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Motivated by the method of Su and Pu (2009), we present an improved nonmonotone filter trust region algorithm for solving non-
linear equality constrained optimization. In our algorithm amodified nonmonotone filter technique is proposed and the restoration
phase is not needed. At every iteration, in common with the composite-step SQP methods, the step is viewed as the sum of two
distinct components, a quasinormal step and a tangential step. Amore relaxed accepted condition for trial step is given and a crucial
criterion is weakened. Under some suitable conditions, the global convergence is established. In the end, numerical results show
our method is effective.

1. Introduction

We consider the problem of minimizing a nonlinear function
subject to a set of nonlinear equality constraints as follows:

(𝑃) min 𝑓 (𝑥)

s.t. 𝑐
𝑖 (𝑥) = 0, 𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚} ,

(1)

where the objective function 𝑓 : 𝑅𝑛 → 𝑅 and the equality
constraints 𝑐

𝑖
(𝑖 ∈ 𝐼) : 𝑅𝑛 → 𝑅 are all twice continuously

differentiable.
The algorithm that we discuss belongs to the class of trust

region methods and, more specifically, to that filter methods
suggested first by Fletcher and Leyffer [1], in which the use
of a penalty function, a common feature of the large majority
of the algorithms for constrained optimization, is replaced by
the technique so-called “filter.” Subsequently, global conver-
gences of the trust region filter SQPmethodswere established
by Fletcher et al. [2, 3], andUlbrich [4] got its superlinear local
convergence. Especially, the step framework in [3] is similar
in spirit to the composite-step SQP methods pioneered by
Vardi [5], Byrd et al. [6], and Omojokun [7]. Consequently,
filter method has been actually applied in many optimization
techniques, for instance, the pattern search method [8],
the SLP method [9], the interior method [10], the bundle
approaches [11, 12], the system of nonlinear equations and

nonlinear least squares [13], multidimensional filter method
[14], line search filter methods [15, 16], and so on.

In fact, filter method exhibits a certain degree of non-
monotonicity. The idea of nonmonotone technique can be
traced back to Grippo et al. [17] in 1986, combined with the
line search strategy. Due to its excellent numerical exhibition,
over the last decades, the nonmonotone technique has been
used in trust region method to deal with unconstrained and
constrained optimization problems [18–25]. More recently,
the nonmonotone trust region method without penalty
function has also been developed for constrained optimiza-
tion [26–29]. Especially, in [29] the nonmonotone idea is
employed to the filter technique and restoration phase, a com-
mon feature of the large majority of filter methods, is not
needed.

Based on [29], motivated by above ideas and methods,
in this paper we present an improved filter algorithm that
combines the nonmonotone and trust region techniques for
solving nonlinear equality constrained optimization. Our
method improves previous results and gives a more flexible
mechanism, weakens some needed conditions, and has the
merits as follows.

(i) An improved nonnomotone filter technique is pre-
sented. Filter technique is viewed as a biobjective
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optimization problem that minimizes objective func-
tion 𝑓 and violation function ℎ. In [29], the same
nonmonotone measure is utilized for both 𝑓 and ℎ at
the 𝑘th iteration. In the paperwe improve it anddefine
a new measure for ℎ, which may make the discussion
and consideration of the nonmonotone properties of
𝑓 and ℎmore freely.

(ii) The restoration phase is not needed. The restoration
procedure has to be considered in most of filter
methods. We employ the nonmonotone idea to the
filter technique, so as [29] the restoration phase is not
needed.

(iii) A more relaxed accepted condition for trial step is
considered. Compared to general trust region meth-
ods, in [29] the condition for the accepted trial step
is relaxed. In the paper we improve it and then the
accepted condition for trial step is more relaxed.

(iv) A crucial criterion is weakened in the algorithm.
By introducing a new parameter 𝜂 ∈ (0, 1], we
improve the crucial criterion for implementation of
the method in [29]. It is obvious that our criterion
becomes samewith [29] if 𝜂 = 1, but new criterion can
be easier to satisfy, so this crucial criterion has been
weakened when setting 𝜂 < 1 in the initialization of
our algorithm.

The presentation is organized as follows. Section 2 intro-
duces some preliminary results and improvements on filter
technique and some conditions. Section 3 develops a modi-
fied nonmonotone filter trust region algorithm, whose global
convergence is shown in Section 4. The results of numerical
experiencewith the proposedmethod are discussed in the last
section.

2. Preliminary and Improvements

In this section, we first recall some definitions and prelim-
inary results about the techniques of composite-step SQP
type trust region method and fraction of Cauchy decrease
condition. And then the improvements on filter technique
and some conditions are given.

2.1. Fraction of Cauchy Decrease Condition. To introduce
the corresponding results, we consider the unconstrained
optimization problem: min{𝑓(𝑥) | 𝑥 ∈ 𝑅

𝑛}, where 𝑓 :

𝑅𝑛 → 𝑅 is continuously differentiable. At iteration point 𝑥
𝑘
,

it obtains a trial step 𝑑
𝑘
by solving the following quadratic

program subproblem:

min 𝑞 (𝑑) = ∇𝑓 (𝑥
𝑘
) 𝑑 +

1

2
𝑑𝑇𝐻
𝑘
𝑑

s.t. ‖𝑑‖ ≤ Δ
𝑘
,

(2)

where 𝐻
𝑘
is a symmetric matrix which is either the Hessian

matrix of 𝑓 at 𝑥
𝑘
or an approximation to it, and Δ

𝑘
> 0 is a

trust region radius.
To assure the global convergence, the step is only required

to satisfy a fraction of Cauchy decrease condition. It means 𝑑

must predict via the quadratic model function 𝑞(𝑑) at least as
much as a fraction of the decreased given by the Cauchy step
on 𝑞(𝑑), that is, there exists a constant 𝜎 > 0 fixed across all
iterations, such that

𝑞 (0) − 𝑞 (𝑑) ≥ 𝜎 (𝑞 (0) − 𝑞 (𝑑
cp
)) , (3)

where 𝑑cp is the steepest descent step for 𝑞(𝑑) inside the trust
region. And we have the following lemma.

Lemma 1. If the trial step 𝑑 satisfies a fraction of Cauchy
decrease condition, then

𝑞 (0) − 𝑞 (𝑑) ≥
𝜎

2

∇𝑓 (𝑥)
min{Δ,

∇𝑓 (𝑥)


‖𝐻‖
} . (4)

Proof. See Powell [30] for the proof.

2.2. The Subproblems of Composite-Step SQP Type Trust
Region Method. In the composite-step SQP type trust region
methods, at current iterate 𝑥

𝑘
we obtain the trial step 𝑑

𝑘
=

𝑑
𝑛

𝑘
+𝑑
𝑡

𝑘
by computing a quasi-normal step 𝑑𝑛

𝑘
and a tangential

step𝑑𝑡
𝑘
.The purpose of the quasi-normal step𝑑𝑛

𝑘
is to improve

feasibility and 𝑑𝑡
𝑘
in the tangential space of the linearized

constraints can provide sufficient decrease for a quadratic
model of the objective function 𝑓(𝑥) to improve optimality.

For problem (𝑃), 𝑑𝑛
𝑘
is the solution to the subproblem

min 1

2


𝑐
𝑘
+ 𝐴𝑇
𝑘
𝑑𝑛


2

s.t. 𝑑
𝑛 ≤ Δ

𝑘
,

(5)

where Δ
𝑘
is a trust region radius,

𝑐 (𝑥) = (

𝑐
1 (𝑥)

𝑐
2 (𝑥)
...

𝑐
𝑚 (𝑥)

) , (6)

𝐴(𝑥) = ∇𝑐(𝑥), 𝑐
𝑘
= 𝑐(𝑥

𝑘
) and 𝐴

𝑘
= 𝐴(𝑥

𝑘
) ∈ 𝑅𝑛×𝑚. In

order to improve the value of the objective function, 𝑑𝑡
𝑘
can

be obtained by the following subproblem

min 𝑞
𝑘
(𝑑𝑛
𝑘
+ 𝑑𝑡)

s.t. 𝐴𝑇
𝑘
𝑑𝑡 = 0

𝑑
𝑡 ≤ Δ

𝑘
,

(7)

where 𝑞
𝑘
(𝑑) = 𝑔𝑇

𝑘
𝑑 + (1/2)𝑑𝑇𝐻

𝑘
𝑑 and 𝑔

𝑘
= ∇𝑓(𝑥

𝑘
). Then we

get the current trial step 𝑑
𝑘
= 𝑑𝑛
𝑘
+ 𝑑𝑡
𝑘
.

In usual ways that impose a trust region in step-decom-
position methods, the quasi-normal step 𝑑𝑛

𝑘
and the tangen-

tial step 𝑑𝑡
𝑘
are required to satisfy

𝑑
𝑛 ≤ 0.8Δ

𝑘
,


𝑑
𝑛

𝑘
+ 𝑑
𝑡
≤ Δ
𝑘
. (8)

Here, to simplify the proof, we only impose a trust region on
‖𝑑𝑛‖ ≤ Δ

𝑘
and ‖𝑑𝑡‖ ≤ Δ

𝑘
, which is natural.
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2.3. The Improved Accepted Condition for 𝑑
𝑘
. Borrowed from

the usual trust region idea, we also need to define the fol-
lowing predicted reduction for the violation function ℎ(𝑥) =
‖𝑐(𝑥)‖

2

pred𝑐
𝑘
= ℎ (𝑥

𝑘
) −


𝑐
𝑘
+ 𝐴
𝑇

𝑘
𝑑
𝑛

𝑘



2 (9)

and the actual reduction

ared𝑐
𝑘
= ℎ (𝑥

𝑘
) − ℎ (𝑥

𝑘
+ 𝑑
𝑘
) =

𝑐𝑘

2
−
𝑐 (𝑥𝑘 + 𝑑𝑘)


2
. (10)

To evaluate the descent properties of the step for the
objective function, we use the predicted reduction of 𝑓(𝑥)

pred𝑓
𝑘
= 𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘) = −𝑞

𝑘
(𝑑
𝑘
) (11)

and the actual reduction of 𝑓(𝑥)

ared𝑓
𝑘
= 𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑑
𝑘
) . (12)

In general trust region method, the step 𝑑
𝑘
will be

accepted if

ared𝑓
𝑘
≥ 𝜌 pred𝑓

𝑘
, (13)

where 𝜌 ∈ (0, 1) is a fixed constant.
In [29], considering nonmonotone technique, the condi-

tion (13) is replaced by

rared𝑓
𝑘
≥ 𝜌 pred𝑓

𝑘
, (14)

where rared𝑓
𝑘
is the relaxed actual reduction of 𝑓(𝑥), that is,

rared𝑓
𝑘
= max{𝑓 (𝑥

𝑘
) ,

𝑚(𝑘)−1

∑
𝑟=0

𝜆
𝑘𝑟
𝑓 (𝑥
𝑘−𝑟
)} − 𝑓 (𝑥

𝑘
+ 𝑑
𝑘
) .

(15)

But in this paper, we considermore relaxed accepted con-
dition by increasing ared𝑓

𝑘
to rared𝑓

𝑘
and reducing pred𝑓

𝑘
to

min{pred𝑓
𝑘
, pred𝑐
𝑘
+𝜉
0
} simultaneously, then the condition (14)

is replaced by

rared𝑓
𝑘
≥ 𝜌min {pred𝑓

𝑘
, pred𝑐
𝑘
+ 𝜉
0
} , (16)

where 𝜉
0
is a small positive number.

2.4. The Improved Nonmonotone Filter Technique. In order
to obtain next iterate, it needs to determine the step; this
procedure that decides which trial step is accepted is “filter
method.” For the optimization problem with equality con-
straints

min {𝑓 (𝑥) | 𝑐 (𝑥) = 0} , (17)

a promising trial step should either reduce the constraint
violation ℎ or the objective function value 𝑓. Since ℎ(𝑥) =

‖𝑐(𝑥)‖
2, it is easy to see that ℎ(𝑥) = 0 if and only if 𝑥 is

a feasible point. So in the traditional filter method, a point
𝑥 is called acceptance to the filter if and only if

ℎ (𝑥) ≤ 𝛽ℎ
𝑗

or𝑓 (𝑥) ≤ 𝑓
𝑗
− 𝛾ℎ
𝑗

∀ (ℎ
𝑗
, 𝑓
𝑗
) ∈ F, (18)

where 0 < 𝛾 < 𝛽 < 1, F denotes the filter set.
Different from above criteria of filter idea, with non-

monotone technique, in [29] a point 𝑥 is called to be accept-
able to the filter if and only if

either ℎ (𝑥) ≤ 𝛽 max
0≤𝑟≤𝑚(𝑘)−1

ℎ
𝑘−𝑟

or 𝑓 (𝑥) ≤ max[𝑓
𝑘
,

𝑚(𝑘)−1

∑
𝑟=0

𝜆
𝑘𝑟
𝑓
𝑘−𝑟
] − 𝛾ℎ (𝑥) ,

(19)

where (ℎ
𝑘−𝑟
, 𝑓
𝑘−𝑟
) ∈ F

𝑘
for 0 ≤ 𝑟 ≤ 𝑚(𝑘)−1, and 1 ≤ 𝑚(𝑘) ≤

min{𝑚(𝑘 − 1) + 1,𝑀}, 𝑀 ≥ 1 is a given positive integer,
∑
𝑚(𝑘)−1

𝑟=0
𝜆
𝑘𝑟

= 1, 𝜆
𝑘𝑟

∈ (0, 1), and there exists a positive
constant 𝜆 such that 𝜆

𝑘𝑟
≥ 𝜆.

Observe that𝑚(𝑘) is used in both conditions (19), while in
this paperwewish to reduce the relationship of the nonmono-
tone properties of 𝑓 and ℎ. We consider the nonmonotone
properties of 𝑓 and ℎ, respectively, and call a trial point 𝑥 is
acceptable to the filter if and only if

either ℎ (𝑥) ≤ 𝛽 max
0≤𝑗≤𝑚(𝑝)−1

𝜃
𝑀+𝑝−𝑗

or 𝑓 (𝑥) ≤ max[𝑓
𝑘
,

𝑚(𝑘)−1

∑
𝑟=0

𝜆
𝑘𝑟
𝑓
𝑘−𝑟
] − 𝛾ℎ (𝑥) ,

(20)

where 𝜃
𝑀+𝑝−𝑗

comes from {𝜃
𝑖
}
+∞

𝑖=1
such that 𝜃

1
= 𝜃
2
= ⋅ ⋅ ⋅ =

𝜃
𝑀−1

= 0 and {𝜃
𝑖
}
+∞

𝑖=𝑀
is a subsequence of {ℎ(𝑥

𝑘
)}, and 1 ≤

𝑚(𝑝) ≤ min{𝑚(𝑝 − 1) + 1,𝑀}.
Similar to the traditional filtermethods, if (20) is satisfied,

it is called an ℎ-type iteration and the filter setF
𝑘
needs to be

updated at each successful ℎ-type iteration.

2.5. TheWeakened Criterion for Implementation of Algorithm.
We replace the crucial criterion pred𝑓

𝑘
≥ pred𝑐

𝑘
in [29] by

pred𝑓
𝑘

pred𝑐
𝑘

≥ 𝜂, (21)

where 𝜂 ∈ (0, 1]. It is obvious that this new criterion becomes
the same with [29] if 𝜂 = 1, but it can be easier to satisfy, so
the criterion has been weakened when setting 𝜂 < 1 in the
initialization of our algorithm.

3. Description of the Algorithm

It will be convenient to introduce the reduced gradient𝑔(𝑥) =
𝑊(𝑥)
𝑇
𝑔(𝑥) where 𝑔(𝑥) = ∇𝑓(𝑥) and𝑊(𝑥) denotes a matrix

whose columns are from a basis of the null space of 𝐴(𝑥)𝑇.
The first order necessary optimality conditions (Karush-
Kuhn-Tucher or KKT conditions) at a local solution 𝑥 ∈ 𝑅𝑛

of (𝑃) can be written as

𝑐 (𝑥) = 0, 𝑔 (𝑥) = 0. (22)
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For brevity, at the current iterate 𝑥
𝑘
, we use 𝑔

𝑘
, 𝑐
𝑘
, 𝐴
𝑘
,

𝑓
𝑘
, ℎ
𝑘
, 𝑊
𝑘
, 𝐻
𝑘
to denote ∇𝑓(𝑥

𝑘
), 𝑐(𝑥
𝑘
), 𝐴(𝑥

𝑘
), 𝑓(𝑥

𝑘
), ℎ(𝑥

𝑘
),

𝑊(𝑥
𝑘
), 𝐻(𝑥

𝑘
). We are now in a position to present a formal

statement of our algorithm.

Algorithm 2. Step 0. Initialization: choose an initial guess 𝑥
0
,

a symmetric matrix𝐻
0
∈ 𝑅𝑛×𝑛, an initial region radius Δ

0
≥

Δmin > 0, 0 < 𝛾 < 𝛽 < 1, 0 < 𝜆 ≤ 1 and F
0
= {(ℎ
0
, 𝑓
0
)}.

Set 𝜂 ∈ (0, 1], 𝜉
0
> 0, 0 < 𝜌 < 1, 0 < 𝛾

0
< 𝛾
1
< 1 < 𝛾

2
and

𝑀 > 0. Let 𝑚(0) = 1, 𝜃
1
= 𝜃
2
= ⋅ ⋅ ⋅ = 𝜃

𝑀−1
= 0, 𝜃

𝑀
= ℎ(𝑥

0
),

𝑝 = 0 and 𝑘 = 0.

Step 1. Compute 𝑓
𝑘
, 𝑔
𝑘
, 𝑐
𝑘
, ℎ
𝑘
, 𝐴
𝑘
,𝑊
𝑘
. If ‖𝑔

𝑘
‖ + ℎ
𝑘
= 0, then

stop.

Step 2. Compute (5) and (7) to obtain 𝑑𝑛
𝑘
and 𝑑𝑡

𝑘
, and set 𝑑

𝑘
=

𝑑𝑛
𝑘
+ 𝑑𝑡
𝑘
.

Step 3. If 𝑥
𝑘
+ 𝑑
𝑘
is acceptable to the filter, go to Step 4,

otherwise go to Step 5.

Step 4. If rared𝑓
𝑘

< 𝜌min{pred𝑓
𝑘
, pred𝑐

𝑘
+ 𝜉
0
} and pred𝑓

𝑘
/

pred𝑐
𝑘
≥ 𝜂, then go to Step 5, otherwise go to Step 6.

Step 5. Δ
𝑘
∈ [𝛾
0
Δ
𝑘
, 𝛾
1
Δ
𝑘
], go to Step 2.

Step 6. 𝑥
𝑘+1

= 𝑥
𝑘
+𝑑
𝑘
, Δ
𝑘+1

∈ [Δ
𝑘
, 𝛾
2
Δ
𝑘
] ≥ Δmin. Update𝐻𝑘

to𝐻
𝑘+1

,𝑚(𝑘+1) = min{𝑚(𝑘)+1,𝑀}. If (20) holds, update the
filter set; let 𝜃

𝑀+𝑝+1
= ℎ(𝑥

𝑘+1
), 𝑚(𝑝+1) = min{𝑚(𝑝)+1,𝑀}

and 𝑝 = 𝑝 + 1. Let 𝑘 = 𝑘 + 1 and go to Step 1.

Remark 3. At the beginning of each iteration, we always set
Δ
𝑘
≥ Δmin, which will avoid too small trust region radius.

Remark 4. If ℎ-type iteration is satisfied, then 𝜃
𝑀+𝑝+1

is
generated, so if the number of ℎ-type iterations is infinite, we
obtain a sequence {𝜃

𝑖
}
+∞

𝑖=1
such that 𝜃

1
= 𝜃
2
= ⋅ ⋅ ⋅ = 𝜃

𝑀−1
= 0

and {𝜃
𝑖
}
+∞

𝑖=𝑀
is a subsequence of {ℎ(𝑥

𝑘
)}. Specially, (20) always

holds on the whole obtained sequence {𝜃
𝑖
}
+∞

𝑖=1
.

Remark 5. In the above algorithm, let𝑀 be a positive integer.
For each 𝑘, let𝑚(𝑘) satisfying
𝑚(0) = 1, 1 ≤ 𝑚 (𝑘) ≤ min {𝑚 (𝑘 − 1) + 1,𝑀} ,

for 𝑘 ≥ 1,
(23)

and we also find𝑚(𝑝) satisfy

𝑚(0) = 1, 1 ≤ 𝑚 (𝑝) ≤ min {𝑚 (𝑝 − 1) + 1,𝑀} ,

for 𝑝 ≥ 1,
(24)

so the nonmonotonicity is showed as𝑀 > 1.

4. Global Convergence of Algorithm

In this section, we will prove the global convergence proper-
ties of Algorithm 2 under the following assumptions.

(A1) The objective 𝑓(𝑥) and the constraint functions 𝑐
𝑖
(𝑥),

𝑖 = 1, 2, . . . 𝑚 are all twice continuously differentiable
on an open set containing𝑋.

(A2) All points 𝑥𝑘 that are sampled by algorithm lie in a
nonempty closed and bounded set𝑋.

(A3) The matrix sequence {𝐻
𝑘
} is uniformly bounded.

(A4) 𝐴(𝑥) = ∇𝑐(𝑥), (𝐴𝑇(𝑥)𝐴(𝑥))
−1, 𝑊(𝑥) and

(𝑊𝑇(𝑥)𝑊(𝑥))
−1 are uniformly bounded on𝑋.

From the above assumptions, it is easier to suppose
that there exist five constants 𝑣

1
, 𝑣
2
, 𝑣
3
, 𝑣
4
, 𝑣
5
such that

‖𝑓(𝑥)‖ ≤ 𝑣
1
, ‖∇𝑓(𝑥)‖ ≤ 𝑣

1
, ‖∇2𝑓(𝑥)‖ ≤ 𝑣

1
, ‖𝑐(𝑥)‖ ≤ 𝑣

2
,

‖𝐴(𝑥)‖ ≤ 𝑣
2
, ‖∇2𝑐(𝑥)‖ ≤ 𝑣

2
, ‖(𝐴𝑇(𝑥)𝐴(𝑥))−1‖ ≤ 𝑣

3
,

‖𝑊(𝑥)‖ ≤ 𝑣
4
, ‖𝑊𝑇(𝑥)𝐻(𝑥)‖ ≤ 𝑣

5
; this can make our follow-

ing results convenient to prove.

Lemma 6. At the current iterate 𝑥
𝑘
, let the trial point compo-

nent 𝑑𝑛
𝑘
actually be normal to the tangential space. Under the

above assumptions, there exists a constant 𝛼
1
> 0 independent

of the iterates such that
𝑑
𝑛

𝑘

 ≤ 𝛼
1

𝑐𝑘
 . (25)

Proof. Since 𝑑𝑛
𝑘
is actually normal to the tangential space, it

follows that
𝑑
𝑛

𝑘

 =

𝐴
𝑘
(𝐴
𝑇

𝑘
𝐴
𝑘
)
−1

𝐴
𝑇

𝑘
𝑑
𝑘



=

𝐴
𝑘
(𝐴
𝑇

𝑘
𝐴
𝑘
)
−1

(𝑐
𝑘
+ 𝐴
𝑇

𝑘
𝑑
𝑘
− 𝑐
𝑘
)


=

𝐴
𝑘
(𝐴
𝑇

𝑘
𝐴
𝑘
)
−1

+ (

𝑐
𝑘
+ 𝐴
𝑇

𝑘
𝑑
𝑘


+
𝑐𝑘

) ,

(26)

together with the fact that ‖𝑐
𝑘
+ 𝐴𝑇
𝑘
𝑑
𝑘
‖ ≤ ‖𝑐

𝑘
‖, we have

𝑑
𝑛

𝑘

 ≤ 2

𝐴
𝑘
(𝐴
𝑇

𝑘
𝐴
𝑘
)
−1

𝑐𝑘
 ≜ 𝛼
1

𝑐𝑘
 . (27)

Lemma 7. Suppose that the assumptions hold, there exist pos-
itive 𝛼

2
, 𝛼
3
independent of the iterates such that

𝑐𝑘

2
−

𝑐
𝑘
+ 𝐴
𝑇

𝑘
𝑑
𝑘



2

≥ 𝛼
2

𝑐𝑘
min {𝑐𝑘

 , Δ 𝑘} , (28)

𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)

≥ 𝛼
3


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

min {𝑊

𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

, Δ
𝑘
} .

(29)

Proof. The statement is established by an application of
Lemma 1 to two subproblems (5) and (7).

Lemma 8. Under problem assumptions, Algorithm 2 is well
defined.

Proof. We will show that there exists 𝛿 > 0 such that step 𝑑
𝑘

is accepted whenever Δ
𝑘
≤ 𝛿. In fact,


ared𝑓
𝑘
− pred𝑓

𝑘



=

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝑑
𝑘
) + 𝑔
𝑇

𝑘
𝑑
𝑘
+
1

2
𝑑
𝑇

𝑘
𝐻
𝑘
𝑑
𝑘



=

−𝑔
𝑇

𝑘
𝑑
𝑘
−
1

2
𝑑
𝑇

𝑘
∇
2
𝑓 (𝑦
𝑘
) 𝑑
𝑘
+ 𝑔
𝑇

𝑘
𝑑
𝑘
+
1

2
𝑑
𝑇

𝑘
𝐻
𝑘
𝑑
𝑘



= 4𝑛Δ
2

𝑘

1

2


∇
2
𝑓 (𝑦
𝑘
) − 𝐻
𝑘


≤ 4𝑛Δ

2

𝑘
𝑏,

(30)
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where 𝑦
𝑘
= 𝑥
𝑘
+ 𝜉𝑑
𝑘
, 𝜉 ∈ (0, 1) denotes some point on the

line segment from 𝑥
𝑘
to 𝑥
𝑘
+ 𝑑
𝑘
, 𝑏 = (1/2)(sup ‖𝐻

𝑘
‖ +

max
𝑥∈𝑆

‖∇2𝑓(𝑥)‖), ‖𝑑𝑡
𝑘
‖ ≤ √𝑛Δ

𝑘
, ‖𝑑𝑛
𝑘
‖ ≤ √𝑛Δ

𝑘
and ‖𝑑

𝑘
‖ ≤

2√𝑛Δ
𝑘
. We consider two cases in the following.

Case 1 (ℎ(𝑥
𝑘
) ̸= 0). To prove the implementation of Algo-

rithm 2, we need only to show that if pred𝑓
𝑘
/pred𝑐
𝑘
≥ 𝜂 > 0,

it follows rared𝑓
𝑘
≥ 𝜌min{pred𝑓

𝑘
, pred𝑐
𝑘
+ 𝜉
0
}. Without loss of

generality, we can assume that ‖𝑐
𝑘
‖ ≥ 𝜖. Then we start with

𝛿 ∈ (0, 𝜖] such that the closed 𝛿-ball about 𝑥
𝑘
lies in 𝑆. It is

obvious from 𝛿 ≤ 𝜖 that Δ
𝑘
≤ 𝛿 ≤ 𝜖. And from (28), we have

pred𝑐
𝑘
≥ 𝛼
2
𝜖Δ
𝑘
. Observe that



ared𝑓
𝑘
− pred𝑓

𝑘

pred𝑓
𝑘



⋅



pred𝑓
𝑘

pred𝑐
𝑘



=



ared𝑓
𝑘
− pred𝑓

𝑘

pred𝑐
𝑘



≤
4𝑛Δ2
𝑘
𝑏

𝛼
2
𝜖Δ
𝑘

→ 0 as Δ
𝑘
→ 0,

pred𝑓
𝑘

pred𝑐
𝑘

≥ 𝜂 > 0.

(31)

Hence we have


ared𝑓
𝑘
− pred𝑓

𝑘

pred𝑓
𝑘



→ 0 as Δ
𝑘
→ 0, (32)

which implies ared𝑓
𝑘
≥ 𝜌 pred𝑓

𝑘
≥ 0, then rared𝑓

𝑘
≥ ared𝑓

𝑘
≥

𝜌 pred𝑓
𝑘
≥ 𝜌min{pred𝑓

𝑘
, pred𝑐
𝑘
+ 𝜉
0
} for some 𝜌 ∈ (0, 1).

Case 2 (ℎ(𝑥
𝑘
) = 0). If ‖𝑔

𝑘
‖ = 0, then 𝑥

𝑘
is a KKT-point of (1)

by Algorithm 2. Thus, we assume that there exists a constant
𝜖 such that ‖𝑔

𝑘
‖ ≥ 𝜖. Then


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

=

𝑊
𝑇

𝑘
(𝑔
𝑘
+ 𝐻
𝑘
𝑑
𝑛

𝑘
)


≥

𝑊
𝑇

𝑘
𝑔
𝑘


−

𝑊
𝑇

𝑘
𝐻
𝑘
𝑑
𝑛

𝑘



≥ 𝜖 − 𝜐
5
Δ
𝑘
.

(33)

Next, if we reduce 𝛿 such that 𝛿 ≤ (1/2𝜐
5
)𝜖, then for all Δ

𝑘
≤

𝛿, we have Δ
𝑘
≤ (1/2𝜐

5
)𝜖. Therefore


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

≥
𝜖

2
. (34)

And it holds from ℎ(𝑥
𝑘
) = 0 that 𝑑𝑛

𝑘
= 0, then, combining

with (29), we find that

pred𝑓
𝑘
= −𝑞
𝑘
(𝑑
𝑘
) ≥

𝛼

2
𝜖min { 𝜖

2
, Δ
𝑘
} =

𝛼

2
𝜖Δ
𝑘
. (35)

Hence,


ared𝑓
𝑘
− pred𝑓

𝑘

pred𝑓
𝑘



≤
4𝑛Δ2
𝑘
𝑏

(𝛼/2) 𝜖Δ 𝑘
→ 0 as Δ

𝑘
→ 0, (36)

which also implies rared𝑓
𝑘
≥ ared𝑓

𝑘
≥ 𝜌 pred𝑓

𝑘
≥ 𝜌min{pred𝑓

𝑘
,

pred𝑐
𝑘
+𝜉
0
} for some 𝜌 ∈ (0, 1). Thus, the trial step is accepted

for all Δ
𝑘
≤ 𝛿.

Lemma 8 has provided the implementation of Algo-
rithm 2. Bymechanism ofAlgorithm 2, it is obvious that there
exists a constant Δ > 0, such that Δ

𝑘
≥ Δ for sufficiently large

𝑘.
In the remainder of this paper we denote the set of indices

of those iterations in which the filter has been augmented by
A, that is to say, if the 𝑘th iteration is ℎ-type iteration, we
have 𝑘 + 1 ∈ A. By this definition, if (20) holds for infinite
iterations, then |A| = ∞; otherwise, we can say |A| ̸=∞.

Lemma 9. Let {𝑥
𝑘
} be an infinite sequence generated by

Algorithm 2. If |A| ̸=∞, then lim
𝑘→∞

ℎ(𝑥
𝑘
) = 0.

Proof. By mechanism of Algorithm 2, we can assume that for
all 𝑘, it follows

𝑓 (𝑥
𝑘+1

) ≤ max{𝑓 (𝑥
𝑘
) ,

𝑚(𝑘)−1

∑
𝑟=0

𝜆
𝑘𝑟
𝑓 (𝑥
𝑘−𝑟
)} − 𝛾ℎ (𝑥

𝑘
) .

(37)

Then we first show that for all 𝑘, it holds

𝑓 (𝑥
𝑘
) ≤ 𝑓 (𝑥

0
) − 𝜆𝛾

𝑘−2

∑
𝑟=0

ℎ (𝑥
𝑟
) − 𝛾ℎ (𝑥

𝑘−1
)

≤ 𝑓 (𝑥
0
) − 𝜆𝛾

𝑘−1

∑
𝑟=0

ℎ (𝑥
𝑟
) .

(38)

Next we prove (38) by induction.
If 𝑘 = 1, we have 𝑓(𝑥

1
) ≤ 𝑓(𝑥

0
) − 𝛾ℎ(𝑥

0
) ≤ 𝑓(𝑥

0
) −

𝜆𝛾ℎ(𝑥
0
).

Assume that (38) holds for 1, 2, . . . , 𝑘, then we consider
that (38) holds for 𝑘 + 1 in the following two cases.

Case 1. If max{𝑓(𝑥
𝑘
), ∑
𝑚(𝑘)−1

𝑟=0
𝜆
𝑘𝑟
𝑓(𝑥
𝑘−𝑟
)} = 𝑓(𝑥

𝑘
), then

𝑓 (𝑥
𝑘+1

) ≤ 𝑓 (𝑥
𝑘
) − 𝛾ℎ (𝑥

𝑘
) ≤ 𝑓 (𝑥

0
) − 𝜆𝛾

𝑘−1

∑
𝑟=0

ℎ (𝑥
𝑟
) − 𝛾ℎ (𝑥

𝑘
)

≤ 𝑓 (𝑥
0
) − 𝜆𝛾

𝑘

∑
𝑟=0

ℎ (𝑥
𝑟
) .

(39)

Case 2. If max{𝑓(𝑥
𝑘
), ∑
𝑚(𝑘)−1

𝑟=0
𝜆
𝑘𝑟
𝑓(𝑥
𝑘−𝑟
)} = ∑

𝑚(𝑘)−1

𝑟=0
𝜆
𝑘𝑟

𝑓(𝑥
𝑘−𝑟
), let 𝑞 = 𝑚(𝑘) − 1, then

𝑓 (𝑥
𝑘+1

) ≤

𝑞

∑
𝑡=0

𝜆
𝑘𝑡
𝑓 (𝑥
𝑘−𝑡
) − 𝛾ℎ (𝑥

𝑘
)

≤

𝑞

∑
𝑡=0

𝜆
𝑘𝑡
(𝑓 (𝑥

0
) − 𝜆𝛾

𝑘−𝑡−2

∑
𝑟=0

ℎ (𝑥
𝑟
)

−𝛾ℎ (𝑥
𝑘−𝑡−1

)) − 𝛾ℎ (𝑥
𝑘
)
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= 𝜆
𝑘0
(𝑓 (𝑥

0
) − 𝜆𝛾

𝑘−𝑞−2

∑
𝑟=0

ℎ (𝑥
𝑟
) − 𝜆𝛾

×

𝑘−2

∑
𝑟=𝑘−𝑞−1

ℎ (𝑥
𝑟
) − 𝛾ℎ (𝑥

𝑘−1
))

+ 𝜆
𝑘1
(𝑓 (𝑥

0
) − 𝜆𝛾

𝑘−𝑞−2

∑
𝑟=0

ℎ (𝑥
𝑟
)

−𝜆𝛾

𝑘−3

∑
𝑟=𝑘−𝑞−1

ℎ (𝑥
𝑟
) − 𝛾ℎ (𝑥

𝑘−2
))

+ ⋅ ⋅ ⋅ + 𝜆
𝑘𝑝
(𝑓
0
(𝑥
0
) − 𝜆𝛾

𝑘−𝑞−2

∑
𝑟=0

ℎ (𝑥
𝑟
)

−𝛾ℎ (𝑥
𝑘−𝑞−1

)) − 𝛾ℎ (𝑥
𝑘
)

≤

𝑞

∑
𝑡=0

𝜆
𝑘𝑡
𝑓 (𝑥
0
) − 𝜆𝛾

𝑘−𝑞−2

∑
𝑟=0

(

𝑞

∑
𝑡=0

𝜆
𝑘𝑡
)ℎ (𝑥

𝑟
)

−

𝑞

∑
𝑡=0

𝜆
𝑘𝑡
𝛾ℎ (𝑥
𝑘−𝑡−1

) − 𝛾ℎ (𝑥
𝑘
) .

(40)

By the fact that ∑𝑞
𝑡=0

𝜆
𝑘𝑡
= 1, 𝜆

𝑘𝑡
≥ 𝜆 and ℎ(𝑥

𝑟
) ≥ 0, we

have

𝑓 (𝑥
𝑘+1

) ≤ 𝑓 (𝑥
0
) − 𝜆𝛾

𝑘−𝑞−2

∑
𝑟=0

ℎ (𝑥
𝑟
)

− 𝜆𝛾

𝑘−1

∑
𝑟=𝑘−𝑞−1

ℎ (𝑥
𝑟
) − 𝛾ℎ (𝑥

𝑘
)

= 𝑓 (𝑥
0
) − 𝜆𝛾

𝑘−1

∑
𝑟=0

ℎ (𝑥
𝑟
) − 𝛾ℎ (𝑥

𝑘
)

≤ 𝑓 (𝑥
0
) − 𝜆𝛾

𝑘

∑
𝑟=0

ℎ (𝑥
𝑟
) .

(41)

Then for all 𝑘, (38) holds.
Moreover, since {𝑓(𝑥

𝑘
)} is bounded below, let 𝑘 → ∞,

we can get that

𝜆𝛾

∞

∑
𝑘=0

ℎ (𝑥
𝑘
) < ∞, (42)

which implies ℎ(𝑥
𝑘
) → 0. Hence the result follows.

Lemma 10. Suppose that the assumptions hold. If Algorithm 2
does not terminate finitely, let {𝑥

𝑘
} be an infinite sequence

generated by Algorithm 2; if |A| ̸=∞, then lim
𝑘→∞

inf ‖𝑔
𝑘
‖ =

0.

Proof. Suppose to contrary that there exist constant 𝜖 > 0 and
𝑘 > 0 such that ‖𝑔

𝑘
‖ > 2𝜖 for all 𝑘 > 𝑘. Then similar to the

proof of Lemma 8, we have

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

≥
𝑔𝑘

 −

𝑊
𝑇

𝑘
𝐻
𝑘
𝑑
𝑛

𝑘



≥ 2𝜖 − 𝜐
5

𝑑
𝑛

𝑘

 ≥ 2𝜖 − 𝜐
5
𝛼
1

𝑐𝑘
 ,

(43)

for all 𝑘 > 𝑘. Since ℎ(𝑥
𝑘
) → 0, then ‖𝑐

𝑘
‖ → 0; there exists

�̂� > 𝑘 such that

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

≥ 𝜖 ∀𝑘 > �̂�. (44)

From ℎ(𝑥
𝑘
) → 0, we also have 𝑑𝑛

𝑘
→ 0, then 𝑞

𝑘
(𝑑𝑛
𝑘
) → 0.

Hence

pred𝑓
𝑘
= −𝑞
𝑘
(𝑑
𝑘
) = −𝑞

𝑘
(𝑑
𝑛

𝑘
) + 𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)

≥ −𝑞
𝑘
(𝑑
𝑛

𝑘
) + 𝛼𝜖min {Δ

𝑘
, 𝜖} ≥

𝛼

2
𝜖min {Δ, 𝜖} .

(45)

As in the proof of Lemma 8, there exists 𝜌 ∈ (0, 1) such
that rared𝑓

𝑘
≥ 𝜌min{pred𝑓

𝑘
, pred𝑐
𝑘
+ 𝜉
0
}. That is,

𝑓 (𝑥
𝑘+1

) ≤ max{𝑓 (𝑥
𝑘
) ,

𝑚(𝑘)−1

∑
𝑟=0

𝜆
𝑘𝑟
𝑓 (𝑥
𝑘−𝑟
)}

− 𝜌min {pred𝑓
𝑘
, pred𝑐
𝑘
+ 𝜉
0
} .

(46)

In common with the proof of Lemma 9, we have

𝜌

∞

∑
𝑘=0

min {pred𝑓
𝑘
, pred𝑐
𝑘
+ 𝜉
0
} → 0, (47)

which implies pred𝑓
𝑘

→ 0. It contradicts (45). Hence the
result follows.

Lemma 11. Let {𝑥
𝑘
} be an infinite sequence generated by

Algorithm 2. If |A| = ∞, then lim
𝑘∈A, 𝑘→∞ℎ(𝑥𝑘) = 0.

Proof. In view of convenience, denote

𝜃
𝑙(𝑝)

= max
0≤𝑗≤𝑚(𝑝)−1

𝜃
𝑀+𝑝−𝑗

, (48)

where𝑀+𝑝−𝑚(𝑝)+1 ≤ 𝑙(𝑝) ≤ 𝑀+𝑝. From the algorithm,
we know 𝜃

𝑀+𝑝+1
= ℎ(𝑥

𝑘+1
) and it holds

𝜃
𝑀+𝑝+1

≤ 𝛽𝜃
𝑙(𝑝)

. (49)

Since𝑚(𝑝 + 1) ≤ 𝑚(𝑝) + 1, we have

𝜃
𝑙(𝑝+1)

= max
0≤𝑗≤𝑚(𝑝+1)−1

𝜃
𝑀+𝑝+1−𝑗

≤ max
0≤𝑗≤𝑚(𝑝)

𝜃
𝑀+𝑝+1−𝑗

= max {𝜃
𝑀+𝑝+1

, 𝜃
𝑙(𝑝)

}

= 𝜃
𝑙(𝑝)

.

(50)
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This implies that {𝜃
𝑙(𝑝)

} converges. Moreover, by 𝜃
𝑀+𝑝+1

≤

𝛽𝜃
𝑙(𝑝)

, we obtain

𝜃
𝑙(𝑝)

≤ 𝛽𝜃
𝑙(𝑙(𝑝)−𝑀−1)

. (51)

And since 𝛽 ∈ (0, 1), eventually 𝜃
𝑙(𝑝)

→ 0 (𝑝 → ∞).
Thus

𝜃
𝑀+𝑝+1

≤ 𝛽𝜃
𝑙(𝑝)

→ 0 (52)

holds by Algorithm 2, then, with the facts 𝜃
𝑀+𝑝+1

= ℎ(𝑥
𝑘+1

)

and 𝑘 + 1 ∈ A, we have lim
𝑘∈A, 𝑘→∞ℎ(𝑥𝑘) = 0.

Lemma 12. Suppose that the assumptions hold. If Algo-
rithm 2 does not terminate finitely, let {𝑥

𝑘
} be an infinite

sequence generated by Algorithm 2; if |A| = ∞, then
lim
𝑘∈A,𝑘→∞ inf ‖𝑔

𝑘
‖ = 0.

Proof. Suppose to the contrary that there exist constant 𝜖 > 0

and 𝑘 > 0 such that ‖𝑔
𝑘
‖ > 2𝜖 for all 𝑘 > 𝑘 and 𝑘 ∈ A. Then

similar to the proof of Lemma 8, we have

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

≥
𝑔𝑘

 −

𝑊
𝑇

𝑘
𝐻
𝑘
𝑑
𝑛

𝑘



≥ 2𝜖 − 𝜐
5

𝑑
𝑛

𝑘

 ≥ 2𝜖 − 𝜐
5
𝛼
1

𝑐𝑘
 ,

(53)

for all 𝑘 > 𝑘 and 𝑘 ∈ A. Since lim
𝑘∈A, 𝑘→∞ℎ(𝑥𝑘) → 0, that

is, ‖𝑐
𝑘
‖ → 0 for 𝑘 ∈ A, then there exists �̂� > 𝑘 such that


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

≥ 𝜖 ∀𝑘 > �̂�, 𝑘 ∈ A. (54)

From lim
𝑘∈A, 𝑘→∞ℎ(𝑥𝑘) = 0, we also have 𝑑𝑛

𝑘
→ 0 for 𝑘 ∈ A,

then 𝑞
𝑘
(𝑑𝑛
𝑘
) → 0 for 𝑘 ∈ A. Thus, for 𝑘 ∈ A

pred𝑓
𝑘
= −𝑞
𝑘
(𝑑
𝑘
) = −𝑞

𝑘
(𝑑
𝑛

𝑘
) + 𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)

≥ −𝑞
𝑘
(𝑑
𝑛

𝑘
) + 𝛼𝜖min {Δ

𝑘
, 𝜖} ≥

𝛼

2
𝜖min {Δ, 𝜖} .

(55)

Similar to the proof of Lemma 10, it is obtained that

𝜌

∞

∑
𝑘=0

min {pred𝑓
𝑘
, pred𝑐
𝑘
+ 𝜉
0
} → 0, (56)

which implies pred𝑓
𝑘
→ 0 for all 𝑘. But pred𝑓

𝑘
→ 0 for 𝑘 ∈ A

is also true, which contradicts (55). Hence the result follows.

Theorem 13. Suppose {𝑥
𝑘
} is an infinite sequence generated by

Algorithm 2, one has

lim
𝑘→∞

inf [𝑐𝑘
 +

𝑔𝑘
] = 0. (57)

Namely, there exists at least one cluster point of {𝑥
𝑘
} that is a

KKT point of problem (𝑃).

Proof. The conclusion follows immediately by Lemmas 9, 10,
11, and 12. Thus, the whole proof is completed.

5. Numerical Experiments

In this section, we carry out some numerical experiments
based on the algorithm over a set of problems from [31, 32].
The program is written in MATLAB and we test and give the
performance of Algorithm 2 on these problems. For each test
example, we choose the initial matrix 𝐻

0
= 𝐼. As to those

constants, we set 𝛾 = 0.02, 𝛽 = 0.98, 𝜌 = 0.5, 𝜂 = 0.75, 𝜉
0
=

0.05, 𝛾
0
= 0.1, 𝛾

1
= 0.5, 𝛾

2
= 2, Δmin = 10−6, Δ

0
= 1,𝑀 = 3.

We use 10−6 as the stopping criterion.
During the numerical experiments, updating of 𝐻

𝑘
is

done by

𝐻
𝑘+1

= 𝐻
𝑘
−
𝐻
𝑘
𝑠
𝑘
(𝑠
𝑘
)
𝑇
𝐻
𝑘

(𝑠
𝑘
)
𝑇
𝐻
𝑘
𝑠
𝑘

+
𝑟
𝑘
(𝑟
𝑘
)
𝑇

(𝑠
𝑘
)
𝑇
𝑟
𝑘

, (58)

where 𝑠
𝑘
= 𝑥
𝑘+1

−𝑥
𝑘
, 𝑟
𝑘
= 𝜃
𝑘
𝑦
𝑘
+(1−𝜃

𝑘
)𝐻
𝑘
𝑠
𝑘
, 𝑦
𝑘
= 𝑔
𝑘+1

−𝑔
𝑘

and

𝜃
𝑘
=

{{{{{

{{{{{

{

1 if (𝑠
𝑘
)
𝑇
𝑦
𝑘

≥ 0.2(𝑠
𝑘
)
𝑇
𝐻
𝑘
𝑠
𝑘
,

0.8
(𝑠
𝑘
)
𝑇
𝐻
𝑘
𝑠
𝑘

(𝑠
𝑘
)
𝑇
𝐻
𝑘
𝑠
𝑘
− (𝑠
𝑘
)
𝑇
𝑦
𝑘

otherwise.

(59)

In the following tables, the notations mean as follows:

(i) SC: the problems from Schittkowski [32];
(ii) HS: the problems from Hock and Schittkowski [31];
(iii) n: the number of variables;
(iv) m: the number of inequality constraints;
(v) NIT: the number of iterations;
(vi) NF: the number of evaluations of the objective func-

tions;
(vii) NG: the number of evaluations of scalar constraint

functions;
(viii) Algorithm 1: our method in this paper;
(ix) Algorithm 2: the method proposed in [29];
(x) Algorithm 3: the method proposed in [33].

The detailed numerical results are summarized in Tables 1
and 2. Now we give a brief analysis for numerical test results.
From Table 1, we can see that our algorithm executes well for
these typical problems taken from [31, 32]. From the com-
putation efficiency in Table 2, by solving same problems in
[31, 32] we should point out our algorithm is competitive
with the some existed nonmonotone filter type methods to
solve equality constrained optimization, for example, [29,
33]. However, in our method an improved nonmonotone
filter technique is proposed, which may make the discussion
and consideration of the nonmonotone properties of 𝑓 and
ℎ more freely. Furthermore, we consider a more relaxed
accepted condition for trial step and aweakened crucial crite-
rion is presented. It is easier tomeet those new criteria, so our
method is much more flexible. All results summarized show
that our algorithm is promising and numerically effective.
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Table 1: Detailed numerical results.

Problem 𝑛 𝑚 NIT NF NG
SC216 2 1 5 16 7
SC219 4 2 28 52 36
SC235 3 1 20 48 30
SC252 3 1 22 46 36
SC254 3 2 18 45 37
SC265 4 2 3 7 3
SC269 5 3 5 10 8
SC344 3 1 12 24 16
HS006 2 1 4 7 5
HS007 2 1 8 14 8
HS008 2 2 3 11 5
HS009 2 1 5 12 6
HS026 3 1 35 87 45
HS028 3 1 7 29 11
HS042 4 2 8 31 10
HS047 5 3 25 86 72
HS050 5 3 12 39 14
HS051 5 3 7 18 9
HS077 5 2 12 22 16
HS079 5 3 11 23 13

Table 2: Comparison among three algorithms for same problems in [31, 32].

Problem (𝑛,𝑚) NG-NF (Algorithm 1) NG-NF (Algorithm 2) NG-NF (Algorithm 3)
SC216 (2, 1) 7-16 6-15 11-13
SC235 (3, 1) 30-48 39-50 39-50
SC252 (3, 1) 36-46 99-122 26-35
SC265 (4, 2) 3-7 3-3 3-3
HS006 (2, 1) 5-7 7-7 9-9
HS007 (2, 1) 8-14 10-13 10-13
HS047 (5, 3) 72-86 95-95 95-95
HS050 (5, 3) 14-39 15-15 15-15
HS051 (5, 3) 9-18 16-16 16-16
HS077 (5, 2) 16-22 22-28 22-28
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