤ 𝑡 ≤ 𝑎 and
the function 𝑧(⋅) satisfies

𝑧 (𝑡) = 𝜑 (𝑡) 𝐹 (0, 𝜙) − 𝐹 (𝑡, 𝑧𝑡 + 𝑦𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧𝑠 + 𝑦𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝑠.

(21)

Moreover 𝑧0 = 0. Let 𝑄 be the operator on 𝐶([0, 𝑎], 𝑋)

defined by

𝑄𝑧 (𝑡) = 𝜑 (𝑡) 𝐹 (0, 𝜙) − 𝐹 (𝑡, 𝑧𝑡 + 𝑦𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧𝑠 + 𝑦𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝑠.

(22)

Obviously the operator 𝑃 has a fixed point is equivalent to 𝑄
has a fixed point, so it turns out to prove that 𝑄 has a fixed
point. For each positive number 𝑘, let

𝐵𝑘 = {𝑧 ∈ 𝐶 ([0, 𝑎] : 𝑋) : 𝑧 (0) = 0, ‖𝑧 (𝑡)‖ ≤ 𝑘, 0 ≤ 𝑡 ≤ 𝑎} ,

(23)

then for each 𝑘, 𝐵𝑘 is clearly a bounded closed convex set
in 𝐶([0, 𝑎] :𝑋). Since by (3) and (10) the following relation
holds:
󵄩󵄩󵄩󵄩𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝐴
1−𝛽

𝑆 (𝑡 − 𝑠) 𝐴
𝛽
𝐹 (𝑠, 𝑧𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩󵄩

≤
𝐶1−𝛽𝑞Γ (1 + 𝛽)

Γ (1 + 𝑞𝛽)
(𝑡 − 𝑠)

−(1−𝛽)𝑞

× 𝐿1 (
󵄩󵄩󵄩󵄩𝑧𝑠 + 𝑦𝑠

󵄩󵄩󵄩󵄩𝐵 + 1)

≤
𝐶1−𝛽𝑞Γ (1 + 𝛽)

Γ (1 + 𝑞𝛽)
(𝑡 − 𝑠)

−(1−𝛽)𝑞

× 𝐿1 (
󵄩󵄩󵄩󵄩𝑧𝑠

󵄩󵄩󵄩󵄩𝐵 +
󵄩󵄩󵄩󵄩𝑦𝑠

󵄩󵄩󵄩󵄩𝐵 + 1)

≤
𝐶1−𝛽𝑞Γ (1 + 𝛽)

Γ (1 + 𝑞𝛽)
(𝑡 − 𝑠)

−(1−𝛽)𝑞

× 𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1) ,

(24)

then from Bocher’s theorem [42] it follows that 𝐴𝑆(𝑡 −
𝑠)𝐹(𝑠, 𝑧𝑠 + 𝑦𝑠) is integrable on [0, 𝑎], so 𝑄 is well defined on
𝐵𝑘.

In order to make the following process clear we divide it
into several steps.

Step 1.We claim that there exists a positive number 𝑘 such
that 𝑄(𝐵𝑘) ⊆ 𝐵𝑘.
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If it is not true, then for each positive number 𝑘, there is
a function 𝑧𝑘(⋅) ∈ 𝐵𝑘, but 𝑄𝑧𝑘 ∉ 𝐵𝑘, that is, ‖𝑄𝑧𝑘(𝑡)‖ > 𝑘 for
some 𝑡 ∈ [0, 𝑎]. However, on the other hand, we have

𝑘 <
󵄩󵄩󵄩󵄩𝑄𝑧𝑘 (𝑡)

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝑡) 𝐹 (0, 𝜙) − 𝐹 (𝑡, 𝑧𝑘,𝑡 + 𝑦𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× 𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠)

× [𝐶𝑢𝑘 (𝑠) + 𝐺 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝑡) 𝐹 (0, 𝜙) − 𝐹 (𝑡, 𝑧𝑘,𝑡 + 𝑦𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠)

× 𝐹 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠)

× [𝐶𝑊
−1
{𝑥1 − 𝜑 (𝑎) [𝜙 (0) + 𝐹 (0, 𝜙)]

+ 𝐹 (𝑎, 𝑧𝑘,𝑎 + 𝑦𝑎)

+ ∫

𝑎

0

(𝑎 − 𝜏)
𝑞−1
𝐴𝑆 (𝑎 − 𝜏)

× 𝐹 (𝜏, 𝑧𝑘,𝜏 + 𝑦𝜏) 𝑑𝜏

− ∫

𝑎

0

(𝑎 − 𝜏)
𝑞−1
𝑆 (𝑎 − 𝜏)

×𝐺 (𝜏, 𝑧𝑘,𝜏 + 𝑦𝜏) 𝑑𝜏} (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠)

×𝐺 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠) ] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀1
󵄩󵄩󵄩󵄩𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑧𝑘,𝑡 + 𝑦𝑡)

󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡

0

𝑀2𝑀3𝑀4

× {
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +𝑀1
󵄩󵄩󵄩󵄩𝜙 (0) is + 𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐹 (𝑎, 𝑧𝑘,𝑎 + 𝑦𝑎)

󵄩󵄩󵄩󵄩

+ ∫

𝑎

0

(𝑎 − 𝜏)
𝑞−1

×
󵄩󵄩󵄩󵄩𝐴𝑆 (𝑎 − 𝜏) 𝐹 (𝜏, 𝑧𝑘,𝜏 + 𝑦𝜏)

󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑎

0

𝑀2(𝑎 − 𝜏)
𝑞−1

×
󵄩󵄩󵄩󵄩𝐺 (𝜏, 𝑧𝑘,𝜏 + 𝑦𝜏)

󵄩󵄩󵄩󵄩 𝑑𝜏} (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑀2(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝐺 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠,

(25)

where 𝑢𝑘 is the corresponding control of 𝑥𝑘, 𝑥𝑘 = 𝑧𝑘+𝑦. Since

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩󵄩

𝐴
1−𝛽

𝑆 (𝑡 − 𝑠) 𝐴
𝛽
𝐹 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤
𝐶1−𝛽𝑞Γ (1 + 𝛽)

Γ (1 + 𝑞𝛽)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
(𝑡 − 𝑠)

−(1−𝛽)𝑞
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

≤
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1) ,

󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑧𝑘,𝑡 + 𝑦𝑡)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽
𝐴
𝛽
𝐹 (𝑡, 𝑧𝑘,𝑡 + 𝑦𝑡)

󵄩󵄩󵄩󵄩󵄩

≤ 𝑀5𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1) ,

∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
(𝑡 − 𝑠)

𝑞−1
𝐺 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝑠) 𝑑𝑠,

(26)

there holds

𝑘 < 𝑀1
󵄩󵄩󵄩󵄩𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩 +𝑀5𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

+ 𝑎𝑀2𝑀3𝑀4 {
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +𝑀1
󵄩󵄩󵄩󵄩𝜙 (0) + 𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩

+𝑀5𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

+𝑀2 ∫

𝑎

0

(𝑎 − 𝜏)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝜏) 𝑑𝜏}
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+𝑀2 ∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝑠) 𝑑𝑠

= 𝑀5𝐿1𝑘𝐾𝑎 (1 + 𝑎𝑀2𝑀3𝑀4)

+ 𝑀2 (1 + 𝑎𝑀2𝑀3𝑀4) ∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝑠) 𝑑𝑠

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1) (1 + 𝑎𝑀2𝑀3𝑀4)

+ 𝑀1
󵄩󵄩󵄩󵄩𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩 + 𝑀5𝐿1𝑁 +𝑀5𝐿1 + 𝑎𝑀2𝑀3𝑀4
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩

+ 𝑎𝑀2𝑀3𝑀4
󵄩󵄩󵄩󵄩𝜙 (0) + 𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩

+𝑀5𝐿1𝑁𝑎𝑀2𝑀3𝑀4 +𝑀5𝐿1𝑎𝑀2𝑀3𝑀4

= 𝑀
∗
+ (1 + 𝑎𝑀2𝑀3𝑀4)

× [𝑀5𝐿1𝐾𝑎𝑘 +𝑀2(∫

𝑎

0

(𝑎 − 𝑠)
(𝑞−1)/(𝑞−𝑞1)𝑑𝑠)

1−𝑞1

×(∫

𝑎

0

(𝑔𝑘𝐾𝑎+𝑁
(𝑠))
1/𝑞1

𝑑𝑠)

𝑞1

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)]

= 𝑀
∗
+ (1 + 𝑎𝑀2𝑀3𝑀4)

× [𝑀5𝐿1𝐾𝑎𝑘 +𝑀2(
1 − 𝑞1

𝑞 − 𝑞1

𝑎
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1

×
󵄩󵄩󵄩󵄩󵄩
𝑔𝑘𝐾𝑎+𝑁

󵄩󵄩󵄩󵄩󵄩𝐿1/𝑞1 [0,𝑎]

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)] ,

(27)

where

𝑀
∗
= 𝑀1

󵄩󵄩󵄩󵄩𝐹 (0, 𝜙)
󵄩󵄩󵄩󵄩 + 𝑀5𝐿1𝑁 +𝑀5𝐿1 + 𝑎𝑀2𝑀3𝑀4

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

+ 𝑎𝑀2𝑀3𝑀4
󵄩󵄩󵄩󵄩𝜙 (0) + 𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩

+𝑀5𝐿1𝑁𝑎𝑀2𝑀3𝑀4 +𝑀5𝐿1𝑎𝑀2𝑀3𝑀4.

(28)

Dividing on both sides by 𝑘 and taking the low limit, we get

(1 + 𝑎𝑀2𝑀3𝑀4)

× (𝐿1𝑀0𝐾𝑎 +𝑀2((
1 − 𝑞1

𝑞 − 𝑞1

)𝑎
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1

𝐾𝑎𝛾

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1𝐾𝑎) ≥ 1.

(29)

This contradicts (16). Hence for some positive number 𝑘,
𝑄𝐵𝑘 ⊆ 𝐵𝑘.

Now, we define operator 𝑄1 and 𝑄2 on 𝐵𝑘 as

(𝑄1𝑧) (𝑡) = 𝜑 (𝑡) 𝐹 (0, 𝜙) − 𝐹 (𝑡, 𝑧𝑡 + 𝑦𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧𝑠 + 𝑦𝑠) 𝑑𝑠,

(𝑄2𝑧) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝑠,

(30)

for all 𝑡 ∈ [0, 𝑎], respectively.
We prove that 𝑄1 is contraction, while 𝑄2 is completely

continuous.
Step 2. 𝑄1 is contraction.
Let 𝑧1, 𝑧2 ∈ 𝐵𝑘. Then, for each 𝑡 ∈ [0, 𝑎], and by axiom

(A)-(iii) and (15), we have

󵄩󵄩󵄩󵄩𝑄1𝑧1 (𝑡) − 𝑄1𝑧2 (𝑡)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝑡) 𝐹 (0, 𝜙) − 𝐹 (𝑡, 𝑧1,𝑡 + 𝑦𝑡)

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧1,𝑠 + 𝑦𝑠) 𝑑𝑠

− 𝜑 (𝑡) 𝐹 (0, 𝜙) + 𝐹 (𝑡, 𝑧2,𝑡 + 𝑦𝑡)

+∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑧2,𝑠 + 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝐹 (𝑡, 𝑧1,𝑡 + 𝑦𝑡) − 𝐹 (𝑡, 𝑧2,𝑡 + 𝑦𝑡)

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝐴𝑆 (𝑡 − 𝑠)

× (𝐹 (𝑠, 𝑧1,𝑠 + 𝑦𝑠) − 𝐹 (𝑠, 𝑧2,𝑠 + 𝑦𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽
𝐴
𝛽
𝐹 (𝑡, 𝑧1,𝑡 + 𝑦𝑡) − 𝐴

−𝛽
𝐴
𝛽
𝐹 (𝑡, 𝑧2,𝑡 + 𝑦𝑡)

󵄩󵄩󵄩󵄩󵄩

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩󵄩
𝐴
1−𝛽

𝑆 (𝑡−𝑠) 𝐴
𝛽
(𝐹 (𝑠, 𝑧1,𝑠+𝑦𝑠)−𝐹 (𝑠, 𝑧2,𝑠+𝑦𝑠))

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ 𝑀5𝐿𝐾𝑎
󵄩󵄩󵄩󵄩𝑧1,𝑡 − 𝑧2,𝑡

󵄩󵄩󵄩󵄩𝐵

+ ∫

𝑎

0

(𝑡 − 𝑠)
𝑞−1

𝐶1−𝛽𝑞Γ (1 + 𝛽)

Γ (1 + 𝑞𝛽)
(𝑡 − 𝑠)

−(1−𝛽)𝑞

× 𝐿
󵄩󵄩󵄩󵄩𝑧1,𝑠 − 𝑧2,𝑠

󵄩󵄩󵄩󵄩𝐵
𝑑𝑠

≤ 𝑀5𝐿𝐾𝑎 sup
0≤𝑠≤𝑎

󵄩󵄩󵄩󵄩𝑧1 (𝑠) − 𝑧2 (𝑠)
󵄩󵄩󵄩󵄩

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1𝐾𝑎 sup
0≤𝑠≤𝑎

󵄩󵄩󵄩󵄩𝑧1 (𝑠) − 𝑧2 (𝑠)
󵄩󵄩󵄩󵄩
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≤ (𝑀5𝐿𝐾𝑎 +
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1𝐾𝑎)

× sup
0≤𝑠≤𝑎

󵄩󵄩󵄩󵄩𝑧1 (𝑠) − 𝑧2 (𝑠)
󵄩󵄩󵄩󵄩 .

(31)

Thus

󵄩󵄩󵄩󵄩𝑄1𝑧1 (𝑡) − 𝑄1𝑧2 (𝑡)
󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑧1 − 𝑧2
󵄩󵄩󵄩󵄩 , (32)

and 𝑄1 is contraction.
Step 3. 𝑄2 is completely continuous.
Let {𝑧𝑛} ⊆ 𝐵𝑘 with 𝑧𝑛 → 𝑧 in 𝐵𝑘, then for each 𝑠 ∈

[0, 𝑎], 𝑧𝑛,𝑠 → 𝑧𝑠, and by (𝐻1) and (𝐻2)-(i), we have

𝐺 (𝑠, 𝑧𝑛,𝑠 + 𝑦𝑠) − 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠) 󳨀→ 0,

𝐹 (𝑠, 𝑧𝑛,𝑠 + 𝑦𝑠) − 𝐹 (𝑠, 𝑧𝑠 + 𝑦𝑠) 󳨀→ 0,

𝑢𝑛 (𝑠) − 𝑢 (𝑠) 󳨀→ 0,

(33)

as 𝑛 → ∞.
Since ‖𝐺(𝑠, 𝑧𝑛,𝑠 +𝑦𝑠) −𝐺(𝑠, 𝑧𝑠 +𝑦𝑠)‖ ≤ 2𝑔𝑘𝐾𝑎+𝑁(𝑠), then by

the dominated convergence theorem we have

󵄩󵄩󵄩󵄩𝑄2𝑧𝑛 (𝑡) − 𝑄2𝑧 (𝑡)
󵄩󵄩󵄩󵄩

= sup
0≤𝑡≤𝑎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) 𝐶𝑢𝑛 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑧𝑛,𝑠 + 𝑦𝑠) 𝑑𝑠

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) 𝐶𝑢 (𝑠) 𝑑𝑠

−∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠) (𝐶𝑢𝑛 (𝑠) − 𝐶𝑢 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑆 (𝑡 − 𝑠)

× (𝐺 (𝑠, 𝑧𝑛,𝑠 + 𝑦𝑠) − 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0,

(34)

as 𝑛 → ∞, that is, 𝑄2 is continuous.

Next we prove that the family {𝑄2𝑧 : 𝑧 ∈ 𝐵𝑘} is an
equicontinuous family of functions. To do this, let 0 ≤ 𝑡1 <

𝑡2 ≤ 𝑎, then

󵄩󵄩󵄩󵄩𝑄2𝑧 (𝑡2) − 𝑄2𝑧 (𝑡1)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡2

0

(𝑡2 − 𝑠)
𝑞−1
𝑆 (𝑡2 − 𝑠) 𝐶𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡2

0

(𝑡2 − 𝑠)
𝑞−1
𝑆 (𝑡2 − 𝑠)𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠) 𝑑𝑠

− ∫

𝑡1

0

(𝑡1 − 𝑠)
𝑞−1
𝑆 (𝑡1 − 𝑠) 𝐶𝑢 (𝑠) 𝑑𝑠

−∫

𝑡1

0

(𝑡1 − 𝑠)
𝑞−1
𝑆 (𝑡1 − 𝑠)𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀3 ∫

𝑡1

0

(𝑡2 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩(𝑆 (𝑡2 − 𝑠) − 𝑆 (𝑡1 − 𝑠)) 𝑢 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+𝑀3 ∫

𝑡1

0

((𝑡2 − 𝑠)
𝑞−1

− (𝑡1 − 𝑠)
𝑞−1
)

×
󵄩󵄩󵄩󵄩𝑆 (𝑡1 − 𝑠)

󵄩󵄩󵄩󵄩 ‖𝑢 (𝑠)‖ 𝑑𝑠

+ ∫

𝑡1

0

(𝑡2 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩(𝑆 (𝑡2 − 𝑠) − 𝑆 (𝑡1 − 𝑠)) 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡1

0

((𝑡2 − 𝑠)
𝑞−1

− (𝑡1 − 𝑠)
𝑞−1
)

×
󵄩󵄩󵄩󵄩𝑆 (𝑡1 − 𝑠)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+𝑀3 ∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑆 (𝑡2 − 𝑠)

󵄩󵄩󵄩󵄩 ‖𝑢 (𝑠)‖ 𝑑𝑠

+ ∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑆 (𝑡2 − 𝑠)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠.

(35)

Noting that

‖𝑢 (𝑠)‖ ≤ 𝑀4 [
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +𝑀1
󵄩󵄩󵄩󵄩𝜙 (0) + 𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹 (𝑎, 𝑥𝑎)

󵄩󵄩󵄩󵄩

+ ∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑆 (𝑎 − 𝑠) 𝐹 (𝑠, 𝑥𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑆 (𝑎 − 𝑠) 𝐺 (𝑠, 𝑥𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠]

≤ 𝑀4 [
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +𝑀1
󵄩󵄩󵄩󵄩𝜙 (0) + 𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐹 (𝑎, 𝑥𝑎)

󵄩󵄩󵄩󵄩 + 𝑀5𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)
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+𝑀2(
1 − 𝑞1

𝑞 − 𝑞1

𝑎
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1

×
󵄩󵄩󵄩󵄩󵄩
𝑔𝑘𝐾𝑎+𝑁

󵄩󵄩󵄩󵄩󵄩𝐿1/𝑞1 [0,𝑎]
] ,

∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
(𝑡 − 𝑠)

𝑞−1
𝐺 (𝑠, 𝑧𝑘,𝑠 + 𝑦𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝑠) 𝑑𝑠

≤ ∫

𝑎

0

(𝑎 − 𝑠)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝑠) 𝑑𝑠

≤ ((
1 − 𝑞1

𝑞 − 𝑞1

)𝑎
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1󵄩󵄩󵄩󵄩󵄩
𝑔𝑘𝐾𝑎+𝑁

󵄩󵄩󵄩󵄩󵄩𝐿1/𝑞1 [0,𝑎]
.

(36)

We see that ‖𝑄2𝑧(𝑡2) − 𝑄2𝑧(𝑡1)‖ tends to zero independently
of 𝑧 ∈ 𝐵𝑘 as 𝑡2 → 𝑡1 since for 𝑡 ∈ [0, 𝑎] and any bounded
subsets𝐷 ⊂ 𝑋, 𝑡 → {𝑆(𝑡)𝑥 :𝑥 ∈ 𝐷} is equicontinuous.

Hence, 𝑄2 maps 𝐵𝑘 into an equicontinuous family func-
tions.

It remains to prove that 𝑉(𝑡) = {(𝑄2𝑧)(𝑡) : 𝑧 ∈ 𝐵𝑘} is
relatively compact in 𝑋. let 0 ≤ 𝑡 ≤ 𝑎 be fixed, 0 < 𝜖 < 𝑡,
for 𝑧 ∈ 𝐵𝑘, we defineΠ = 𝑄2𝐵𝑘 andΠ(𝑡) = {𝑄2𝑧(𝑡) | 𝑧 ∈ 𝐵𝑘},
for 𝑡 ∈ [0, 𝑎].

Clearly, Π(0) = {𝑄2𝑧(0) | 𝑧 ∈ 𝐵𝑘} = {0} is compact, and
hence, it is only to consider 0 < 𝑡 ≤ 𝑎. For each ℎ ∈ (0, 𝑡), 𝑡 ∈
(0, 𝑎], arbitrary 𝛿 > 0, define

Πℎ,𝛿 (𝑡) = {𝑄2,ℎ,𝛿𝑧 (𝑡) | 𝑧 ∈ 𝐵𝑘} , (37)

where

𝑄2,ℎ,𝛿𝑧 (𝑡) = ∫

𝑡−ℎ

0

∫

∞

𝛿

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝜃 𝑑𝑠.

(38)

Then the sets {𝑄2,ℎ,𝛿𝑧(𝑡) | 𝑧 ∈ 𝐵𝑘} are relatively compact
in 𝑋 since the condition (𝐻4). It comes from the following
inequalities:

󵄩󵄩󵄩󵄩𝑄2𝑧 (𝑡) − 𝑄2,ℎ,𝛿𝑧 (𝑡)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

∫

∞

0

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝜃 𝑑𝑠

− ∫

𝑡−ℎ

0

∫

∞

𝛿

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫

𝛿

0

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝜃 𝑑𝑠

+ ∫

𝑡

0

∫

∞

𝛿

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝜃 𝑑𝑠

− ∫

𝑡−ℎ

0

∫

∞

𝛿

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

− ∫

𝑡−ℎ

0

∫

∞

𝛿

(𝑡 − 𝑠)
𝑞−1
𝜃𝜉𝑞 (𝜃) 𝑞𝑇 ((𝑡 − 𝑠)

𝑞
𝜃)

× [𝐶𝑢 (𝑠) + 𝐺 (𝑠, 𝑧𝑠 + 𝑦𝑠)] 𝑑𝜃 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀𝑀3 ‖𝑢 (𝑠)‖ 𝑞∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑑𝑠∫

𝛿

0

𝜃𝜉𝑞 (𝜃) 𝑑𝜃

+𝑀𝑞∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝑠) 𝑑𝑠 ∫

𝛿

0

𝜃𝜉𝑞 (𝜃) 𝑑𝜃

+𝑀𝑀3 ‖𝑢 (𝑠)‖ ∫

𝑡

𝑡−ℎ

(𝑡 − 𝑠)
𝑞−1
𝑑𝑠 ⋅ 𝑞 ∫

∞

𝛿

𝜃𝜉𝑞 (𝜃) 𝑑𝜃

+𝑀∫

𝑡

𝑡−ℎ

(𝑡 − 𝑠)
𝑞−1
𝑔𝑘𝐾𝑎+𝑁

(𝑠) 𝑑𝑠 ⋅ 𝑞 ∫

∞

𝛿

𝜃𝜉𝑞 (𝜃) 𝑑𝜃

≤ {𝑀𝑀3𝑀4 [
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 + 𝑀1
󵄩󵄩󵄩󵄩𝜙 (0) + 𝐹 (0, 𝜙)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐹 (𝑎, 𝑥𝑎)

󵄩󵄩󵄩󵄩 +𝑀5𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

+
𝐶1−𝛽Γ (1 + 𝛽) 𝑎

𝑞𝛽

𝛽Γ (1 + 𝑞𝛽)
𝐿1 (𝑘𝐾𝑎 + 𝑁 + 1)

+𝑀((
1 − 𝑞1

𝑞 − 𝑞1

)𝑎
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1

×
󵄩󵄩󵄩󵄩󵄩
𝑔𝑘𝐾𝑎+𝑁

󵄩󵄩󵄩󵄩󵄩𝐿1/𝑞1 [0,𝑎]
] 𝑎
𝑞

+𝑀((
1 − 𝑞1

𝑞 − 𝑞1

)𝑎
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1󵄩󵄩󵄩󵄩󵄩
𝑔𝑘𝐾𝑎+𝑁

󵄩󵄩󵄩󵄩󵄩𝐿1/𝑞1 [0,𝑎]
}𝑞

× ∫

𝛿

0

𝜃𝜉𝑞 (𝜃) 𝑑𝜃 +𝑀((
1 − 𝑞1

𝑞 − 𝑞1

)ℎ
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1

×
󵄩󵄩󵄩󵄩󵄩
𝑔𝑘𝐾𝑎+𝑁

󵄩󵄩󵄩󵄩󵄩𝐿1/𝑞1 [0,𝑎]
𝑞∫

∞

0

𝜃𝜉𝑞 (𝜃) 𝑑𝜃.

(39)

Therefore, Π(𝑡) = {𝑄2𝑧(𝑡) | 𝑧 ∈ 𝐵𝑘} is relatively compact
in𝑋 for all 𝑡 ∈ [0, 𝑎].

Thus, the continuity of 𝑄2 and relatively compact of
{𝑄2𝑧(𝑡) | 𝑧 ∈ 𝐵𝑘} imply that 𝑄2 is a completely continuous
operator.
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These arguments enable us to conclude that𝑄 = 𝑄1+𝑄2 is
a condense mapping on 𝐵𝑘, and by the fixed point theorem of
Sadovskii there exists a fixed point 𝑧(⋅) for𝑄 on 𝐵𝑘. In fact, by
Step 1–Step 3 and Lemma 3, we can conclude that 𝑄 = 𝑄1 +

𝑄2 is continuous and takes bounded sets into bounded sets.
Meanwhile, it is easy to see 𝛼(𝑄2(𝐵𝑘)) = 0 since 𝑄2(𝐵𝑘) is
relatively compact. Since 𝑄1(𝐵𝑘)) ⊆ 𝐵𝑘 and 𝛼(𝑄2(𝐵𝑘)) = 0,
we can obtain 𝛼(𝑄(𝐵𝑘)) ≤ 𝛼(𝑄1(𝐵𝑘)) + 𝛼(𝑄2(𝐵𝑘)) ≤ 𝛼(𝐵𝑘)

for every bounded set 𝐵𝑘 of 𝑋 with 𝛼(𝐵𝑘) > 0, that is, 𝑄 =

𝑄1 + 𝑄2 is a condense mapping on 𝐵𝑘. If we define 𝑥(𝑡) =
𝑧(𝑡) + 𝑦(𝑡), −∞ < 𝑡 ≤ 𝑎, it is easy to see that 𝑥(⋅) is a mild
solution of (1) satisfying 𝑥0 = 𝜙, 𝑥(𝑎) = 𝑥1. Then the proof is
completed.

Remark 8. In order to describe various real-world prob-
lems in physical and engineering sciences subject to abrupt
changes at certain instants during the evolution process,
impulsive fractional differential equations always have been
used in the system model. So we can also consider the
complete controllability for (1) with impulses.

Remark 9. Since the complete controllability steers the sys-
tems to arbitrary final state while approximate controllability
steers the system to arbitrary small neighborhood of final
state. In view of the definition of approximate controllability
in [28], we can deduce that the considered systems (1) is also
approximate controllable on the interval [0, 𝑎].

4. An Example

As an application of Theorem 7, we consider the following
system:

𝜕
2/3

𝜕𝑡2/3
[𝑧 (𝑡, 𝑥) + ∫

𝑡

−∞

∫

𝜋

0

𝑏 (𝑠 − 𝑡, 𝑦, 𝑥) 𝑧 (𝑠, 𝑦) 𝑑𝑦 𝑑𝑠]

−
𝜕
2

𝜕𝑥2
𝑧 (𝑡, 𝑥)

= 𝐶𝑢 (𝑡) + 𝑎0 (𝑥) 𝑧 (𝑡, 𝑥)

+ ∫

𝑡

−∞

𝑎1 (𝑠, 𝑡) 𝑧 (𝑠, 𝑥) 𝑑𝑠 + 𝑎2 (𝑡, 𝑥) ,

0 ≤ 𝑡 ≤ 𝑎, 0 ≤ 𝑥 ≤ 𝜋,

𝑧 (𝑡, 0) = 𝑧 (𝑡, 𝜋) = 0, 𝑧 (𝜗, 𝑥) = 𝜙 (𝜗, 𝑥) , 𝜗 ≤ 0.

(40)

To write system (40) to the form of (1), let𝑋 = 𝐿
2
([0, 𝜋])

and 𝐴 defined by 𝐴𝑓 = −𝑓
󸀠󸀠 with domain 𝐷(𝐴) = {𝑓(⋅) ∈

𝑋 :𝑓, 𝑓󸀠 absolutely continuous, 𝑓󸀠󸀠 ∈ 𝑋, 𝑓(0) = 𝑓(𝜋) = 0},
the −𝐴 generates a uniformly bounded analytic semigroup
which satisfies the condition (𝐻0). Furthermore, 𝐴 has
a discrete spectrum, the eigenvalues are −𝑛

2, 𝑛 ∈ 𝑁,
with the corresponding normalized eigenvectors 𝑧𝑛(𝑥) =

(2/𝜋)
1/2 sin(𝑛𝑥). Then the following properties hold.

(i) If 𝐴 ∈ 𝐷(𝐴), then

𝐴𝑓 =

∞

∑

𝑛=1

𝑛
2
⟨𝑓, 𝑧𝑛⟩ 𝑧𝑛. (41)

(ii) For each 𝑓 ∈ 𝑋,

𝐴
−1/2

𝑓 =

∞

∑

𝑛=1

1

𝑛
⟨𝑓, 𝑧𝑛⟩ 𝑧𝑛. (42)

In particular, ‖𝐴−1/2‖ = 1.

(iii) The operator 𝐴1/2 is given by

𝐴
1/2
𝑓 =

∞

∑

𝑛=1

𝑛 ⟨𝑓, 𝑧𝑛⟩ 𝑧𝑛 (43)

on the space𝐷(𝐴1/2) = {𝑓(⋅) ∈ 𝑋,𝐴1/2𝑓 ∈ 𝑋}.

Here we take the phase space 𝐵 = 𝐶0 × 𝐿
2
(𝑔, 𝑋), which

contains all classes of functions 𝜙 : (−∞, 0] → 𝑋 such that 𝜙
is Lebesguemeasurable and 𝑔(⋅)‖𝜙(⋅)‖2 is Lebesgue integrable
on (−∞, 0) where 𝑔 : (−∞, 0) → 𝑅 is a positive integrable
function. The seminorm in 𝐵 is defined by

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐵 =

󵄩󵄩󵄩󵄩𝜙 (0)
󵄩󵄩󵄩󵄩 + (∫

0

−∞

𝑔 (𝜗)
󵄩󵄩󵄩󵄩𝜙 (𝜗)

󵄩󵄩󵄩󵄩
2
𝑑𝜗)

1/2

. (44)

From [41], under some conditions𝐵 is a phase space verifying
(A), (B), (C), and in this case 𝐾(𝑡) = 1 + (∫

0

−𝑡
𝑔(𝜗)𝑑𝜗)

1/2 (see
[41] for the details).

We assume the following conditions hold.

(a) The function 𝑏 is measurable and ∫𝜋
0
∫
0

−∞
∫
𝜋

0
(𝑏
2
(𝜗, 𝑦,

𝑥)/𝑔(𝜗))𝑑𝑦 𝑑𝜗 𝑑𝑥 < ∞.
(b) The function (𝜕/𝜕𝑥)𝑏(𝜗, 𝑦, 𝑥) is measurable, 𝑏(𝜗, 𝑦,

0) = 𝑏(𝜗, 𝑦, 𝜋) = 0 and let 𝑁1 = ∫
𝜋

0
∫
0

−∞
∫
𝜋

0
(1/

𝑔(𝜗))((𝜕/𝜕𝑥)𝑏(𝜗, 𝑦, 𝑥))
2
𝑑𝑦𝑑𝜗 𝑑𝑥 < ∞.

(c) The function 𝑎0(⋅) ∈ 𝐿
∞
([0, 𝜋]), 𝑎(⋅) is measurable,

with ∫0
−∞

(𝑎
2

1
(𝜗))/𝑔(𝜗)𝑑𝜗 < ∞, the function 𝑎2(𝑡, ⋅) ∈

𝐿
2
([0, 𝜋]) for each 𝑡 ≥ 0 is measurable in 𝑡.

(d) The function 𝜙 defined by 𝜙(𝜗)(𝑥) = 𝜙(𝜗, 𝑥) belongs
to 𝐵.

(e) The linear operator𝑊:𝑈 → 𝑋 is defined by

𝑊𝑢 = ∫

𝑎

0

(𝑎 − 𝑠)
−1/3

𝑆 (𝑎 − 𝑠) 𝐶𝑢 (𝑠) 𝑑𝑠 (45)

and has a bounded invertible operator 𝑊−1 defined 𝐿
2
([0,

𝑎]); 𝑈)/ ker𝑊.
We define 𝐹, 𝐺: [0, 𝑎] × 𝐵 → 𝑋 by 𝐹(𝑡, 𝜙) = 𝑍1(𝜙) and

𝐺(𝑡, 𝜙) = 𝑍2(𝜙) + ℎ(𝑡), where

𝑍1 (𝜙) = ∫

0

−∞

∫

𝜋

0

𝑏 (𝜗, 𝑦, 𝑥) 𝜙 (𝜗, 𝑥) 𝑑𝑦 𝑑𝜗,

𝑍2 (𝜙) = 𝑎0 (𝑥) 𝜙 (0, 𝑥) + ∫

0

−∞

𝑎1 (𝜗) 𝜙 (𝜗, 𝑥) 𝑑𝜗,

ℎ (𝑡) = 𝑎2 (𝑡, ⋅) .

(46)
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From (a) and (c) it is clear that 𝑍1 and 𝑍2 are bounded
linear operators on 𝐵. Furthermore, 𝑍1(𝜙) ∈ 𝐷(𝐴

1/2
), and

‖𝐴
1/2
𝑍1‖ ≤ 𝑁1. In fact, from the definition of 𝑍1 and (b)

it follows that ⟨𝑍1(𝜙), 𝑧𝑛⟩ = (1/𝑛)(2/𝜋)
1/2
⟨𝑍(𝜙), con(𝑛𝑥)⟩,

where 𝑍(𝜙) = ∫
0

−∞
∫
𝜋

0
(𝜕/𝜕𝑥)𝑏(𝜗, 𝑦, 𝑥)𝜙(𝜗, 𝑥)𝑑𝜗. From (b)

we know that 𝑍 :𝐵 → 𝑋 is a bounded linear operator
with ‖𝑍‖ ≤ 𝑁1. Hence ‖𝐴

1/2
𝑍1(𝜙)‖ = ‖𝑍(𝜙)‖, which

implies the assertion. Therefore, fromTheorem 7, the system
(40) is completely controllable on [0, 𝑎] under the above
assumptions.

5. Conclusion

In this paper, by using the uniformly boundedness, analyt-
icity, and equicontinuity of characteristic solution operators
and the Sadovskii fixed point theorem, we obtained the
complete controllability of the abstract neutral fractional
differential systems with unbounded delay in a Banach space.
It shows that the compactness of the characteristic solution
operators can be weakened to equicontinuity. Our theorem
guarantees the effectiveness of complete controllability results
under some weakly compactness conditions.
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