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The existence and multiplicity of solutions for second-order differential equations with a
parameter are discussed in this paper. We are mainly concerned with the semipositone case. The
analysis relies on the nonlinear alternative principle of Leray-Schauder and Krasnosel’skii’s fixed
point theorem in cones.

1. Introduction

In this paper, we consider the problem of existence, multiplicity, and nonexistence of positive
solutions for the following boundary value problem (BVP):

−(a(t)x′)′ + b(t)x = λf(t, x), t ∈ I,

x(0) = x(2π), a(0)x′(0) = a(2π)x′(2π),
(Eλ)

where I := [0, 2π], λ is a positive parameter, f(t, x) ∈ Car(I × R
+,R), and a(t), b(t) are real-

valued measurable functions defined on [0, 2π] and satisfy the following condition:

a(t) > 0, b(t) ≥ 0, b(t)/≡ 0,
∫2π

0

dt

a(t)
< ∞,

∫2π

0
b(t)dt < ∞. (H1)
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Here, the symbol Car(I×R
+,R) denotes the set of functions satisfying the Carathédory

conditions on I × R
+; that is,

(i) f(·, x) : I → R is Lebesgue integrable for each fixed x ∈ R
+, and

(ii) f(t, ·) : R
+ → R is continuous for a.e. t ∈ I.

Due to a wide range of applications in physics and engineering, second-order bound-
ary value problems have been extensively investigated by numerous researchers in recent
years. For a small sample of such work, we refer the reader to [1–18] and the references
therein. When a(t) = 1, b(t) = m2, λ = 1 of (Eλ), in [11, 18], by using Krasnosel’skii’s
fixed point theorem, the existence and multiplicity of positive solutions are established to
the periodic boundary value problem:

−x′′ +m2x = f(t, x), t ∈ I,

x(0) = x(2π), x′(0) = x′(2π),
(1.1)

where f(t, x) ∈ Car(I × R
+,R+).

In [8], Graef et al. consider the second-order periodic boundary value problem:

−x′′ +m2x = λg(t)f(x), t ∈ I,

x(0) = x(2π), x′(0) = x′(2π),
(1.2)

where g : I → R
+ is continuous and f : R

+ → R
+ is continuous and f(x) > 0 for x > 0. Under

different combinations of superlinearity and sublinearity of the function f , various existence,
multiplicity, and nonexistence results for positive solutions are derived in terms of different
value of λ via Krasnosel’skii’s fixed point theorem.

Hao et al. [9] use the Global continuation theorem, fixed point index theory, and
approximate method to study the following periodic boundary value problems:

−x′′ + a(t)x = λf(t, x), t ∈ I,

x(0) = x(2π), x′(0) = x′(2π),
(1.3)

where a ∈ L1(0, 2π) and f(t, x) ∈ Car(I × R
+,R+).

In [10], by using the fixed point index theory, He et al. study the existence and
multiplicity of positive solutions to BVP (Eλ). Motivated by the above works, we establish
the results of existence, multiplicity, and nonexistence of positive solutions for BVP (Eλ)
via Leray-Schauder alternative principle and Krasnosel’skii’s fixed point in the semipositone
case, that is, f(t, x) +M > 0 for some M > 0. Notice that we do not need f(t, x) > 0 for any
t ∈ [0, 2π] and x > 0, which is an essential condition of [9, 10].

The main result of the present paper is summarized as follows.

Theorem 1.1. Assume that

f0 := lim
x→ 0+

max
t∈[0,2π]

f(t, x)
x

< ∞, f∞ := lim
x→+∞

max
t∈[0,2π]

f(t, x)
x

< ∞. (1.4)
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Then, there exist 0 < λ < λ such that (Eλ) has no positive solution for λ < λ and at least two positive
solutions for λ ≥ λ.

Remark 1.2. The main result above is a generalization of [9, Theorem 1.2] and [10, Theorem
1.2] and some other known results, in which f0 and f∞ must be zero, besides f(t, x) is
positive.

The remaining part of the paper is organized as follows. Some preliminary results will
be given in Section 2. In Section 3, existence results are obtained using a nonlinear alternative
of Leray-Schauder and fixed point theorem in cones when λ is large enough; the proof of
Theorem 1.1 is also given.

2. Preliminaries and Lemmas

In this section, we present some preliminary results which will be needed in subsequent
sections. Denote by u(x) and v(x) the solutions of the corresponding homogeneous equation:

−(a(t)x′)′ + b(t)x = 0, t ∈ I, (2.1)

under the initial conditions

u(0) = 1, a(0)u(0) = 0, v(0) = 0, a(0)v(0) = 1. (2.2)

Lemma 2.1 (see [2, Theorem 2.4], [10, Lemma 2.1]). Assume that (H1) holds and h ∈ C(I,R+).
Then for the solution x(t) of the BVP

−(a(t)x′)′ + b(t)x = h(t), t ∈ I,

x(0) = x(2π), a(0)x′(0) = a(2π)x′(2π),
(2.3)

the formula

x(t) = (Lh)(t) :=
∫2π

0
G(t, s)h(s)ds, t ∈ I (2.4)

holds, where

G(t, s) =
v(2π)
D

u(t)u(s) − a(2π)u′(2π)
D

v(t)v(s)

+

⎧
⎪⎪⎨

⎪⎪⎩

a(2π)v′(2π) − 1
D

u(t)v(s) − u(2π) − 1
D

u(s)v(t), 0 ≤ s ≤ t ≤ 2π,

a(2π)v′(2π) − 1
D

u(s)v(t) − u(2π) − 1
D

u(t)v(s), 0 ≤ t ≤ s ≤ 2π,

(2.5)

and D = u(2π) + a(2π)v′(2π) − 1 > 0.
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Lemma 2.2 (see [2, Theorem 2.5], [10, Lemma 2.2]). Under condition (H1), the Green’s function
of the BVP (2.3) is positive, that is, G(t, s) > 0 for t, s ∈ I.

Remark 2.3. We denote

A = min
0≤s,t≤2π

G(t, s), B = max
0≤s,t≤2π

G(t, s), σ =
A

B
. (2.6)

Thus, B > A > 0 and 0 < σ < 1. In this paper, we use ω(t) to denote the unique periodic
solution of (2.3)with h(t) = 1, that is, ω(t) = (L1)(t). Obviously, A ≤ ‖ω‖∞/2π ≤ B.

Remark 2.4. If a(t) = 1, b(t) = m2 > 0, then the Green’s function G(t, s) of the boundary value
problem (2.3) has the form

G(t, s) = G(|t, s|) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(m(t − s)) + exp(m(2π − t + s))
2m

(
exp(2mπ) − 1

) , 0 ≤ s ≤ t ≤ 2π,

exp(m(s − t)) + exp(m(2π − s + t))
2m

(
exp(2mπ) − 1

) , 0 ≤ t ≤ s ≤ 2π.
(2.7)

It is obvious that G(t, s) > 0 for 0 ≤ s, t ≤ 2π , and a direct calculation shows that

A =
emπ

m(e2mπ − 1)
, B =

1 + e2mπ

2m(e2mπ − 1)
, σ =

2emπ

1 + e2mπ
< 1. (2.8)

In the obtention of the second periodic solution of (Eλ), we need the following well-
known fixed point theorem of compression and expansion of cones [19].

Lemma 2.5 (see Krasnosel’skii [19]). Let X be a Banach space and K(⊂ X) a cone. Assume that
Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : K ∩
(
Ω2 \Ω1

)
−→ K (2.9)

be a continuous and compact operator such that either

(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \Ω1).

In the applications below, we take X = C[0, 2π] with the supremum norm ‖ · ‖ and
define

K =
{
x ∈ X : x(t) ≥ 0 ∀t, min

0≤t≤2π
x(t) ≥ σ‖x‖

}
, (2.10)

where ‖x(t)‖ = max0≤t≤2π |x(t)|.
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Onemay readily verify thatK is a cone inX. Finally, we define an operator T : X → K
by

(Tx)(t) =
∫2π

0
G(t, s)F(s, x(s))ds, (2.11)

for x ∈ X and t ∈ [0, 2π], where F : [0, 2π] × R → [0,∞) is continuous and G(t, s) is the
Green function defined above.

Lemma 2.6 (see [12, Lemmas 2.2, 2.3], [13, Lemma 2.4]). T is well defined and maps X into K.
Moreover, T : X → K is continuous and completely continuous.

3. Proof of Theorem 1.1

In this section we establish the existence, multiplicity, and nonexistence of positive solutions
to the periodic boundary problem (Eλ). The first existence result is based on the following
nonlinear alternative of Leray-Schauder, which can be found in [15].

Lemma 3.1. Assume Ω is a relatively compact subset of a convex set K in a normed space X. Let
T : Ω → K be a compact map with 0 ∈ Ω. Then one of the following two conclusions holds:

(I) T has at least one fixed point in Ω.

(II) There exist x ∈ Ω and 0 < λ < 1 such that x = λTx.

Since we are mainly interested in the semipositone case, without loss of generality, we
may assume that f(t, x) satisfies the following.

(F1) There is a constantM > 0 such that f(t, x)+M > 0 for all (t, x) ∈ [0, 2π]×(0,∞) and
let F(t, x) := λ(f(t, x) +M) > 0. Besides, we introduce the following assumption on
f(t, x).

(F2) there exists a continuous, nonnegative function g(x) on (0,∞) such that

f(t, x) ≤ g(x), ∀(t, x) ∈ [0, 2π] × (0,∞), (3.1)

that is,

F(t, x) ≤ λ
(
g(x) +M

)
, ∀(t, x) ∈ [0, 2π] × (0,∞), (3.2)

and g(x) > 0 is nondecreasing in x ∈ (0,∞).

Theorem 3.2. Suppose f(t, x) satisfies (F1) and (F2). Suppose further that
(F3) there exists r > M‖ω‖/σ such that

r

λ
(
g(r) +M

) > ‖ω‖, (3.3)

where σ and ω are as in Section 2.
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Then (Eλ) has at least one positive periodic solution with 0 < ‖x +Mω‖ < r.

Proof. The existence is proved using the Leray-Schauder alternative principle. Consider the
following equation:

−(a(t)x′)′ + b(t)x = μF(t, x(t) −Mω(t)), t ∈ I,

x(0) = x(2π), a(0)x′(0) = a(2π)x′(2π),
(3.4)

where μ ∈ [0, 1]. Problem (3.4) is equivalent to the following fixed point problem in C[0, 2π]:

x = μTx, (3.5)

where T denotes the operator defined by (2.11), with F(t, x) replaced by F(t, x −Mω).
We claim that any fixed point x of (3.5) for any μ ∈ [0, 1] must satisfy ‖x‖/= r.
Then we have from condition (F2), for all t ∈ I,

x(t) = μTx(t)

= μ

∫2π

0
G(t, s)F(s, x(s) −Mω(s))ds

≤
∫2π

0
G(t, s)F(s, x(s) −Mω(s))ds

≤
∫2π

0
G(t, s)

(
λ
(
g(x −Mω) +M

))
ds

≤ λ
(
g(r) +M

)‖ω‖.

(3.6)

Therefore,

r = ‖x‖ ≤ λ
(
g(r) +M

)‖ω‖. (3.7)

This is a contradiction to the condition (F3). From this claim, the nonlinear alternative of
Leray-Schauder guarantees that (3.5) (with μ = 1) has a fixed point, denoted by x̂1(t), that is,

−(a(t)x̂′
1

)′ + b(t)x̂1 = λ
(
f(t, x̂1(t) −Mω(t)) +M

)
, t ∈ I,

x̂1(0) = x̂1(2π), a(0)x̂′
1(0) = a(2π)x̂′

1(2π).
(3.8)

Using Lemma 2.5 and condition (F3), for all t ∈ I, we have

x̂1(t) ≥ σ‖x̂1‖ = σr > σ · M‖ω‖
σ

= M‖ω‖ > 0, (3.9)
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that is,

x̂1(t) −M‖ω‖ > 0. (3.10)

Let

x∗
1(t) = x̂1(t) −Mω. (3.11)

It is easy to see that x∗
1(t) is a solution of (Eλ) which satisfies 0 < ‖x∗

1 + Mω‖ < r. Thus, the
proof of Theorem 3.2 is completed.

Theorem 3.3. Suppose that conditions (F1)–(F3) hold. In addition, it is assumed that the following
two conditions are satisfied.

(F4) There exists a continuous, nonnegative function h(x) on (0,∞) such that

f(t, x) +M ≥ h(x), ∀(t, x) ∈ [0, 2π] × (0,∞), (3.12)

that is,

F(t, x) ≥ λh(x), ∀(t, x) ∈ [0, 2π] × (0,∞), (3.13)

and h(x) > 0 is nondecreasing in x ∈ (0,∞).
(F5) There exists a positive number R > r such that

R

λh(σR −M‖ω‖) ≤ ‖ω‖. (3.14)

Then, besides the periodic solution x constructed in Theorem 3.2, (Eλ) has another positive
periodic solution x̃ with r < ‖x̃ +Mω‖ < R.

Proof. As in the proof of Theorem 3.2, we only need to show that (3.8) has a periodic solution
with x̂2 ∈ C[0, 2π] with x̂2 > Mω and r < ‖x̂2‖ < R.

Let X = C[0, 2π] and K the cone in X in Section 2. Let Ω1 = Br and Ω2 = BR be balls
in X. The operator T : K ∩ (Ω2 \ Ω1) → K is defined by (2.11), with F(t, x) replaced by
F(t, x − Mω). Note that any x ∈ K ∩ (Ω2 \ Ω1) satisfies 0 < σr ≤ x(t) ≤ R, thus T is well
defined.

First we have ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1. In fact, if x ∈ K ∩ ∂Ω1, then ‖x‖ = r. Now
the estimate ‖Tx‖ ≤ r can be obtained almost following the same ideas in proving (3.7). We
omit the details here.
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Next we show that ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2. To see this, let x ∈ K ∩ ∂Ω2, then
‖x‖ = R and x ≥ σR; it follows from conditions (F4) and (F5) that, for 0 ≥ t ≥ 2π ,

Tx(t) =
∫2π

0
G(t, s)F(s, x(s) −Mω(s))ds

≥
∫2π

0
G(t, s)(λ(h(x −Mω)))ds

≥ λh(σR −M‖ω‖)‖ω‖ ≥ R = ‖x‖.

(3.15)

Now Lemma 2.5 guarantees that T has a fixed point x̂2 ∈ K ∩ (Ω2 \ Ω1), thus r ≤
‖x̂2(t)‖ ≤ R.

Finally, x∗
2(t) = x̂2(t) − Mω will be the another desired positive periodic solution of

(Eλ). We omit the details because they are much similar to that in the proof of Theorem 3.2.

Now we are in a position to present the proof of Theorem 1.1.

Proof of Theorem 1.1. Consider v(x) > 0 be an eigenfunction satisfying

−(a(t)v′)′ + b(t)v = λ1v, t ∈ I,

v(0) = v(2π), a(0)v′(0) = a(2π)v′(2π),
(3.16)

corresponding to the principal eigenvalue λ1. Let x be a positive solution of (Eλ). Multiplying
(3.16) by x and (Eλ) by v, and subtracting we obtain

∫2π

0

(
λf(t, x) − λ1x

)
v dx = 0. (3.17)

Since f0 < ∞ and f∞ < ∞, there exist positive numbers η1, η2, ε1, and ε2 such that
ε1 < ε2 and

∣∣f(t, x)
∣∣ ≤ η1x for x ∈ [0, ε1],

∣∣f(t, x)
∣∣ ≤ η2x for x ∈ [ε2,∞),

(3.18)

with t ∈ I. Let the positive number η3 be defined by

η3 = max
{
η1, η2, max

ε1<x<ε2

{∣∣∣∣
f(t, x)

x

∣∣∣∣

}}
. (3.19)

Then

∣∣f(t, x)
∣∣ ≤ η3x for x ∈ [0,∞). (3.20)
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Thus, there exists a λ > 0, for 0 < λ < λ satisfying |λ1/λ| > η3. (3.17) cannot hold, and
hence (Eλ) has no positive solution for λ < λ.

Note that the sublinearity of f(t, x) near x = ∞, we can construct a suitable g(x) in
(F2) which satisfies limr→∞g(r)/r < ∞. This means that there exists λ > λ1 satisfying (3.3)
with r being large enough. There also exists λ > λ2 = R/‖ω‖(h(σR−M‖ω‖)) satisfying (3.14).
Let λ = max(λ1, λ2). Thus, with the help of Theorems 3.2 and 3.3, (Eλ) has at least two positive
solution for λ > λ. This completes the proof of the theorem.

Example 3.4. Let the nonlinearity in (Eλ) be

f(t, x) = α(t)g(x) exp(−xγ), (3.21)

with γ > 0, α(t) is a continuous function for all t ∈ I and g(x) is a real coefficient polynomial
function which has zero constant term. Then Theorem 1.1 is valid.

Proof. In this case, with the function f(t, x) = α(t)g(x) exp(−xγ), it is easy to verify

f0 := lim
x→ 0+

max
t∈[0,2π]

f(t, x)
x

= lim
x→ 0+

max
t∈[0,2π]

α(t)g(x) exp(−xγ)
x

< ∞,

f∞ := lim
x→+∞

max
t∈[0,2π]

f(t, x)
x

= lim
x→+∞

max
t∈[0,2π]

α(t)g(x) exp(−xγ)
x

= 0 < ∞.

(3.22)

Then the conclusion follows from Theorem 1.1 that there exists 0 < λ < λ such that
(Eλ) has no positive solution for λ < λ and at least two positive solutions for λ ≥ λ.
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