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This paper deals with the periodic solutions of a class of fourth-order superlinear differential
equations. By using the classical variational techniques and symmetric mountain pass lemma, the
periodic solutions of a single equation in literature are extended to that of equations, and also, the
cubic growth of nonlinear term is extended to a general form of superlinear growth.

1. Introduction

The existence of periodic solutions of fourth-order differential equations has been studied
by more and more researchers [1–6]. The application methods contain mainly Clark theorem
[2–4], Cone theory [6], and so on.

For a single equation, Tersian and Chaparova [2] study the existence of infinitely many
unbounded solutions, using symmetric mountain pass lemma:

uiv − pu′′ + a(x)u − b(x)u3 = 0, x ∈ R,

u(0) = u(L) = 0, u′′(0) = u′′(L) = 0.
(1.1)

It is a natural problem to wonder whether symmetric mountain pass lemma method
may be applied not only to single equations but also to systems of differential equations.
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In this paper we study the existence of periodic solutions of the fourth-order equations, by
making use of the classical variational techniques and symmetric mountain pass lemma

u(4) − cu′′ + a(x)u − ∂F(x, u, v)
∂u

= 0, 0 < x < L,

v(4) − dv′′ + b(x)v − ∂F(x, u, v)
∂v

= 0, 0 < x < L,

u(0) = u′′(0) = u(L) = u′′(L) = 0,

v(0) = v′′(0) = v(L) = v′′(L) = 0.

(1.2)

Through studying System (1.2), (1.1) of the corresponding conclusions are extended.
The paper is organized as follows. In Section 2, we consider the result of System (1.2)

under certain conditions. In Section 3, we prove the main result of this paper and give an
example.

2. Main Result

In this paper, we state our main result. First we give the following list of assumptions on the
parameters in System (1.2):

(A) a(x) > 0, b(x) > 0, c > −π2/L2, d > −π2/L2.

(F1) F is an even functional about (u, v). That is, F(x,−u,−v) = F(x, u, v) for every
(u, v) ∈ R2.

(F2) There exists β > 2, as u2 + v2 /= 0, we have

u · ∂F(x, u, v)
∂u

+ v · ∂F(x, u, v)
∂v

≥ βF(x, u, v) > 0 for every x ∈ R. (2.1)

(F3) F(x, u, v) = o(u2 + v2) with respect to x consistently, as u2 + v2 → 0.

Denote a1 = minx∈[0,L]a(x), a2 = maxx∈[0,L]a(x), b1 = minx∈[0,L]b(x), b2 =
maxx∈[0,L]b(x).

From condition (A), we obtain ai > 0, bi > 0, when i = 1, 2.

Remark 2.1. Let z = (u, v) ∈ R2, then condition (F2) is transformed to

(∇F(x, z), z) > βF(x, z) > 0 for every z/= 0, (2.2)

where (·, ·) represents the usual inner product in R2.

Remark 2.2. From (F3), we obtain lim|z|→ 0F(x, z)/|z|2 = 0, where | · | represents normal norm
in R2. Besides, from the continuity of F, we obtain F(x, 0, 0) = 0.
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Our main result is as follows.

Theorem 2.3. Suppose a(x), b(x), and F satisfy (A), (F1)–(F3). Then System (1.2) has infinitely
many distinct pairs of solutions zn = (un, vn), which are critical points of the functional I : X → R,
and I(zn) → ∞ as n → ∞.

In this paper, the existence of periodic solutions of a single equation in System (1.1) are
extended to the case of equations, and also the cubic growth of nonlinear term is extended to
a general form of superlinear growth.

3. Variational Structure and the Proof of Result

In this section, we prove the main result stated in Section 2.

3.1. Variational Structure

Denote

X(L) =
(
H2(0, L) ∩H1

0(0, L)
)2
. (3.1)

Then X(L) is a Hilbert space. The norm is

‖z‖2 = ‖u‖2c + ‖v‖2d, (3.2)

where

‖u‖c =
{∫L

0

[∣∣u′′(x)
∣∣2 + c

∣∣u′(x)
∣∣2 + a(x)|u(x)|2

]
dx

}1/2

,

‖v‖d =

{∫L

0

[∣∣v′′(x)
∣∣2 + d

∣∣v′(x)
∣∣2 + b(x)|v(x)|2

]
dx

}1/2

,

(3.3)

z = (u, v) ∈ X(L). The corresponding inner product are

〈z1, z2〉| =
∫L

0

[(
z′′1, z

′′
2
)
+ c

(
u′
1, u

′
2
)
+ d

(
v′
1, v

′
2
)
+ a(x)(u1, u2) + b(x)(v1, v2)

]
dx,

〈u1, u2〉|c =
∫L

0

[(
u′′
1, u

′′
2
)
+ c

(
u′
1, u

′
2
)
+ a(x)(u1, u2)

]
dx,

〈v1, v2〉|d =
∫L

0

[(
v′′
1, v

′′
2
)
+ d

(
v′
1, v

′
2
)
+ b(x)(v1, v2)

]
dx.

(3.4)
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For every z = (u, v) ∈ X(L), using Poincaré inequality [7], we obtain

∫L

0
u2dx ≤ L2

π2

∫L

0
u

′2dx,

∫L

0
u

′2dx ≤ L2

π2

∫L

0
u′′2dx. (3.5)

Thus, we can define another norm ‖ · ‖1 in X(L). That is, for every z ∈ X(L),

‖z‖1 =
{∫L

0

∣∣z′′(x)∣∣2dx
}1/2

. (3.6)

The inner product in X(L) as follows:

〈z1, z2〉|1 =
∫L

0

(
z′′1(x), z

′′
2(x)

)
dx, z1, z2 ∈ X(L). (3.7)

The two different norms (3.2) and (3.6) are equivalent in X(L).
In this section we consider System (1.2). The Fréchet derivative of I is given by the

following:

I(u, v) =
1
2

∫L

0

[
u′′2 + cu

′2 + a(x)u2 + v′′2 + dv
′2 + b(x)v2

]
dx −

∫L

0
F(x, u, v)dx, (3.8)

where z = (u, v) ∈ X(L).

Remark 3.1. In general, the growth of F is limited by the differentiability of functional I, but
we apply truncation techniques in [8]. First, introduce auxiliary functional and the auxiliary
functional is Fréchet differentiable. Second, we use critical point theory to prove the existence
of critical point of auxiliary functional, then prove the existence of the original equation.
However, in order to avoid technical complexity, we assume directly functional I is Fréchet
differentiable.

In fact, for every z = (u, v) ∈ X(L), z = (u, v) ∈ X(L), we obtain

〈
I ′(z), z

〉
=
〈
I ′u(u, v), u

〉
+
〈
I ′v(u, v), v

〉
, (3.9)

where

〈
I ′u(u, v), u

〉
=
∫L

0

[
u′′u′′ + cu′u′ + a(x)uu − ∂F(x, u, v)

∂u
u

]
dx,

〈
I ′v(u, v), v

〉
=
∫L

0

[
v′′v′′ + cv′v′ + a(x)vv − ∂F(x, u, v)

∂v
v

]
dx.

(3.10)

and I ′u(u, v), I
′
v(u, v) ∈ [H2(0, L) ∩H1

0(0, L)]
∗, I ′(z) ∈ X(L)∗.
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It is similar to the discussion of [8], the solutions of System (1.2) corresponds to the
critical point of the functional I, so we need to discuss the critical point of functional I. In
order to prove Theorem 2.3, we introduce below definition and lemma.

Definition 3.2 (see [9]). Let X be a real Banach space, I ∈ C1(X,R), I is a Fréchet continuously
differentiable functional in X(L). I is said to be satisfying Palais-Smale (PS) condition if any
sequence {un} ⊂ X for which {I(un)} is bounded and {I ′(un)} → 0 as j → ∞, possesses a
convergent subsequence.

Lemma 3.3 (see [8]). Let X be an infinite dimensional Banach space and (Xn)n be a sequence of
finite dimensional subspaces of X such that dimXn = n,

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ X,
∞⋃
n=1

Xn = X. (3.11)

Let I ∈ C1(X,R) be an even functional, I(0) = 0, and I satisfy (PS) condition. Suppose that

(A1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α, and

(A2) for every n there is an Rn > 0 such that I ≤ 0 on Xn \ BRn .

Then I possesses infinitely many pairs of critical points with unbounded sequence of critical
values.

3.2. The Proof of Result

Step 1 (Functional I satisfies (PS) condition). Let {zn} = {(un, vn)} be a (PS) sequence in X,
that is, {I(zn)} is bounded and I ′(zn) → 0, as n → ∞. Suppose that {zn} is unbounded in X,
that is, ‖zn‖ → ∞ as n → ∞. Since

I(zn) +
1
γ

∥∥I ′(zn)
∥∥‖zn‖ ≥ I(zn) − 1

γ

〈
I ′(zn), zn

〉
=

1
γ
‖zn‖2, (3.12)

it follows that

I(zn)

‖zn‖2
+
‖I ′(zn)‖
γ‖zn‖ ≥ 1

γ
, (3.13)

where γ ≥ 4. Letting n → ∞ in (3.13), we have a contradiction with ‖zn‖ → ∞ as n → ∞.
Therefore {zn} is a bounded sequence in X(L). Passing if necessary to a subsequence

we may assume that {zn} is weakly convergent to a function z ∈ X(L), zn ⇀ z in X(L), and
zn → z in C[(0, L)].
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From the Lebesgue theorem, z ∈ X(L), zn ⇀ z inX(L), and zn → z inC[(0, L)], letting
n → ∞ in (3.9)

〈
I ′(zn, zn)

〉
= ‖zn‖2 −

∫L

0

∂F(x, un, vn)
∂u

undx − ∂F(x, un, vn)
∂v

vndx,

〈
I ′(zn, z)

〉
= 〈zn, z〉 −

∫L

0

∂F(x, un, vn)
∂u

udx − ∂F(x, un, vn)
∂v

v dx,

(3.14)

we obtain

lim
n→∞

‖zn‖2 =
∫L

0

∂F(x, u, v)
∂u

udx +
∂F(x, u, v)

∂v
v dx = ‖z‖2. (3.15)

From (3.15) and z ∈ X(L), zn ⇀ z in X(L), we have ‖zn − z‖ → 0 as n → ∞.

Remark 3.4. γ is the largest sum of the order of u and v.

Step 2 (Geometric conditions). Let e1 = (1, 0), e2 = (0, 1), then {e1, e2} constitutes a pair of
standard orthogonal base in R2. Let us define X2m to be the subspace of X(L)

X2m = span
{
sin

kπx

L
ei, i = 1, 2, k = 1, 2, . . . , m

}
, (3.16)

for every m ∈ N. We have dimX2m = 2m, X1 ⊂ X2 · · · ⊂ X2m ⊂ X,
⋃∞

n=1 Xn = X.
For a given constant ρ > 0, define a bounded closed set K ⊂ X2m

K =

{
z = (u, v) ∈ X2m | z =

m∑
k=1

[
αk sin

kπx

L
e1 + βk sin

kπx

L
e2

]
,

m∑
k=1

(
α2
k + β2k

)
= ρ2

}
. (3.17)

Define mapping H : X2m → R2m. For any z ∈ X2m, we obtain

H(z) =

(
α1, β1, α2, β2, . . . , αm, βm

)

ρ
. (3.18)

It is clear that H is a linear odd mapping. For every z ∈ X2m, we have

‖z‖21 =
∫L

0

[∣∣u′′(x)
∣∣2 + ∣∣v(x)′′∣∣2

]
dx

=
π4

2L3

m∑
k=1

k4
(
α2
k + β2k

)
.

(3.19)
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So

ρ2π4

2L3 |H(z)|2 ≤ |z|21 ≤
ρ2(mπ)4

2L3 |H(z)|2. (3.20)

From (3.20), we obtain H is an odd homeomorphism from X2m to R2m. Then H is an odd
homeomorphism from K to S2m−1, since H(K) = S2m−1.

On one hand, from functional (3.8) and using Sobolev’s embedding theorem, we
obtain

I(z) ≥ 1
2
‖z‖2 − ε|z|2L

≥ 1
2
‖z‖2 − ε

π2

L
‖z‖2.

(3.21)

Thus condition (A1) is fulfilled if ε = L/4π2, ρ = ‖z‖/2.
On the other hand, as −F(x, u, v) < 0, then there exists σ, such that −F(x, u, v) <

−(1/4)σ‖z‖41.
Denote A(n) = (nπ/L)4 + p(nπ/L)2 + a. From functional (3.8), we obtain

I(z) ≤ 1
2

∫L

0

(
z′′2 + pz

′2 + az2
)
dx −

∫L

0
F(x, z)dx

≤ L

4
A(n)‖z‖21 −

∫L

0
F(x, z)dx

≤ L

4
A(n)‖z‖21 −

L

4
σ‖z‖41,

(3.22)

where p = max{c, d}, a = max{a2, b2}. Here choosing Rn = ‖z‖1 ≥
√
A(n)/σ, we obtain

I(z) ≤ 0. (3.23)

So (A2) holds. The proof of Theorem 2.3 is completed.

Example 3.5. In System (1.2), consider the problem:

F(x, u, v) = p0(x)un + p1(x)un−1v + · · · + pi(x)un−ivi + · · · + pn−1(x)uvn−1 + pn(x)vn, (3.24)

where pi(x) ≥ 0, but there exists at least one pi(x)/= 0, n is an even and n ≥ 4, i = 0, 1, 2, . . . , n.

It is obvious that F(x,−u,−v) = F(x, u, v) and F(x, u, v) = o(u2 + v2) as u2 + v2 → 0.



8 Abstract and Applied Analysis

For the superlinear property, we calculate that

u · ∂F(x, u, v)
∂u

+ v · ∂F(x, u, v)
∂v

= np0(x)un + (n − 1)p1(x)un−1v + · · · + (n − i)pi(x)un−ivi + · · · + pn−1(x)uvn−1

+ p1(x)un−1v + · · · + ipi(x)un−ivi + · · · + (n − 1)pn−1(x)uvn−1 + npn(x)vn

= nF(x, u, v)

≥ 4F(x, u, v).

(3.25)

Therefore, there exists β = 4 > 2, as u2 + v2 /= 0, we have

u · ∂F(x, u, v)
∂u

+ v · ∂F(x, u, v)
∂v

≥ 4F(x, u, v) > 0 for every x ∈ R. (3.26)

So F satisfies the conditions (F1)–(F3). We only choose a(x) > 0, b(x) > 0, c >
−π2/L2, d > −π2/L2, then the condition (A) is satisfied. Therefore, System (1.2) has infinitely
many distinct pairs of solutions by using Theorem 2.3.
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