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The existence of at least one positive solution is established for a class of semipositone fractional
differential equations with Riemann-Stieltjes integral boundary condition. The technical approach
is mainly based on the fixed-point theory in a cone.

1. Introduction

In this paper, we discuss the existence of positive solutions for the following singular semi-
positone fractional differential equation with nonlocal condition:

−Dt
αx(t) = f

(
t, x(t),−Dt

βx(t)
)
+ q(t), t ∈ (0, 1),

Dt
βx(0) = Dt

β+1x(0) = 0, Dt
βx(1) =

∫1

0
Dt

βx(s)dA(s),
(1.1)

where 2 < α ≤ 3, 0 < β < 1, and α − β > 2, Dt is the standard Riemann-Liouville derivative.∫1
0 Dt

βx(s)dA(s) denotes the Riemann-Stieltjes integral, and A is a function of bounded
variation. f : (0, 1) × [0,+∞) × (−∞, 0] → [0,+∞) is continuous, q : (0, 1) → (−∞,+∞)
is Lebesgue integrable.

Differential equations of fractional order have been recently proved to be valuable
tools in the modeling of many phenomena in various fields of science and engineering.
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Indeed, we can find numerous applications in physics, engineering (like traffic, trans-
portation, logistics, etc.), mechanics, chemistry, and so forth, (see [1–5]). There has been a
significant development in the study of fractional differential equations in recent years, see
the monographs of Kilbas et al. [6], Lakshmikantham et al. [7], Podlubny [4], Samko et al.
[8], the survey by Agarwal et al. [9] and some recent results [10–14].

On the other hand, the nonlocal condition given by a Riemann-Stieltjes integral is
due to Webb and Infante in [15–17] and gives a unified approach to many BVPs in [15, 16].
Motivated by [15–17], Hao et al. [18] studied the existence of positive solutions for nth-order
singular nonlocal boundary value problem:

x(n)(t) + a(t)f(t, x(t)) = 0, 0 < t < 1,

x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =
∫1

0
x(s)dA(s),

(1.2)

where a can be singular at t = 0, 1, f also can be singular at x = 0, but there is no singularity at
t = 0, 1. The existence of positive solutions of the BVP (1.2) is obtained by means of the fixed
point index theory in cones.

More recently, Zhang [19] considered the following problem whose nonlinear term
and boundary condition contain integer order derivatives of unknown functions

Dαx(t) + q(t)f
(
x, x′, . . . , x(n−2)

)
= 0, 0 < t < 1, n − 1 < α ≤ n,

x(0) = x′(0) = · · · = x(n−2)(0) = x(n−2)(1) = 0,
(1.3)

where Dα is the standard Riemann-Liouville fractional derivative of order α, q may be
singular at t = 0 and f may be singular at x = 0, x′ = 0, . . . , x(n−2) = 0. By using fixed point
theorem of the mixed monotone operator, the unique existence result of positive solution
to problem (1.3) was established. And then, Goodrich [20] was concerned with a partial
extension of the problem (1.3) by extending boundary conditions

−Dαx(t) = f(t, x(t)), 0 < t < 1, n − 1 < α ≤ n,

x(i)(0) = 0, 0 ≤ i ≤ n − 2, Dαx(1) = 0, 1 ≤ α ≤ n − 2,
(1.4)

and the author derived the Green’s function for the problem (1.4) and showed that it satisfies
certain properties, then by using cone theoretic techniques, a general existence theorem for
(1.4) was obtained when f(t, x) satisfies some growth conditions.

Recently, Rehman and Khan [21] investigated the multipoint boundary value prob-
lems for fractional differential equations of the form:

Dt
αy(t) = f

(
t, y(t),Dt

βy(t)
)
, t ∈ (0, 1),

y(0) = 0, Dt
βy(1) −

m−2∑
i=1

ζiDt
βy(ξi) = y0,

(1.5)



Abstract and Applied Analysis 3

where 1 < α ≤ 2, 0 < β < 1, 0 < ξi < 1, ζi ∈ [0,+∞) with
∑m−2

i=1 ζiξ
α−β−1
i < 1. By using the

Schauder fixed point theorem and the contraction mapping principle, the authors established
the existence and uniqueness of nontrivial solutions for the BVP (1.5) provided that the
nonlinear function f : [0, 1]×R×R is continuous and satisfies certain growth conditions. Since∫1
0 Dt

βx(s)dA(s) covers the multipoint BVP and integral BVP as special case, the fractional
differential equations with the Riemann-Stieltjes integral condition also were extensively
studied by many authors, see [22, 23]. In [23], Zhang and Han considered the existence of
positive solution of the following singular fractional differential equation:

Dt
αx(t) + f(t, x(t)) = 0, 0 < t < 1, n − 1 < α ≤ n,

x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =
∫1

0
x(s)dA(s),

(1.6)

where α ≥ 2 and dA(s) can be a signed measure. Some growth conditions were adopted
to guarantee that (1.6) has an unique positive solution, moreover, the authors also gave the
iterative sequence of the solution, an error estimation, and the convergence rate of the positive
solution.

Fractional differential equations like (1.1), with nonlinearities which are allowed to
change sign and boundary conditions which contain nonlocal condition given by a Riemann-
Stieltjes integral with a signed measure, are rarely studied. This type problems are referred to
as semipositone problems in the literature, which arise naturally in chemical reactor theory
[24]. In the recent work [25], by constructing a modified function, Zhang and Liu studied
the existence of positive solution of a class of semipositone singular second-order Dirichlet
boundary value problem, and when f is superlinear, a sufficient condition for the existence
of positive solution is obtained under the simple assumptions.

Motivated by the above work, in this paper, we establish the existence of positive
solutions for the semipositone fractional differential equations (1.1) when f is superlinear
and involves fractional derivatives of unknown functions.

2. Preliminaries and Lemmas

Definition 2.1 (see [4, 5]). The Riemann-Liouville fractional integral of order α > 0 of a
function x : (0,+∞) → R is given by

Iαx(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 (see [4, 5]). The Riemann-Liouville fractional derivative of order α > 0 of a
function x : (0,+∞) → R is given by

Dt
αx(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1x(s)ds, (2.2)
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where n = [α]+1, [α] denotes the integer part of number α, provided that the right-hand side
is pointwise defined on (0,+∞).

Remark 2.3. If x, y : (0,+∞) → R with order α > 0, then

Dt
α(x(t) + y(t)

)
= Dt

αx(t) +Dt
αy(t). (2.3)

Proposition 2.4 (see [4, 5]). (1) If x ∈ L1(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t), Dt
σIνx(t) = Iν−σx(t), Dt

σIσx(t) = x(t). (2.4)

(2) If ν > 0, σ > 0, then

Dt
νtσ−1 =

Γ(σ)
Γ(σ − ν)

tσ−ν−1. (2.5)

Proposition 2.5 (see [4, 5]). Let α > 0, and f(x) is integrable, then

IαDt
αx(t) = f(x) + c1x

α−1 + c2x
α−2 + · · · + cnx

α−n, (2.6)

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.
Let x(t) = Iβy(t), y(t) ∈ C[0, 1], by standard discuss, one easily reduces the BVP (1.1) to the

following modified problems,

− Dt
α−βy(t) = f

(
t, Iβy(t),−y(t)

)
+ q(t),

y(0) = y′(0) = 0, y(1) =
∫1

0
y(s)dA(s),

(2.7)

and the BVP (2.7) is equivalent to the BVP (1.1).

Lemma 2.6 (see [26]). Given y ∈ L1(0, 1), then the problem,

Dt
α−βx(t) + y(t) = 0, 0 < t < 1,

x(0) = x′(0) = 0, x(1) = 0,
(2.8)

has the unique solution

x(t) =
∫1

0
G(t, s)y(s)ds, (2.9)

where G(t, s) is the Green function of the BVP (2.8) and is given by

G(t, s) =
1

Γ
(
α − β

)
{
[t(1 − s)]α−β−1, 0 ≤ t ≤ s ≤ 1,
[t(1 − s)]α−β−1 − (t − s)α−β−1, 0 ≤ s ≤ t ≤ 1.

(2.10)
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Lemma 2.7 (see [26]). For any t, s ∈ [0, 1], G(t, s) satisfies:

tα−β−1(1 − t)s(1 − s)α−β−1

Γ
(
α − β

) ≤ G(t, s)

≤ s(1 − s)α−β−1

Γ
(
α − β − 1

) , or

(
tα−β−1(1 − t)
Γ
(
α − β − 1

)
)
.

(2.11)

By Lemma 2.6, the unique solution of the problem,

Dt
αx(t) = 0, 0 < t < 1,

x(0) = x′(0) = 0, x(1) = 1,
(2.12)

is tα−β−1. Let

C =
∫1

0
tα−β−1dA(t), B =

∫1

0
tα−β−1(1 − t)dA(t) (2.13)

and define

GA(s) =
∫1

0
G(t, s)dA(t), (2.14)

as in [25], one can get that the Green function for the nonlocal BVP (2.7) is given by

H(t, s) =
tα−β−1

1 − C GA(s) +G(t, s). (2.15)

Throughout paper one always assumes the following holds.
(H0)A is a increasing function of bounded variation such that GA(s) ≥ 0 for s ∈ [0, 1]

and 0 ≤ C < 1, where C is defined by (2.13).
Define

q+(t) = max
{
q(t), 0

}
, q−(t) = max

{−q(t), 0}. (2.16)

One has the following Lemma.

Lemma 2.8. Let 1 < α − β ≤ 2 and (H0) hold, then the unique solution w(t) of the linear problem,

−Dt
α−βw(t) = q−(t), t ∈ (0, 1),

w(0) = w′(0) = 0, w(1) =
∫1

0
w(s)dA(s),

(2.17)
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satisfies

w(t) ≤ ηγ(t), (2.18)

where

η =
1

Γ
(
α − β − 1

)
(
1 +

C
B
)∫1

0
q−(s)ds, γ(t) = tα−β−1(1 − t) +

B
1 − C tα−β−1. (2.19)

Proof. By (2.11) and that A(t) is a increasing function of bounded variation, we have

GA(s) =
∫1

0
G(t, s)dA(t) ≤

∫1

0

tα−β−1

Γ
(
α − β − 1

)dA(t) =
C

Γ
(
α − β − 1

) . (2.20)

Consequently,

w(t) =
∫1

0
H(t, s)q−(t)ds =

∫1

0

(
tα−β−1

1 − C GA(s) +G(t, s)

)
q−(s)ds

≤ tα−β−1(1 − t)
Γ
(
α − β − 1

)
∫1

0
q−(s)ds +

Ctα−β−1
Γ
(
α − β − 1

)
(1 − C)

∫1

0
q−(s)ds

≤ 1
Γ
(
α − β − 1

)
(
1 +

C
B
)(

tα−β−1(1 − t) +
B

1 − C tα−β−1
)∫1

0
q−(s)ds

= ηγ(t).

(2.21)

Remark 2.9. (1) γ(t) satisfies

(1 − C)γ(t)
2

≤ (1 − C)γ(t)
α − β − 1

≤ 1, (2.22)

(2)

H(t, s) ≤ GA(s)
1 − C +

s(1 − s)α−β−1

Γ
(
α − β − 1

) = Φ(s). (2.23)

In fact, since 1 < α − β − 1 < 2, the left side of (1) clearly holds. For right side of (1),
from B ≤ C, one gets

γ(t) ≤ 1 +
B

1 − C ≤ 1 +
C

1 − C =
1

1 − C , (2.24)
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thus we have

(1 − C)γ(t)
α − β − 1

≤ 1. (2.25)

(2) is obvious from (2.11).
Now define a function [·]∗ for any z ∈ C[0, 1] by

[z(t)]∗ =

{
z(t), z(t) ≥ 0,
0, z(t) < 0

(2.26)

and consider the following approximate problem of the BVP (2.7):

−Dt
α−βv(t) = f

(
t, Iβ[v(t) −w(t)]∗,−[v(t) −w(t)]∗

)
+ q+(t),

v(0) = v′(0) = 0, v(1) =
∫1

0
v(s)dA(s).

(2.27)

Lemma 2.10. Suppose v is a positive solution of the problem (2.27) and satisfies v(t) ≥ w(t), t ∈
[0, 1], then v − w is a positive solution of the problem (2.7), consequently, Iβ[v(t) − w(t)] also is a
positive solution of the BVP (1.1).

Proof. In fact, if v is a positive solution of the BVP (2.27) such that v(t) ≥ w(t) for any t ∈ [0, 1],
then, from (2.27) and the definition of [z(t)]∗, we have

−Dt
α−βv(t) = f

(
t, Iβ(v(t) −w(t)),−(v(t) −w(t))

)
+ q+(t),

v(0) = v′(0) = 0, v(1) =
∫1

0
v(s)dA(s).

(2.28)

Let y = v −w, then we have

w(0) = w′(0) = 0, w(1) =
∫1

0
w(s)dA(s), (2.29)

and Dt
α−βy(t) = Dt

α−βv(t) − Dt
α−βw(t), which implies that

−Dt
α−βv(t) = −Dt

α−βy(t) + q−(t). (2.30)

Since q(t) = q+(t)−q−(t), then (2.27) is transformed to (2.7), that is, v−w is a positive solution
of the BVP (2.27). By (2.7), Iβ[v(t) −w(t)] is a positive solution of the BVP (1.1).
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It is well known that the BVP (2.27) is equivalent to the fixed points of the mapping T
given by

(Tv)(t) =
∫1

0
H(t, s)

(
f
(
s, Iβ[v(s) −w(s)]∗,−[v(s) −w(s)]∗

)
+ q+(s)

)
ds. (2.31)

The basic space used in this paper is E = C([0, 1];R), where R is a real number set.
Obviously, the space E is a Banach space if it is endowed with the norm as follows:

‖v‖ = max
t∈[0,1]

|v(t)|, (2.32)

for any u ∈ E. Let

P =
{
v ∈ E : v(t) ≥ (1 − C)γ(t)

4
‖v‖
}
, (2.33)

then P is a cone of E.
For the convenience in presentation, we now present some assumptions to be used in

the rest of the paper.
(H1) For any fixed t ∈ (0, 1) and for any c ∈ (0, 1], there exist constants μi > 1, i =

1, 2, 3, 4, such that, for all (t, u, v) ∈ (0, 1) × [0,+∞) × (−∞,+0],

cμ1f(t, u, v) ≤ f(t, cu, v) ≤ cμ3f(t, u, v),

cμ2f(t, u, v) ≤ f(t, u, cv) ≤ cμ4f(t, u, v).
(2.34)

(H2)
∫1
0 q−(s)ds > 0, for any s ∈ (0, 1), f(s, 1,−1) > 0, and

∫1

0
Φ(s)

[
f(s, 1,−1) + q+(s)

]
ds ≤ r

2(1 + r)μ1+μ2
, (2.35)

where

r =
8η

1 − C , (2.36)

and C, η,Φ are defined by (2.13), (2.19), and (2.23), respectively.

Remark 2.11. If c > 1, the reversed inequality of (2.34) holds, that is, for all (t, u, v) ∈ (0, 1) ×
[0,+∞) × (−∞,+0], one has

cμ3f(t, u, v) ≤ f(t, cu, v) ≤ cμ1f(t, u, v), cμ4f(t, u, v) ≤ f(t, u, cv) ≤ cμ2f(t, u, v). (2.37)
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Lemma 2.12. Suppose (H1)–(H2) holds, for any fixed t ∈ (0, 1), f(t, u, v) is nondecreasing in u on
[0,+∞) and nonincreasing in v on (−∞, 0]; and for any [a, b] ⊂ (0, 1),

lim
(u,v)→ (+∞,−∞)

min
t∈[a,b]

f(t, u, v)
|u||v| = +∞. (2.38)

Proof. Let 0 ≤ u1 ≤ u2. If u2 = 0, obviously f(t, u1, v) ≤ f(t, u2, v) holds. If u2 /= 0, let c0 = u1/u2,
then 0 < c0 ≤ 1. It follows from (H1) that

f(t, u1, v) = f(t, c0u2, v) ≤ c
μ3

0 f(t, u2, v) ≤ f(t, u2, v). (2.39)

Thus f(t, u, v) is nondecreasing in u on [0,∞).
On the other hand, for any v1 ≤ v2 ≤ 0, if v1 = 0, obviously f(t, u, v1) ≥ f(t, u, v2)

holds. If v1 /= 0, let c1 = v2/v1, then 0 < c1 ≤ 1. By (H1), we have

f(t, u, v2) = f(t, u, c1v1) ≤ c
μ4

1 f(t, u, v1) ≤ f(t, u, v1). (2.40)

Thus f(t, u, v) is nonincreasing in v on (−∞, 0].
Now choose u > 1 and v < −1, then by Remark 2.11, we have

f(t, u, v) = f(t, |u|,−|v|) ≥ |u|μ3f(t, 1,−|v|) ≥ |u|μ3 |v|μ4f(t, 1,−1). (2.41)

Thus for any [a, b] ⊂ (0, 1), and any t ∈ [a, b], we have

min
t∈[a,b]

f(t, u, v)
|u||v| ≥ |u|μ3−1|v|μ4−1 min

t∈[a,b]
f(t, 1,−1) > 0. (2.42)

Therefore

lim
(u,v)→ (+∞,−∞)

min
t∈[a,b]

f(t, u, v)
|u||v| = +∞. (2.43)

Lemma 2.13. Assume that (H0)-(H2) holds. Then T : P → P is well defined. Furthermore, T :
P → P is a completely continuous operator.

Proof. For any fixed v ∈ P , there exists a constant L > 0 such that ‖v‖ ≤ L. And then,

0 ≤ [v(s) −w(s)]∗ ≤ v(s) ≤ ‖v‖ ≤ L,

0 ≤ Iβ[v(s) −w(s)]∗ =
∫ t

0

(t − s)β−1[v(s) −w(s)]∗

Γ
(
β
) ds ≤ L

Γ
(
β
) .

(2.44)
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By (2.44) and (H1)-(H2), we have

(Tv)(t) =
∫1

0
H(t, s)

(
f
(
s, Iβ[v(s) −w(s)]∗,−[v(s) −w(s)]∗

)
+ q+(s)

)
ds

≤
∫1

0
H(t, s)

(
f

(
s,

L

Γ
(
β
) + 1,−(L + 1)

)
+ q+(s)

)
ds

≤
(

L

Γ
(
β
) + 1

)μ1

(L + 1)μ2

∫1

0
Φ(s)

[
f(s, 1,−1) + q+(s)

]
ds < +∞,

(2.45)

which implies that the operator T : P → E is well defined.
Next let f∗(s) = f(s, Iβ[v(s)−w(s)]∗,−[v(s)−w(s)]∗) + q+(s), for any v ∈ P , by (2.11),

we have

‖Tv‖ ≤
∫1

0

s(1 − s)α−β−1

Γ
(
α − β − 1

) f∗(s)ds +
tα−β−1

1 − C
∫1

0
GA(s)f∗(s)ds

≤ 1
1 − C

∫1

0

s(1 − s)α−β−1

Γ
(
α − β − 1

) f∗(s)ds +
tα−β−1

1 − C
∫1

0
GA(s)f∗(s)ds.

(2.46)

On the other hand, by (2.11), (2.22), and (2.46), we also have

(Tu)(t) ≥ tα−β−1(1 − t)
∫1

0

s(1 − s)α−β−1

Γ
(
α − β

) f∗(s)ds +
tα−β−1

1 − C
∫1

0
GA(s)f∗(s)ds

≥ 1
2
tα−β−1(1 − t)

∫1

0

s(1 − s)α−β−1

Γ
(
α − β

) f∗(s)ds +
tα−β−1

1 − C
∫1

0
GA(s)f∗(s)ds

=
1
2

{
tα−β−1(1 − t)

∫1

0

s(1 − s)α−β−1

Γ
(
α − β

) f∗(s)ds +
tα−β−1

1 − C
∫1

0
GA(s)f∗(s)ds

}

+
tα−β−1

2(1 − C)
∫1

0
GA(s)f∗(s)ds

≥ 1
2

{
tα−β−1(1 − t)

∫1

0

s(1 − s)α−β−1

Γ
(
α − β

) f∗(s)ds +
Btα−β−1
1 − C

∫1

0

s(1 − s)α−β−1

Γ
(
α − β

) f∗(s)ds

}

+
tα−β−1

2(1 − C)
∫1

0
GA(s)f∗(s)ds
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=
(1 − C)γ(t)
2
(
α − β − 1

) × 1
1 − C

∫1

0

s(1 − s)α−β−1

Γ
(
α − β − 1

) f∗(s)ds +
tα−β−1

2(1 − C)
∫1

0
GA(s)f∗(s)ds

≥ (1 − C)γ(t)
2
(
α − β − 1

)
{

1
1 − C

∫1

0

s(1 − s)α−β−1

Γ
(
α − β − 1

) f∗(s)ds +
tα−β−1

1 − C
∫1

0
GA(s)f∗(s)ds

}

≥ (1 − C)γ(t)
4

{
1

1 − C
∫1

0

s(1 − s)α−β−1

Γ
(
α − β − 1

) f∗(s)ds +
tα−β−1

1 − C
∫1

0
GA(s)f∗(s)ds

}
.

(2.47)

So we have

(Tv)(t) ≥ (1 − C)γ(t)
4

‖Tv‖, t ∈ [0, 1]. (2.48)

which yields that T(P) ⊂ P .
At the end, using standard arguments, according to the Ascoli-Arzela Theorem, one

can show that T : P → P is continuous. Thus T : P → P is a completely continuous
operator.

Lemma 2.14 (see [27]). Let E be a real Banach space, P ⊂ E be a cone. Assume Ω1,Ω2 are two
bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2, and let T : P ∩ (Ω2 \ Ω1) → P be a completely
continuous operator such that either

(1) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2 or

(2) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then T has a fixed point in P
⋂
(Ω2 \Ω1).

3. Main Results

Theorem 3.1. Suppose (H0)–(H2) hold. Then the BVP (1.1) has at least one positive solutions x(t),
and x(t) satisfies

x(t) ≥ ηΓ
(
β
)
Γ
(
α − β

)

Γ(α)

[(
1 +

B
1 − C

)
tα−1 − α − β

α
tα
]
, t ∈ [0, 1]. (3.1)

Proof. Let

r =
8η

1 − C , (3.2)

and Ω1 = {v ∈ P : ‖v‖ < r}. Then, for any v ∈ ∂Ω1, s ∈ [0, 1], notice that 0 < β < 1, we have

[v(s) −w(s)]∗ ≤ v(s) ≤ ‖v‖ ≤ r,

Iβ[v(s) −w(s)]∗ =
1

Γ
(
β
)
∫ s

0
(s − t)β−1[v(t) −w(t)]∗dt ≤ r

Γ
(
β
) ≤ r.

(3.3)
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By (H1) and (H2), one has

‖Tv‖ = max
0≤t≤1

∫1

0
H(t, s)

[
f
(
s, Iβ[v(s) −w(s)]∗,−[v(s) −w(s)]∗

)
+ q+(s)

]
ds

≤
∫1

0
Φ(s)

[
f

(
s,

r

Γ
(
β
) ,−r

)
+ q+(s)

]
ds

≤
∫1

0
Φ(s)

[
f(s, r + 1,−(r + 1)) + q+(s)

]
ds

≤ 2(r + 1)μ1+μ2

∫1

0
Φ(s)

[
f(s, 1,−1) + q+(s)

]
ds

≤ r = ‖v‖.

(3.4)

Therefore,

‖Tv‖ ≤ ‖v‖, v ∈ P ∩ ∂Ω1. (3.5)

On the other hand, choose a real number M > 0 such that

aα−β(1 − b)α−β

Γ
(
α − β

) × M(1 − C)2aβ

64Γ
(
β + 1

)
(
aα−β−1(1 − b) +

B
1 − Caα−β−1

)2

≥ 1. (3.6)

From (2.38), there exists N > r such that, for any t ∈ [a, b],

f(t, u, v) ≥ M|u||v|, |u|, |v| ≥ N. (3.7)

Take

R

> max

⎧
⎪⎪⎨
⎪⎪⎩
1,

8N

(1−C)
(
aα−β−1(1−b)+ B

1 − Caα−β−1
) ,

8NΓ
(
β + 1

)

(1−C)aβ

(
aα−β−1(1−b) + B

1 − Caα−β−1
) , r

⎫
⎪⎪⎬
⎪⎪⎭
,

(3.8)
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then R > r. Let Ω2 = {v ∈ P : ‖v‖ < R}, for any v ∈ P ∩ ∂Ω2 and for any t ∈ [a, b], we have

v(t) −w(t) ≥ v(t) − ηγ(t) ≥ v(t) − 4
(1 − C)Rv(t) ≥ 1

2
v(t)

≥ (1 − C)γ(t)
8

R ≥ (1 − C)
8

(
aα−β−1(1 − b) +

B
1 − Caα−β−1

)
R ≥ N > 0,

Iβ[v(t) −w(t)] ≥ (1 − C)
8

(
aα−β−1(1 − b) +

B
1 − Caα−β−1

)
R

∫ t

0

(t − s)β−1

Γ
(
β
) ds

≥ (1 − C)aβ

8Γ
(
β + 1

)
(
aα−β−1(1 − b) +

B
1 − Caα−β−1

)
R ≥ N > 0.

(3.9)

So for any v ∈ P ∩ ∂Ω2, t ∈ [a, b], by (3.7)-(3.9), we have

‖Tv‖ ≥
∫1

0
H(t, s)

(
f
(
s, Iβ[v(s) −w(s)]∗,−[v(s) −w(s)]∗

)
+ q+(s)

)
ds

≥
∫1

0
G(t, s)f

(
s, Iβ[v(s) −w(s)]∗,−[v(s) −w(s)]∗

)
dss

≥ tα−β−1(1 − t)
Γ
(
α − β

)
∫b

a

s(1 − s)α−β−1f
(
s, Iβ[v(s) −w(s)]∗,−[v(s) −w(s)]∗

)
ds

≥ aα−β−1(1 − b)
Γ
(
α − β

)
∫b

a

s(1 − s)α−β−1M
∣∣∣Iβ[v(s) −w(s)]

∣∣∣|v(s) −w(s)|ds

≥ aα−β(1 − b)α−β

Γ
(
α − β

) × M(1 − C)2aβ

64Γ
(
β + 1

)
(
aα−β−1(1 − b) +

B
1 − Caα−β−1

)2

R2

≥ R2 ≥ R = ‖x‖.

(3.10)

Thus

‖Tv‖ ≥ ‖v‖, v ∈ P ∩ ∂Ω2. (3.11)

By Lemma 2.14, T has at least one fixed points v such that r ≤ ||v|| ≤ R.
In the end,

v(t) −w(t) ≥ (1 − C)γ(t)
4

‖v‖ − ηγ(t) ≥ (1 − C)γ(t)
4

r − ηγ(t)

≥ ηγ(t) > 0, t ∈ (0, 1).

(3.12)
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Equation (3.12) implies that v(t) > w(t), t ∈ (0, 1), and

x(t) = Iβ(v(t) −w(t)) ≥ ηIβγ(t) = η

∫ t

0
(t − s)β−1γ(s)ds

=
ηΓ
(
β
)
Γ
(
α − β

)

Γ(α)

[(
1 +

B
1 − C

)
tα−1 − α − β

α
tα
]
> 0, t ∈ (0, 1).

(3.13)

So by Lemma 2.10, the BVP (1.1) has at least one positive solution x, and x satisfies (3.13).

Example 3.2. Consider the following semipositone boundary value problem with fractional
order α = 21/8:

−D21/8x(t) =
x2(t) +

(D1/8x(t)
)3

1012 × 4
√
(1 − t)

− 1√
t
, 0 < t < 1,

D1/8x(0) = D9/8x(0) = 0, D1/8x(1) =
∫1

0
D1/8x(s)dA(s).

(3.14)

Let

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈
[
0,

1
4

)
,

1, t ∈
[
1
4
,
3
4

)
,

2, t ∈
[
3
4
, 1
]
,

(3.15)

then the BVP (3.14) becomes the 4-Point BVP with coefficients

−D21/8x(t) =
x2(t) +

(D1/8x(t)
)3

1012 × 4
√
(1 − t)

− 1√
t
, 0 < t < 1,

D1/8x(0) = D9/8x(0) = 0, D1/8x(1) = D1/8x

(
1
4

)
+D1/8x

(
3
4

)
.

(3.16)

Then the BVP (3.14) has at least one positive solution x(t), and x(t) satisfies

x(t) ≥ 62.4289
[
1.1357t5/2 − 10

21
t21/8
]
, t ∈ [0, 1]. (3.17)
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Proof. Obviously, α = 21/8, β = 1/8, and

0 ≤ C =
∫1

0
t3/2dA(t) =

(
1
4

)3/2

+
(
3
4

)3/2

≈ 0.7745 < 1,

B =
∫1

0
t3/2(1 − t)dA(t) =

3
4

(
1
4

)3/2

+
1
4

(
3
4

)3/2

≈ 0.2561.

(3.18)

On the other hand, we have

G(t, s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

G1(t, s) =
[t(1 − s)]3/2

Γ(5/2)
, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
[t(1 − s)]3/2 − (t − s)3/2

Γ(5/2)
, 0 ≤ s ≤ t ≤ 1,

GA(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G2

(
1
4
, s

)
+ 2G2

(
3
4
, s

)
, 0 ≤ s <

1
4
,

G1

(
1
4
, s

)
+ 2G2

(
3
4
, s

)
,

1
4
≤ s <

3
4
,

G1

(
1
4
, s

)
+ 2G1

(
3
4
, s

)
,

3
4
≤ s ≤ 1.

(3.19)

Thus GA(s) ≥ 0, 0 ≤ C < 1 and A(s) is increasing. So (H0) holds.
Take

f(t, u, v) =
u2 − v3

1012 × 4
√
(1 − t)

, (t, u, v) ∈ (0, 1) × [0,+∞) × (−∞, 0], q(t) = − 1√
t
, (3.20)

then

f
(
t, x(t),−Dt

1/8x(t)
)
=

x2(t) +
(D1/8x(t)

)3

1012 × 4
√
(1 − t)

, q+(t) = 0, q−(t) =
1√
t
. (3.21)

For any 0 < c ≤ 1, we also have

c3f(t, u, v) ≤ f(t, cu, v) ≤ c3/2f(t, u, v),

c2f(t, u, v) ≤ f(t, cu, v) ≤ c4f(t, u, v).
(3.22)

Then (H1) holds.
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In the end, we notice

Φ(s) =
GA(s)
1 − C +

s(1 − s)α−β−1

Γ
(
α − β − 1

) ≤ C
Γ
(
α − β − 1

)
(1 − C) +

1
Γ
(
α − β − 1

)

=
1

Γ
(
α − β − 1

)
(1 − C) ≈ 5.0041,

(3.23)

then

∫1

0
Φ(s)

[
f(s, 1,−1) + q+(s)

]
ds ≤ 5.0041

∫1

0

2

1012 × 4
√
(1 − t)

ds ≈ 1.33443 × 1011. (3.24)

Moreover,

η =
1

Γ
(
α − β − 1

)
(
1 +

C
B
)∫1

0
q−(s)ds ≈ 9.0817, r =

8η
1 − C = 322.1889,

r

2(1 + r)μ1+μ2
=

322.1889

2(1 + 322.1889)5
≈ 4.5688 × 10−11,

(3.25)

which implies that (H2) holds.
According to Theorem 3.1, the BVP (3.14) has at least one positive solution x(t), and

x(t) satisfies

x(t) ≥ 62.4289
[
1.1357t5/2 − 10

21
t21/8
]
, t ∈ [0, 1]. (3.26)
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