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Some Caputo q-fractional difference equations are solved. The solutions are expressed by means
of a new introduced generalized type of q-Mittag-Leffler functions. The method of successive
approximation is used to obtain the solutions. The obtained q-version of Mittag-Leffler function
is thought as the q-analogue of the one introduced previously by Kilbas and Saigo (1995).

1. Introduction and Preliminaries

The concept of fractional calculus is not new. However, it has gained its popularity and
importance during the last three decades or so. This is due to its distinguished applications
in numerous diverse fields of science and engineering (see, e.g., [1–6] and the references
therein). The q-calculus is also not of recent appearance. It was initiated in the twenties of
the last century. For the basic concepts in q-calculus we refer the reader to [7]. Discrete and
q-fractional difference equations are discrete versions of fractional differential equations. An
extensive work has been done in discrete fractional dynamic equations and discrete fractional
variational calculus (see [8–12]). Some of the authors applied the delta analysis and some
applied nabla analysis. Since the domain of nabla operatos is more stable, the nabla approach
could be preferable. In this paper we apply the nabla approach in the quantum case with
0 < q < 1, but also the delta approach is possible [13]. During the last decade many authors
applied diverse methods, such as homotopy perturbation method, to derive approximate
analytical solutions of systems of fractional differential equations into Caputo and Riemann
(see [14–18]). In this paper, we apply a direct method to express the solution of a certain
linear Caputo q-fractional differential equation by means of a new introduced generalized
q-Mittag-Leffler function.
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Starting from the q-analogue of Cauchy formula [19], Al-Salam started the fitting of
the concept of q-fractional calculus. After that he [20, 21] and Agarwal [22] continued on
by studying certain q-fractional integrals and derivatives, where they proved the semigroup
properties for left and right (Riemann) type fractional integrals but without variable lower
limit and variable upper limit, respectively. Recently, the authors in [23] generalized the
notion of the (left) fractional q-integral and q-derivative by introducing variable lower limit
and proved the semigroup properties.

Very recently and after the appearance of time-scale calculus (see, e.g., [24]), some
authors started to pay attention and apply the techniques of time scale to discrete fractional
calculus (see [25–28]) benefitting from the results announced before in [29]. All of these
results are mainly about fractional calculus on the time scales Tq = {qn : n ∈ Z} ∪ {0} and hZ

[30]. As a contribution in this direction and being motivated by what is mentioned before,
in this paper we introduce the q-analogue of a generalized type Mittag-Leffler function used
before by Kilbas and Saigo in [31]. Such functions are obtained by solving linear q-Caputo
initial value problems. The results obtained in this paper generalize also the results of [32].
Indeed, the authors in [32] solved a linear Caputo q-fractional difference equation of the form

(
qC

α
ay

)
(x) = λy(x) + f(x), y(a) = b, 0 < α < 1, (1.1)

where the solution was expressed by means of discrete q-Mittag-Leffler functions. In this
paper, we solve an equation of the form

(
qC

α
ay

)
(x) = λ(x − a)βq y

(
q−βx

)
, y(a) = b,

0 < α < 1, β > −α, λ ∈ R, b ∈ R,
(1.2)

where the solution is expressed bymeans of amore general discrete q-Mittag-Leffler functions
generalizing the ones obtained by (1.1), as (1.1) is obtained from (1.2) by setting β = 0. Finally,
we generalize to the higher-order case for any α > 0, where higher-order q-Mittag-Leffler
functions are obtained.

For the theory of q-calculus we refer the reader to the survey of [7], and for the basic
definitions and results for the q-fractional calculus we refer to [28]. Here we will summarize
some of those basics.

For 0 < q < 1, let Tq be the time scale:

Tq =
{
qn : n ∈ Z

} ∪ {0}, (1.3)

where Z is the set of integers. More generally, if α is a nonnegative real number, then we
define the time scale

T
α
q =

{
qn+α : n ∈ Z

} ∪ {0}, (1.4)

and we write T
0
q = Tq.
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For a function f : Tq → R, the nabla q-derivative of f is given by

∇qf(t) =
f(t) − f

(
qt
)

(
1 − q

)
t

, t ∈ Tq − {0}. (1.5)

The nabla q-integral of f is given by

∫ t

0
f(s)∇qs =

(
1 − q

)
t
∞∑
i=0

qif
(
tqi

)
, (1.6)

and for 0 ≤ a ∈ Tq,

∫ t

a

f(s)∇qs =
∫ t

0
f(s) ∇qs −

∫a

0
f(s) ∇qs. (1.7)

On the other hand

∫∞

t

f(s)∇qs =
(
1 − q

)
t
∞∑
i=1

q−if
(
tq−i

)
, (1.8)

and for 0 < b < ∞ in Tq,

∫b

t

f(s)∇qs =
∫∞

t

f(s)∇qs −
∫∞

b

f(s)∇qs. (1.9)

By the fundamental theorem in q-calculus we have

∇q

∫ t

0
f(s)∇qs = f(t), (1.10)

and if f is continuous at 0, then

∫ t

0
∇qf(s)∇qs = f(t) − f(0). (1.11)

Also the following identity will be helpful:

∇q

∫ t

a

f(t, s)∇qs =
∫ t

a

∇qf(t, s) ∇qs + f
(
qt, t

)
. (1.12)
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Similarly the following identity will be useful as well:

∇q

∫b

t

f(t, s)∇qs =
∫b

qt

∇qf(t, s) ∇qs − f(t, t). (1.13)

The q-derivative in (1.12) and (1.13) is applied with respect to t.
From the theory of q-calculus and the theory of time scalemore generally, the following

product rule is valid:

∇q

(
f(t)g(t)

)
= f

(
qt
)∇qg(t) +∇qf(t)g(t). (1.14)

The q-factorial function for n ∈ N is defined by

(t − s)nq =
n−1∏
i=0

(
t − qis

)
. (1.15)

When α is a nonpositive integer, the q-factorial function is defined by

(t − s)αq = tα
∞∏
i=0

(1 − (s/t))qi

(1 − (s/t))qi+α
. (1.16)

We summarize some of the properties of q-factorial functions, which can be found mainly in
[28], in the following lemma.

Lemma 1.1. One has the following.

(i) (t − s)β+γq = (t − s)βq(t − qβs)γq.

(ii) (at − as)βq = aβ(t − s)βq .

(iii) The nabla q-derivative of the q-factorial function with respect to t is

∇q(t − s)αq =
1 − qα

1 − q
(t − s)α−1q . (1.17)

(iv) The nabla q-derivative of the q-factorial function with respect to s is

∇q(t − s)αq = −1 − qα

1 − q

(
t − qs

)α−1
q , (1.18)

where α, γ, β ∈ R.
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Definition 1.2 (see [32]). Let α > 0. If α /∈ N, then the α-order Caputo (left) q-fractional
derivative of a function f is defined by

qC
α
af(t) � qI

(n−α)
a

∇n
qf(t) =

1
Γ(n − α)

∫ t

a

(
t − qs

)n−α−1
q ∇n

qf(s)∇qs, (1.19)

where n = [α] + 1.
If α ∈ N, then qC

α
a
f(t) � ∇n

qf(t).

It is clear that qC
α
a
maps functions defined on Tq to functions defined on Tq, and that

bC
α
q maps functions defined on T1−α

q to functions defined on Tq.
The following identity which is useful to transform Caputo q-fractional difference

equations into q-fractional integrals, will be our key in solving the q-fractional linear type
equation by using successive approximation.

Proposition 1.3 ([32]). Assume that α > 0 and f is defined in suitable domains. Then

qI
α
a qC

α
a
f(t) = f(t) −

n−1∑
k=0

(t − a)kq
Γq(k + 1)

∇k
qf(a), (1.20)

and if 0 < α ≤ 1, then

qI
α
a qC

α
af(t) = f(t) − f(a). (1.21)

The following identity [23] is essential to solve linear q-fractional equations:

qI
α
a (x − a)μq =

Γq
(
μ + 1

)

Γq
(
α + μ + 1

) (x − a)μ+αq (0 < a < x < b), (1.22)

where α ∈ R
+ and μ ∈ (−1,∞). The q-analogue of Mittag-Leffler function with double index

(α, β) is introduced in [32]. It was defined as follows.

Definition 1.4 ([32]). For z, z0 ∈ C and �(α) > 0, the q-Mittag-Leffler function is defined by

qEα,β(λ, z − z0) =
∞∑
k=0

λk
(z − z0)αkq
Γq
(
αk + β

) . (1.23)

When β = 1, we simply use qEα
(λ, z − z0) := qEα,1(λ, z − z0).

2. Main Results

The following is to be the q-analogue of the generalized Mittag-Leffler function introduced
by Kilbas and Saigo [31] (see also [3] page 48).
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Definition 2.1. For α, l, λ ∈ C are complex numbers andm ∈ R such that�(α) > 0, m > 0, a ≥ 0,
and α(jm+ l)/= −1,−2,−3, . . ., the generalized q-Mittag-Leffler function (of order 0) is defined
by

qEα,m,l(λ, x − a) = 1 +
∞∑
k=1

λkq−(k(k−1)/2)α(m−1)(αl+α)ck(x − a)αkmq , (2.1)

where

ck =
k−1∏
j=0

Γq
[
α
(
jm + l

)
+ 1

]

Γq
[
α
(
jm + l + 1

)
+ 1

] , k = 1, 2, 3, . . . , (2.2)

while the generalized q-Mittag-Leffler function (of order r), r = 0, 1, 2, 3, . . ., is defined by

qE
r
α,m,l

(λ, x − a) = 1 +
∞∑
k=1

λkq−kα(m−1)rq−(k(k−1)/2)α(m−1)(αl+α)ck
(
x − qra

)αkm
q . (2.3)

Note that qE
0
α,m,l

(λ, x − a) = qEα,m,l
(λ, x − a).

Remark 2.2. In particular, if m = 1, then the generalized q-Mittag-Leffler function is reduced
to the q-Mittag-Leffler function, apart from a constant factor Γq(αl + 1). Namely,

qEα,1,l(λ, x − a) = Γq(αl + 1)qEα,αl+1(λ, x − a). (2.4)

This turns to be the q-analogue of the identity Eα,1,l(z) = Γ(αl + 1)Eα,αl+1(z) (see [3]
page 48).

Example 2.3. Consider the q-Caputo difference equation:

(
qC

α
a
y
)
(x) = λ(x − a)βqy

(
q−βx

)
, y(a) = b,

0 < α < 1, β > −α, λ ∈ R, b ∈ R.
(2.5)

Applying Proposition 1.3 we have

y(x) = y(a) + λ qI
α
a

[
(x − a)βqy

(
q−βx

)]
. (2.6)

The method of successive applications implies that

ym(x) = y(a) + λ qI
α
a

[
(x − a)βqym−1

(
q−βx

)]
, m = 1, 2, 3, . . . , (2.7)
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where y0(x) = b. Then by the help of (1.22)we have

y1(x) = b + bλ
Γq
(
β + 1

)

Γq
(
β + α + 1

) (x − a)β+αq ,

y2(x) = b + bλ qI
α
a

[
(x − a)βq

{
1 + λ

Γq
(
β + 1

)

Γq
(
β + α + 1

)
(
q−βx − a

)β+α

q

}]
.

(2.8)

Then by (i) and (ii) of Lemma 1.1,

y2(x) = b + bλ qI
α
a

[
(x − a)βq + λ

Γq
(
β + 1

)

Γq
(
β + α + 1

)q−β(α+β)(x − a)2β+αq

]
. (2.9)

Again by (1.22) we conclude that

y2(x) = b + bλ qI
α
a

[
(x − a)βq + λ

Γq
(
β + 1

)

Γq
(
β + α + 1

)q−β(α+β)(x − a)2β+αq

]
. (2.10)

Then (1.22) leads to

y2(x) = b

[
1 + λ

Γq
(
β + 1

)

Γq
(
β + α + 1

) (x − a)β+αq + λ2
Γq
(
2β + α + 1

)

Γq
(
2β + 2α + 1

)q−β(α+β)(x − a)2β+2αq

]
. (2.11)

Proceeding inductively, for each m = 1, 2, . . . we obtain

ym(x) = b

[
1 +

m∑
k=1

λkq−β(k(k−1)/2)(α+β)ck(x − a)k(α+β)q

]
, (2.12)

where

ck =
k−1∏
j=0

Γq
[
α
(
jm + l

)
+ 1

]

Γq
[
α
(
jm + l + 1

)
+ 1

] , m = 1 +
β

α
, l =

β

α
, k = 1, 2, 3, . . . . (2.13)

If we let m → ∞, then we obtain the solution

y(x) = b

[
1 +

∞∑
k=1

λkq−β(k(k−1)/2)(α+β)ck(x − a)k(α+β)q

]
. (2.14)

Now, by means of Definition 2.1, we can state the following.

Theorem 2.4. The solution of the q-Caputo difference equation (2.5) is given by

y(x) = b qEα,(1+(β/α)),β/α(λ, x − a). (2.15)
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Remark 2.5. (1) If in (2.5) β = 0, then in accordance with (2.4) and Example 9 in [32] we have

qEα,1,0(λ, x − a) = qEα,1(λ, x − a) = qEα
(λ, x − a). (2.16)

(2) The solution of the q-Cauchy problem

(
qC

1/2
a

y
)
(x) = λ (x − a)βqy

(
q−βx

)
, y(a) = b,

0 < α < 1, β > −1
2
, λ ∈ R, b ∈ R,

(2.17)

is given by

y(x) = b qE1/2,1+2β,2β(λ, x − a). (2.18)

For the sake of generalization to the higher-order case, we consider the fractional q-
initial value problem:

(
qC

α
a
y
)
(x) = λ(x − a)βqy

(
q−βx

)
, y(k)(a) = bk (bk ∈ R, k = 0, 1, . . . , n − 1), (2.19)

where

n − 1 < α < n, β > −α, λ ∈ R, b ∈ R. (2.20)

Theorem 2.6. The solution of the fractional q-initial value problem (2.19) is of the following form:

y(x) =
n−1∑
r=0

br
Γq(r + 1)

(x − a)rqqE
r
α,((1+β)/α),((β+r)/α)(λ, x − a). (2.21)

Proof. The proof follows by the help of (1.20) and let Lemma 1.1 and by applying the
successive approximation with

y0(x) =
n−1∑
k=0

(t − a)kq
Γq(k + 1)

∇k
qf(a), (2.22)

Note that when 0 < α < 1, that is, n = 1, the solution of Example 2.3 is recovered.
Next, we solve a nonhomogenous versions of (2.5).

Lemma 2.7. Let r ∈ N, α > 0, and let f be defined on Tq. Then

qIaf
(
q−r t

)
= qrα

(
qIq−raf

)(
q−r t

) ∀t ∈ Tq. (2.23)
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In particular, if a = 0, then

qI0f
(
q−rt

)
= qrα

(
qI0f

)(
q−rt

) ∀t ∈ Tq. (2.24)

Proof. The proof can be achieved by making use of Theorem 1 in [28] for integration by
substitution (for details see [24]). Indeed,

qIaf
(
q−r t

)
=

1
Γq(α)

∫ t

a

(
t − qs

)α−1
q f

(
q−rs

)∇qs

=
qr

Γq(α)

∫q−r t

q−ra

(
t − qqrs

)α−1
q f(s)∇qs

=
qrα

Γq(α)

∫q−r t

q−ra

(
q−r t − qs

)α−1
q f(s)∇qs

= qrα
(
qIq−raf

)(
q−r t

)
.

(2.25)

Consider the q-fractional initial value problem:

(
qC

α
0y

)
(x) = λxβy

(
q−βx

)
+ f(x), y(0) = b, (2.26)

where

0 < α < 1, β > −α, β ∈ N0, λ ∈ R, b ∈ R. (2.27)

If we apply the successive approximation as in Example 2.3 and use Lemma 2.7, then we can
state the following

Theorem 2.8. The solution of the initial value problem (2.26) is expressed by

y(x) =b qEα,(1+(β/α)),β/α(λ, x) +
∞∑
k=0

λk

Γq(αk + α)
q−αβ(k(k+1)/2)

∫x

0

(
x − qt

)αk+α
q f

(
q−kβt

)
∇qt.

(2.28)

Remark 2.9. If in (2.26) we set β = 0, then Example 9 in [32] is recovered for a = 0.

Definition 2.10. A function f : Tq → R is called periodic with period β ∈ N1 if β is the smallest
natural number such that f(qβt) = f(t), for all t ∈ Tq.

Consider the nonhomogeneous initial value problem:

(
qC

α
0y

)
(x) = λ(x − a)βqy

(
q−βx

)
+ f(x), y(a) = b, (2.29)

where

0 < α < 1, β > −α, β ∈ N0, λ ∈ R, b ∈ R. (2.30)
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If we apply the successive approximation as in Example 2.3, then we state the following.

Theorem 2.11. If in (2.29) either β = 0 or f is periodic with period dividing β, then the solution is
given by

y(x) =bqEα,(1+(β/α)),β/α(λ, x − a) +
∫x

a

(
x − qt

)α−1
q qEα,α

(
λ, x − qαt

)
f(t)∇qt. (2.31)

Clearly, if β = 0, then the result in Example 9 in [32] is recovered as well.
For the sake of completeness, it would be interesting if the h-discrete fractional

analogue, or more generally the (q, h)-analogue of the general q-Mittag-Leffler functions
are obtained, possibly better, by applying nabla calculus (see [33–35]). However, this needs
preparations in the Caputo case and it might be very complicated.
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[33] J. Čermák and L. Nechvátal, “On (q,h)-analogue of fractional calculus,” Journal of Nonlinear
Mathematical Physics, vol. 17, no. 1, pp. 51–68, 2010.

[34] T. Abdeljawad, F. Jarad, and D. Baleanu, “Variational optimal-control problems with delayed
arguments on time scales,” Advances in Difference Equations, vol. 2009, Article ID 840386, 15 pages,
2009.

[35] T. Abdeljawad, “A note on the chain rule on time scales,” Journal of Science and Arts, vol. 9, pp. 1–6,
2008.


