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We investigate the existence and uniqueness of solutions to the nonlocal boundary value problem
for nonlinear impulsive fractional differential equations of order a € (2,3]. By using some well-
known fixed point theorems, sufficient conditions for the existence of solutions are established.
Some examples are presented to illustrate the main results.

1. Introduction

Fractional differential equations arise in many engineering and scientific disciplines such
as the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, control theory, signal and image processing, biophysics, electrodynamics of
complex medium, polymer rheology, and fitting of experimental data [1-6]. For example,
one could mention the problem of anomalous diffusion [7-9], the nonlinear oscillation of
earthquake can be modeled with fractional derivative [10], and fluid-dynamic traffic model
with fractional derivatives [11] can eliminate the deficiency arising from the assumption to
continuum traffic flow and many other [12, 13] recent developments in the description of
anomalous transport by fractional dynamics. For some recent development on nonlinear frac-
tional differential equations, see [14-29] and the references therein.

In this paper, we investigate a three-point boundary value problems for nonlinear
impulsive fractional differential equations of order a € (2, 3]:

D u(t) = f(t,u(t)), te],
Au'(tk) = I (u(ty)), k=1,2,...,p,
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Au'(ty) = Li(u(ty)), k=1,2,...,p,

u(0) =u'(0) =0, pu(n) =u(l),
(1.1)

where €D“ is the Caputo fractional derivative,2 <a <3, f € C(J xR, R), Ix, I; € C(R,R),
J=[01], 0=tg<ti <--- <t <--- <ty <ty =1,] =]\ {ti,t2,...,1,},0<n <1, n#t(k =
1,2,...,p), 0< B<1/n% Av/ () = u'(ty) —u'(t,), where u/'(t;) and u'(t;) denote the right and
the left limits of u/(t) att =t (k=1,2,...,p), respectively. Au"(t;) has a similar meaning for
u'(t).

Impulsive differential equations arise in many engineering and scientific disciplines
as the important mathematical modeling of systems and processes in the fields of biology;,
physics, engineering, and so forth. Due to their significance, it is important to study the
solvability of impulsive differential equations. The theory of impulsive differential equations
of integer order has emerged as an important area of investigation. Recently, the impulsive
differential equations of fractional order have also attracted a considerable attention, and a
variety of results can be found in the papers [30—42].

The study of multipoint boundary-value problems was initiated by Bicadze and
Samarskil in [43]. Many authors since then considered nonlinear multipoint boundary-
value problems, see [44-51] and the references therein. The multipoint boundary conditions
are important in various physical problems of applied science when the controllers at the
end points of the interval (under consideration) dissipate or add energy according to the
sensors located at intermediate points. For example, the vibrations of a guy wire of uniform
cross-section and composed of N parts of different densities can be set up as a multipoint
boundary-value problem.

To our knowledge, no paper has considered nonlinear impulsive fractional differential
equations of order a € (2,3] with nonlocal boundary conditions, that is, problem (1.1). This
paper fills this gap in the literature. Our purpose here is to give the existence and uniqueness
of solutions for nonlinear impulsive fractional differential equations (1.1). Our results are
based on some well-known fixed point theorems.

2. Preliminaries

Let ]0 = [O,tl], ]1 = (tl,tz],..., ]pfl = (tp,l,tp], ]P = (tp,l].
We introduce the space:

PC%(J,R) = {u:]—>R|ueC2(]k), k=0,1,...,p, u(t),u"(t) exist, k=1,2,...,p,},
2.1)

with the norm:

l[ull = suplu(®)l,  [lullpc> = max{]lull,

u'|l, 1l"||}.
u I 1) 02

Obviously, PC%(J, R) is a Banach space.
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Definition 2.1. A function u € PC?(J, R) with its Caputo derivative of order a existing on J is
a solution of (1.1) if it satisfies (1.1).

Theorem 2.2 (see [52]). Let E be a Banach space. Assume that A : E — E is a completely con-
tinuous operator, and the set V. = {u € E | u = pAu, 0 < y < 1} is bounded. Then A has a fixed
point in E.

Theorem 2.3 (see [52]). Let E be a Banach space. Assume that Q is an open bounded subset of E
with 8 € Q, and let A : Q — E be a completely continuous operator such that

[Aul] < [ull, Vu € 0Q. (2.3)

Then, A has a fixed point in Q.

Lemma 24. Let 2 < a <3, 1#p1n%, 11 € (tm, tms1), m is a nonnegative integer, 0 < m < p. For a
given y € C[0,1], a function u is a solution of the following impulsive boundary value problem:
Duth)=y(t), teJ,
Au’(tk) = Ix(u(ty)), k= 1,2,...,p,

(24)
Au'(t) = Li(u(ty)), k=1,2,...,p,
u(0) = w'(0) =0, pu(n) =u(l),
if and only if u is a solution of the impulsive fractional integral equation:
(t—s)"'y(s)ds + Ct?, te Jo;
r( )f \
@) ) f (t—s)"y(s)ds + —— F( 2 I (ti—s)* 'y(s)ds
Z (o f (11~ 5)" 2y (s)ds
tig
(tk t _ o\a-3
ler( _2) . (ti—s)"y(s)ds
k
Z t")) f (=) y(s)ds
“0 = Z —tk)(tkt 1) f‘ (t: - 9"y (s)ds
2 F(a 2) , v
Z " sy ytsys + Z(tk - ) h(u(t)
i
Z I*( (t)) +Z(t—tk Li(u(t;))
Z t— ) (b = ) I (u(t:)
i=1
i I*(u(t))+Ct2 teJe, k=12,...,p,
\ i=1

(2.5)
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where
€= 1—1ﬂ712
x {%ﬁi (n-5)" 1y(5)ds+ZF( ) ' (t — )"y (s)ds
+mZ_lﬁ((tm__tl ! (ti—s)“‘zy(s)ds+m 1[;(;( _tz) f (ti — 5)y(s)ds
Zﬂ r(gx t;")) (ti = )"y (s)ds + Zﬂ ( r:z)(tz) : (t - s)*y(s)ds

ﬁ(q tm) a-3 P+1 a-1
Z 2F( (ti -5)""y(s)ds - m L . (ti—s)" y(s)ds

a-2 (t - t) 3
F(zx 1) tl(t ~ )y (e)ds - er( ) (f'—S) y(s)ds
(1-tp) . )ty — 1) (" N
Zr(a Pl) (t —-s) zy(s ds — Zp—z) N (t - s) 3y(s)ds
21—ty -

I*( ()

- ti—s)"y(s)d b — t) 1 ((t;
;zn Y < ) y(S)S+Zﬂ( ) i(u(t) + Z

i=1

- 3P0 ) 0) + S~ ) b )T () ZM@*(M))
i=1 i=1 i=1

= Pty — 1) L
- Z(tp — ti) L (u(t;)) - Z > IF (u(t)) - Z(l — tp) Li(u(t;))
) in1 i=1
~ (1- )
= D (1 =tp) (b = 1) I (ualty ))—Z INC (t))}
in1

(2.6)

Proof. Let u is a solution of (2.4), it holds
a 2 1 ' a-1 2
u(t) =I"y(t) —c1 — cot —c3t” = m (t=5)""y(s)ds—c1 —cat —c3t”, te€ o, (2.7)
0
for some c1, ¢y, c3 € R. Then, we have

! _ 1 ' a—
u'(t) = m fo (t-1s) 2y(s)ds —cy—2c3t, te€ ]y, .

u”(t)z;’r (t=5)"Py(s)ds —2cs3, teE ]
T(a-2) ), 4 ¥ 0

In view of u(0) = #/(0) = 0, it follows ¢; = ¢; = 0.
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Ift € J;, then

t

u(t) = 1 (t—s)""y(s)ds —dy — dy(t —t1) — da(t — 1),

['(a) t
! 1 ! a-2
u(t) = m , (t—5)""y(s)ds —dp, —2ds(t - t1), (2.9)
n _ 1 ! a-3
u (t) = m ftl (t - S) y(S)dS - 2d3,
for some dy,d,,d3 € R.
Thus, we have
1= 1 . a— !
u'(t]) = CE) . (t1-s) 2y(s)ds —2c3ty, u' (t]) = —d,

(2.10)
1 b — s
u"(t{) = m IO (tl - S)a 3]/(S)d5 - 2C3, u (tl) = —2d3.

In view of u(t]) = u(t]), Au'(t;) = u'(t]) —u/'(t]) = L (u(t)) and Au"(t;) = u"(t]) -
u"(t]) = I (u(t1)), we have

1 i a-1 2
—d1—m . (t1 =)™ y(s)ds - csty,
_d _;r(t ~8)*y(s)ds — 2csty + I (u(t1)) (2.11)
2= faT ), (=9 Y(e)ds ~2est + hu(t), '
2y = [ - sy (s - 26 + I (uh)
*TT(@a-2) ), ! Y o
Consequently,

t

t
u(t) = 1 (t- s)“_ly(s)ds + % J‘o (t1 - s)“"ly(s)ds

I'(a) Jy,
toh (7 a-2 (t-t)* (" a3 2.12
+ I_‘(“ — 1) o (tl - 5) y(S)dS + m . (tl - S) y(S)dS ( )

F =D (u(t) + 3 (- 0T u(t) ~ oo, EE o
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Similarly, we can get

_ 1 EPAY: 2 | - L o\a-l
ut= i [ 49 (s)ds+r( )Zf (ti-9)" y(5)ds

(b - t) 2 = (- t)? (" 3
Z (ti—s> y(S)dS+er(a_2) (=9 y(s)ds
1 i=1 i-1

+ Z% (t; — 5)* 2y(s)ds + ZM L (ti - 5)"2y(s)ds

£ t tk) 3 =
Z C(hi-s) y(s)ds + (ke — t) Li(u(t:))

tiq i=1

= (b — f)

I (u (t))+Z(t tk)I(u(t))+Z(t ti) (b — ) I (u(t:))

i=1

k
Z(t W ) - oo, teJ k=12,...p.

By (2.13), it follows

1 p+1 i)

1 = (tp - f 2
u(l) = F(a) J‘t i (ti —s)* y(s)ds+gllr ) (t -5)""y(s)ds

o (ty— 1) a3 L (1-t,) (" a-2
+Zlﬁ o (fi—S) y(S)d5+§r(a_1) o (ti—s)" "y(s)ds

Pl _tP)(t t) a3 (_P a-3
+§ o 2) ft y(s)ds+zzr( Z)I (ti —5)*y(s)ds

p-1 ) P
+ Z(t,, — ) L;(u(t;)) + Z IF(u(t) + D (1 —tp) Liu(t)

i= i=1

p-1 2

I*(u(t ) —c3,

+2 (1-ty) (tp — ti) IF (u(t;)) Z

=1

u(n) = 7 [ (=9 v+ s §1jf (1~ 9"y (s)ds

Z - (t =~ 5)"Py(s)ds + Z _t ) (t ~5)3y(s)ds
7 (a 1) < 2T (a - 2)

f t) (Em t i
Zr(a 1) (t —-5)" Zy(s)ds+ Z% ) (t; - 5)" By(s)ds

(2.13)
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(’1 tm)’ a3 = e
Doty f (=) (o) + b~ att) + 3, 1 )
m m-1
+ D0 (1 = tw) Liu(t:)) + D (11 = t) (b — 1) I (u(ti)) + Z (’7 t)’ = I (u(t)) - e
i=1 i=1

(2.14)

In view of the condition pu(#n) = u(1), we have

1 1 o i a
C3=—1_ﬂn2{%£m(11—s) ! (s)ds+Zr() (ti—s)* ! y(s)ds

ml ti m-1 2 At
ﬂ(tm - ti) ! a2 ﬁ(tm _ ti) i s
+ 1:21 r(a — 1) . (tz - S) ]/(S)ds +§m o (tl — S) y(s)ds

mﬂ(’l_tm) f a—
+Zl T ), (ti — 5)" *y(s)ds

m_lﬁ(rl_tm)(tm _ti) b a—
* S f (t — )"y (s)ds

i=1
i (Tl tm) (t _ S)a—?) (S)ds _ p+1 J (t _ S)Lx 1 (S)ds
2o (a—-2) Y r( )£
~ 1 _t) a-2 d = (tp i e a-3 d
Zl ] (fi—S) y(s) S_gﬁ (ti—s)" "y (s)ds
Z _ tp)) (ti — ) 2y (s)ds — %% (ti — ) y(s)ds
1 i= tig

21:2(1}(; tp)z) (t; — S)"‘_3y(5)d3 + gﬂ(tm = ti)Ii(u(ti))

m-1
i E (ut)
1

i=

ﬁ(n

m m-1
+ 3 B = tw) Li(u(t:) + D B(1 = tm) (tm — ) I} (u(t;)) +Z I( (t:))
i=1 i=1

p-1 p-1 (tp
= 3 (ty — 1) Liu(ts)) - I* (t))—Z(l—t )i (u(t;))
i=1 i=1
: La-6)
- D=t (tp — ) I (u(t) - D) > (u(t;)) +.
i=1 i=1

(2.15)
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Substituting the value of ¢; (i = 1,2,3) in (2.7) and (2.13) and letting C = —c3, we can

get (2.5). Conversely, assume that u is a solution of the impulsive fractional integral equation
(2.5), then by a direct computation, it follows that the solution given by (2.5) satisfies (2.4).

This completes the proof. O

3. Main Results

Let2 < a <3, 1#pn% 1 € (tm, tms1), m is a nonnegative integer, and 0 < m < p. Define the
operator A : C(J) — C(J) as follows:

Au(t) =

L ft (t—s)""f(s u(s)ds + — f (ti— )" f(s,u(s))ds
['(a) e ’ [ ' ’

Mote-t) (4 . te — b
+§§(’;_1)) N (t - s) 2f(s,u(s))ds+;2(Fk( )’
Z
=1

(- 5 f(s,u(s))ds

tt—l

B N te) (b =t
T(a- k1)) t,l(t =) f (s, u(5>>ds+2¢2)) b

(ti =) f (s, u(s))ds

= (- 1),
5L (u(t))

— k-1 k
Zz(rt( & <tz~—s)“‘3f<s,u<s>>ds+§<tk—n)ri(u(ti))+§

£

- pn?

+Z(f—tk)1(u(t))+2(t—tk) ti —ti) I*(u(t))+z(t I*( (t:) + 7
i=1 i=1
ti

ﬂ L a-1 a
: {WLM (1=9)""f(s,u(s) )d”Zr( o), =9 'f(s,u(s))ds

ti1

m-1 tm_ti t; "
X R O

mflp(tm _ ti)Z ti o
' Zm [, 9 usas

ti
Zﬂ(q 1) (ti —5)" 2 f(s,u(s))ds

tiq

m-1 —ty tm —t t
+ B(n rza)_(z) ti) | (t = )™ F (s, u(s))ds
i=1 i-1
ﬂ(?’[—tm) . p+1 a
Z T(a=2) tll(t' )£ (s, u(s))ds—r( 72 Ll(t ~8)* 1 f(s,u(s))ds

Zf(a ;) (19" () s Zz(rp(_ 1-2) (- 9)"f (s u(s)ds

tiq tiq
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1-t¢
Zr((a ”1)) (t; — 8) 2 f (s, u(s))ds
Z(l—tp)(t —ti) (*

(1 - tp) a m-1
er(a 5], =9 (s u(e)ds + 3t = ()

i=1

m— 1ﬂ(tm _ ti)2 i} m m-1 .
+ 2 () + P00 ) T () + 3P ( = tn) (b = )T (u(t)
i=1 i=1

p-1 Pl —ti z
+ Zﬁ(ﬂ F(u(ti)) - Zl(tp — i) Li(u(t)) - Z Cl) I (u(t))

i=1

p p-1
S =)L) - S (- 1) (1 - t)I(u(t»—z( >1<<t>>}
i=1

i=1

(3.1)
then (1.1) has a solution if and only if the operator A has a fixed point.
Lemma 3.1. The operator A : C(J) — C(J) is completely continuous.

Proof. Obviously, A is continuous in view of continuity of f, I, and I}.
Let Q c C(J) be bounded. Then, there exist positive constants L; > 0 (i = 1,2,3) such
that |f(t,u)| < L1, |Ix(u)| < Ly and |I}(u)| < Ls, for all u € Q. Thus, for all u € Q, we have

|(Au)(B)]

t

<L f (£ )™ | (s, u(s))|ds + Lgk;f (k= 5| £ (5,u(s))|ds
= I'(a) ’ I'(a) < ! ’

S (et Jo- e —t; .
+l:11£(’; 1)) .~ s) 2|f(su(s))|ds+zz(r’<( )>L1(ti_s) 51 (s (e s
: (t tk) a-2 (t tk)(tk ti a3
Pl 1>f = 'f(s'“‘s)”d“z—z)ft (ti= )" | f(s,u(s)) |ds
& o(t-t . b )
+§2(1"(a k)z)f (t: =) 3|fsu(s))IdS+Z(tk—t L (u(t:)) |+Z(’c D | (u(ty)|
— 2
- S B + 30 e~ 017w | + S 1+
2 1-p
=1 i=1 i=1 Ui

{T(a)f (n-9s)"" 1|f(s u(s))|ds+zr( ; i (ti—s)'x_1|f(5/u(5))|ds

m-1 t — b t; .
Sy, s uelas
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m— t;

Z =9 fsue)lds

=1

Z (’Z tm) i—S)a72|f(S,u(s))|ds

=1

m-1 — tm (tm - tl) i a—
by F(n 1"(0()— 2 Lil (ti = 9)"°| f(s,u(s))|ds

i=1

2 p+l At
Zﬂ o t'”) (ti—S)a_3|f(S/”(5))|dS+T() f (ti = 5)"| f(s,u(s))|ds

T (a—
fp —t; -
Zﬁa 1)> SR ”(S)”d“zz(rp( )> (t - (5, u(s)) |5
S _tp) a-2
D] e ueas
W (ti = )| f(5,u(s))|ds

Zz(rl(_tp) _ ti_S)a_3|f(5/u(5))|d5+§ﬁ(tm—ti)|Ii(u(ti))|

m—1
I ypauie 1 e + Zﬂ(n )11 u<t>>|+2ﬂ<n ) (e — 1)L (1)

i=1
m - P- P, -t
"‘Zﬁ(n A |Ii*(u(ti))|+Z(tp—ti)|1i(u(ti))|+z(p ) A | I} (u(t:))]
i=1 i=1 i=1
P p-1 P(1- p)2
+ —tp)|Li(ult;))| + — Iy )(tp — L) |4; (Uull; + ; (Ut
2= tp)Tut)) + (1= tp) (b, = ) | I} (ult) | + 3. |1 ( <t>>|}
i1 i=1 i=1
< L t (t 5)*” 1als+— J (ti —s)™ 1ds+pz ! (t —5)2ds
= I'(a) Im<),, 1)
p-1 P L
a-3 1 a 2
+1§;2r(a ) -s) ds+zr( 1)f ds
-1

s p L ti s p-1 p-14
5)*d | (i—s) s+ YL+ S oL
T T (a- 2)[ SJ’;zr(a—z)J‘t“(l 2 S+§ 2+§2 :
P

p p-1 1
+2;‘ Z;‘ ZE ﬂrz

Lp a1 f a-1
x{m (1-s) ds+zr() (ti—s)*'ds
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S f ) p-l ﬂ ti s
ti—s)" “ds + t— 5)%3ds
er(“ ), 69 Tar ), -9
S Llﬂ ! a-2 = 1ﬂ f a-3
" Em J;H (ti B S) ds + Zr( ) . (ti - S) ds

+§p] 1ﬁ f (ti - )™ 3ds+r§ifi (ti - 5)*ds
l(x=2) )y, () )y, l

i= ti

+ L1 (t —s)* *ds + pz_l—Ll fti (t; — )" ds
ST (a—-1) “o(a-2) ), "
4 t; p-1 t;
L1 a-2 ' a-3
t; — t—
+Z D) t,l( s) ds+z 2) tH( s)*ds

Il
—_

p L ti
Doy, “"’ds+ZﬂLz+Z L3+ZﬂLz+ZﬁLs

p p p-1 P—ll p
+.21§L3+-1L2+Z1§ 21: +ZL3+ZZL3
1= 1= 1= 1=

Ly pLi  (p-1DLi (p-1)Li  pLi  (p-1)L pL1
“Ta+D) Ta+) " T@ " 2f@-1) T@  Ta-1) 2r@-1)

f(p-DL+ P e plo+ (p- 1)L3+pL3+1 o
Pl PrLa ﬂ(P 1)Ly ﬂ(P 1)Ly Pl Pp-DLi  fpLi
INa+1) T(a+ 1) I'(a) ZF(a 1) F(a) I'(a-1) 2I'(ax—1)
(p+DL1 (p-DLi (p-DLi  pL
I'(a+1) I'(a) 2(a-1) T(a)
(pP-DL  pL plp-1)
Ta-1) * -1 PP D+ =5l

1
+ BpLa + p(p - 1)Ls + %pLg+ (p-1)Lo+ P "Ly +ply+ (p-1)Ls + ng}

:2+ﬁ(1—'12){(P+1)L1+ 2p-DLi  (4p- 3)L1 + (p- 1)L2+<2P_§>L3},

1 - py? T(ax+1) I'(a) 2T (a —
(3.2)
which implies
2 1-1?
jau) < ZECT)
(3.3)

(p+1)L1 (2p-1)L1  (4p-3)L 3 ~
{ T(a+1) * r(a) + 2F(a—1) + (ZP—l)L2+ <2p— §>L3 :=L.
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On the other hand, for any t € J, 0 < k < p, we have

! ' a-2 K 1 ti a2
(a0 (] < f“‘ﬂ s atelds + Sl [ =97 ts ucop s

1
[(a-1) J;,

Z (tk t) (ti 3 S)“73|f(s,u(s))|ds

+Z(t tk)f (b )| £ (5, u(s))|ds

* Z'If<”<fi>>| * ZW )| I} (u(t)| + Z(t — |1} (u(t)] + 7 —2;;12
i=1 i=1 o1

X i ! a-1 a1
{r(a) J:m (71 S) |f(S u S))|d5+zl—.( ) f (t S) |f(S u(s))|ds

m-1 tm_ti t; .
+Zﬂr((a—1)) o (ti =) | f(s,u(s))|ds

Z i (ti -8)"|f(s,u(s))|ds
= 2(a-2) Jy,

ti
Zﬂ(n ( )" | f(s,u(s))|ds

m-1 —tm) (b — ti £ ~
e r(a)—(z : =) f s ()]s
i=1 i1

&P tn)” s
zll ~2) L (t: = 5)"| f(s,u(s))|ds
p+1
L (ti— )| f(s,u(s))|ds

t) ! a=2
y), Gl sue)]ds

t, =t
Z( ) <fi—s>"‘*3|f(s,u(s>>|ds

Z _”) <fi—s>“‘2|f<s,u<s>>|ds

1-t t ; ti .
Z% =9 usp]ds
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(1—

2F( pz) I (ti - s)a—3|f(s,u(s)) |ds + E'B(t’" — t)|L;(u(t))]

m— 1ﬁ(t .
D II (u(ts))| + Zﬁ(n — ) [T (u(t)))]

i=1

+ Zﬁ(n—tm)(t — )| I} (u(t:)) |

tm P, - 1)?
26(" , | I (u(t)| Z( —ti>|1i<u<ti>>|+2(” ) | I (u(t:)) |
i=1

+ Z(l — tp) | Li(u(t))] + 2(1 —t,) (ty — £) | I (u(t:)) |
i=1 i=1

P (1-t,)?
3! 2") |Il-*<u<ti>)|}

i=1

<D (t—s)“ 2ds+i
“I'(a-1)

ti
(t — s)*2ds
1) i

o L f a-3 Ly f a-3 4 =
Z—r( — 2) o (ti - S) ds + ;—r(lx — 2) o (ti - S) ds + §L2 + §L3
+ ZL3 +
t;

o §2 o

tl‘l

ti p-1 1ﬁ t;

L.p - .
-1 ), (t—s) 2ds+zzr( 5 (ti—s) 3ds

ti

p-1
"2
P Llﬂ ti s .
+§m.l‘t” (t = 5)° ds+z (fi—S) ds
DX e
i=1
p-1
* 2
=1

Llﬂ t; p+1

_ )3 1", e
T(a—2) tll(t s) ds+Zr(a)Ll(t, s)*ds

a-2 a-3
e 1).[,1 (t;—s) ds+22r( 2)JH -5)"’ds

L ti ti

(ti —-5)ds
i=1 ( 1)
P L ti s p-1 p-1 p p p-1
+Z—2r(a_2) J;_ (ti —S) dS+ZﬁL2+ZEL3+ZﬂL2+ZﬂL3
i=1 i-1 i=1 i=1 i=1 i=1
p-1 p-1 —1

o gan)

11
—_
~

11
—_
~.

11
—_

11
—_

11
—_
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Ly pLh (p-DLi = pL
T T Ta-1 'Ta- 1= ﬁ T-pp

[ B Bl Bp-DLi pp-DLi L plp-DL
Ia+1) F(oc+1) I'(a) ZF(cx 1) I'(a) IN'a-1)

)pLz + (P 1)L3 +pL3 + —

1)L -1)L -1)L -1)L
prL  (p+DLi (p-DLi (p-DLi pL  (p-DLi

T (a=-1) " T(a+1) T@ @ 2f(a-1) T@) @ Ta-1)
~1
% ﬂ(p—l)L2+p(p2 )L3+ﬁpL2+ﬁ(p—1)L3+'B—pL3

+ (P— 1)L2 + pP- 1L3 +pLy + (p— 1)L3 + §L3}
_(p+1Li  (2p-1)L 2(p+1)
- T(a) * T(a-1) pL2+(2p_1)L3+1——ﬂ712
(p+1)L1 (zp_l)Ll (4p—3)L1 3 L
X{ Ta+l) | T(@) & 2M@-1) +(2p-1)Ly + <2p—§>L3} =L
(3.4)
Hence, let t1,t; € J, t1 <tz, 0 <k <p, we have
tr _
[(Au)(t) — (Au)(t)| < | |(Aw)'(s)|ds < L(t - t). (3.5)
f

This implies that A is equicontinuous on all Ji, k =0,1,2,...,p. The Arzela-Ascoli Theorem
implies that A : C(J) — C(J) is completely continuous. O

Theorem 3.2. Assume that the nonlinearity f is bounded and that the impulse functions Iy, I}, k =
1,2,...,pare bounded. Then, the nonlinear impulsive fractional three-point boundary value problems
(1.1) have at least one solution.

Proof. Firstly, by Lemma 3.1, we know that the operator A : C(J) — C(J) is completely
continuous.
Let L; (i =1,2,3) be nonnegative constants such that

Ift,w)| <L, Lw)|<Ly, | w)|<Ls, te] ueR (3.6)

For 0 < u <1, consider the equation:

u = pAu. (3.7)
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If u is a solution of (3.7), then for every t € ] we have that
[u(t)| = plAu(t)|

1 ' _ o\l el
<t ), €9 U lds + )Z [ -9 ireuelas

k-1

t ) f a-2
1 (ti— )| f(s,u(s))|ds
tiq

t:

i (ti - S)“_3|f(s,u(s))|ds

1

(t —tr)(tk —

: tk) a-2

Z <ti—s> |f(s,u(s))|ds

S f“ (= s e s
= T(a-2) by ¢

ZZ(IE( tfz) (t —8)* 3|f(s u(s))|ds

k-1
(b - t>|1<u(t)>|+z( S

i=1

2
II:‘<u<ti>)|

b ST - L) + 3 - k)t — 8|1 )]
i=1 i=1

St 2
D Ol e

X L ! _s)*! mi ’ a1
{ F(CX) ftm (71 S) |f(S/ H(S)) |dS + ;r(“) J‘til (t1 S) |f(S,M(S)) |ds

m-1 tm_ti t; .
+§[i"((a—1)) , (=9 flsu(s))]ds

m-1 tm_ti 2 At o
+Z[;(l"(a—2)) | (=9 fls,u(s))]ds

.
Zﬁr(fi 1) (t-—s)“‘zlf(s,u@))lds

m—1 _tm tm _ti ti a—
. Zﬂ(’l r(a)—(Z) )ftil (ti =) | f (s, u(s))|ds

i=1

Zﬂ(ﬂ fm> " (- 9 f (s ) s
i=1

ti1
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1 p+1
" Ta) 2

p-1

L (t: — )| f(s,u(s))|ds

t) f a=2
7, =9I ue)las

t,—t;
Z ( ) (ti ~5)"| f(s,u(s))|ds

1

Z (1- tp) (ti —s)“_2|f(s,u(s))|ds
=T
p 1

E;j—%gi%y_l h(i—ﬂwﬂf@ﬂdﬂﬂds

m-1
Z b j (k= )| f(s,u(s)|ds + 3 Bt — b3) Ts(aa(t:)
1 2) i=1

5 (t’"z_ 1 e+ 30 e
i=1 =1
m-1

+ > B = tw) (b — ) | I (u(t)) |
i=1

m)

p-1
|7 (u(t:)) | + Z(tp — ;)| Li(u(t))]
io1

Z
=1
1

Z |I*( ()|
=1

p p-1
(1= tp) L (ut))| + D (1= t,) (b — ti) | I} (u(ts)) |
i=1 i=1

+
Po(1-t,), |

+ ) 7 | I (u(t;)) |
i=1

24p(L-7) [(p+ 1)L (2p-1)Li  (4p- @Ll 3
= T {F<vc+1)+ @ a1 P 1)Lz+<2p )Ls,

(3.8)

which implies for any ¢t € J, it holds that

2+p(1-n*) [(p+1)Li  (2p-1)L:1  (4p- @Ll 3
llull < 1= prp { T+ D) + @) + e +(2p-1)L, + <2p— —)L }

(3.9)
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This shows that all the solutions of (3.7) are bounded independently of 0 < p < 1.
Using Schaeffer’s theorem (see Theorem 2.2), we get that A has at least one fixed point, which

implies that (1.1) has at least one solution.

O

Now, we present some existence results when the nonlinearity and the impulse func-

tions have sublinear growth.

Theorem 3.3. Assume that

(Hy) there exist nonnegative constants a and b such that

|f(tu)| <a+bluff, 0<p<l, te], uek;

(Ha) there exist nonnegative constants ax, by, ay, by such that

)| < ai+beul”, || < ap +bilulh, 0<pe, pi<1, ueR, k=1,2,...

Then, problem (1.1) has at least one solution.

Proof. If u € C(J), then we can write that

|f(s,u(s))| <a+blus)F, se],

Teu(t))] < a + bilu(t)l, || < af + bilult, k=1,2,...,p.

(3.10)

,p-
(3.11)

(3.12)

So, if u is a solution of (3.7), then, by the similar process used to obtain (3.2), for every t € |

we have that

lu(t)| < =—— )£ (s, u(s))|ds+ . f (ti =) | f(s,u(s))|ds

r() T(a) 4

k_lﬂ(tk ~ t;)

ti
T D <ti—s>“‘2|f(s,u<s>>|ds

~ 2I'(a - 2)

tiq

Z’L(tz)) -9 s s

tia

- " k-1
Zﬂ(t tk)) f (1 =)™ f(s,u(s))|ds + ZpaCt — DI aa(t))
i=1

Z#(tk II*( (t:))] + Zﬂ(t—tk)lf(u(t))l+Zﬂ(t—tk)(tk t) |17 (u(t)|]

+Z#(tk ok f (t:—9)" | f (s, u<s>>|ds+Z '{; (ti =)™ | f (5, u(s))|ds
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2

‘ut
1 - pn?

k 2
+Z”(t ztk) |7 (u(t)) | +
i=1
{F(zx)_[ (-9)""|f(s,u(s))|ds

t; i’
Zr(a) (t: = 5)" | f(s,u(s))|ds + Z 1)) (t: — )| f (s, u(s))|ds

< ﬂ(t a-3
* 2 S 2) <ti—s) |£(s,u(s))|ds
Zﬁ(ﬂ ti—S)“_Zlf(Sru(S))lds

+’"Z‘1ﬂ(rl—tm)(tm

T'(a-2)

£, t;
k) J‘, (t: = )| f (s, u(s))|ds

i=1

p+1
z’;}”( )’ j (= 5)" ] s, | + 1 f (t— )£ (5, u(s))|ds

t;

(t,- - 8)2| f(s,u(s))|ds

) f (t: — )| f (s, u(s))|ds

p-1
S

1

1
ti

(t,~ - 8)"2| f(s,u(s))|ds

Z
1
P -t)(t, —
Zl DRI N PN

I(a-2) .

1 t m-1
Z %) f ti— ) | f(s,u(s))|ds + > B(tm — to) | Li(u(t))]|
1 i=1

+ %:ﬂ(tmz— t;)? | (u(t))| + ;[5(71 — t) [T (u(t:))]

m—1
+ D B = tw) (tm — 1) | I} (u(t))|
i=1

p-1 (

m —tm 2 p-1 t, —t; 2
o SIS0t - ) e+ 32 1 e
i=1 i=1

i=1

P p-1 P (1 _tp)2
+ 2= )Lt + 25(1 = tp) (b = 1) |1 (u(t:))] + 35—
i=1 i=1

i=1

I (u(ti)) | }
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p-1 P p-1 P
< Mja+ M, <Zak + Zak> + == <Zaz + 3211;) + Mb||ullf + MzzkauH”"
1

k=1 k=1 k=1 k=1
p-1 M, & p-1 .
+ Mzzbkﬂu”pk + szz big||ul|?x,
k=1 k=1 -1

(3.13)

where

_2+ﬁ(1_712) (p+1) (2p-1) (4p-3) _2_,_[5(1_712)
M = 1 - py? <F(a+ 1) - I'(a) - 2T (a — 1)>’ M, = W (3.14)

In consequence,

p-1 p
lull < M + Mybljull” + MszklluII”k + MszkIIuII”k ZZZbZII
k=1 k=1

llull,

(3.15)

where M = Ma + MZ(ZZ:l ag + ZZ a) + (M2/2)(Zk L+ 32 ak)

Now, taking into account that O <pprpr <1, k=12,...,p, we can conclude that
there exists a constant C > 0 such that ||u|| < C for any solution of (3.7), 0 < u < 1. Therefore,
by Schaeffer’s theorem (Theorem 2.2), we obtain the existence of a fixed point for A, which
implies the problem (1.1) has at least one solution. O

Theorem 3.4. Assume that

(H3) there exist nonnegative constants a and b such that

|f(tb,u)|<a+blul, te], uek; (3.16)

(Ha) there exist nonnegative constants ax, by, ay, by such that

Ik (u)| < ax + bi|ul, |iw)| <ap+biu, ueR, k=1,2,...,p. (3.17)
If
14 1 p-1 3
Lpx “p* 3.18
M1b+M2<k§<bk + zbk> +k=1<bk+ zbk>> <1, (3.18)

where

Ml=2+ﬂ(1—n2)<(iﬂ+1) L -1 (4P—3)>, A 2T

1-pp2 \T(a+1) T(a) 20(a-1) N oy o (3.19)

Then problem (1.1) has at least one solution.
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Proof. The proof is similar to that of Theorem 3.3, so we omit it. O

Theorem 3.5. Let lim, o f(t,u)/u = 0, lim, o Ix(u)/u = 0, and lim, o I} (u)/u = 0, then
problem (1.1) has at least one solution.

Proof. Now, in view of lim, o f(t,u)/u =0, lim, o Ix(u)/u = 0, and lim, o I;(u)/u = 0,
there exists a constant r > 0 such that |f (¢, u)| < 61lul, |Ix(u)| < 62|ul, and |I;(u)| < 63|ul for
0 < |u| < r, where 6; > 0 (i = 1,2, 3) satisfy

2+p0-77) [ (p+1)61 (2p-1)61 (4p-3)6 3
1 - pn? { T(a+1) + () + T(a=1) +(2p—1)5z+<2p—§>63} <1.

(3.20)

Let Q = {u € C(J) | |lul| < r}. Take u € C(J) such that |[u|| = r, that is, u € 0Q. By
Lemma 3.1, we know that A is completely continuous, and

2+p(1-1)
|(Au)(t)] < W

D61 (2p-1)61 (4p-3)6 3
{ (1?(; +)1)1 ot pr(a)) 1* (Zl?(cx —)1>1 =06+ (- 5)63} il

(3.21)

Thus, in view of (3.21), we obtain |[Au|| < ||lul|, u € 0Q. Therefore, by Theorem 2.3,
the operator A has at least one fixed point, which implies that (1.1) has at least one solution
ueQ. O

For the forthcoming analysis, we need the following assumption:

(Hs) there exist positive constants K; (i = 1,2,3) such that

|f(tu) - f(t,0)| < Kilu-0, i (1) — I (v)| < Kalu - v, |Ii(w) - I (v)| < Kslu -],
(3.22)

forte J, uuveRand k=1,2,...,p.
Define the constants:

2+p(1-n) [(p+1)K:i  (2p-1)Ki  (4p-3)Ky 3
A 1-pr? {T(a+1)+ T () +2r(a_1)+(2P—1)Kz+<2p—§>1<3}.

(3.23)

Theorem 3.6. If condition (Hs) holds. Then problem (1.1) has a unique solution provided A < 1,
where A is given by (3.23).
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Proof. Let u,v € C(J), by a simple computation, we can get
|(Au)(t) - (Av)(D)]
<1 ts“”ﬂsﬂ@)f@v@ﬂ%
" I(a)

a-1 _
T )Zf -9 f(5,u(s)) - (5, 0(5))| s

(e — ti)°
I'(a-2)

k-1
Z b - ” (ti—s>“*2|f<s,u<s)>—f(s,v<s>>|ds
Z
1

(t' = 8)" | f(s,u(s)) = f(s,0(s))|ds

Z i t") (t,- =9)71f(s,u(s) = f(s,0())|ds

k-1
Sy t'ﬁ(t’;) =5 o) = fs o) s

Z atk)Z) (t: = )| f (s, u(s)) = f(5,0(5))|ds

i=

k-1

(e — t) | Li(u(t)) - Li(o(t))] + Z

i=1

3 (t - f)

|17 (u(ts) = I} (v(t:)|

+Z(t b [T (ua(t:)) — 1(v<t))|+Z(t b (b — £) | I (u(t) = I (o(8))|

i=1

* %%'U(”(tz)) I (v(t))| +
X i 1 AY. et _
{r(a) ftm (71 S) |f(s,u(s)) f(S/v(S))ldS

m t
+ ;% Jtu (ti =) | f(s,u(s)) - f(s,0v(s))|ds

m-1 tm _ ti t; N
+ ;ﬁl"((a - 1)) . (ti—s) 2|f(s,u(S)) - f(s,v(s))|ds

m-1 _ )2 pti
S st - el

Zﬂ(ﬂ tm)

(ti = 8)"| f(s,u(s)) = f(s,0(s))|ds
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m-1 _ 4 f
" al ]‘::)_(tzrr)l ti) t (ti - S)a_3|f(51u(5)) - f(s,v(s))|ds
=1 i1

Zﬂ(ﬂ tm) (ti - 5)”"3|f(s,u(s)) - f(s,v(s))|ds
=1

tio1
1 p+1
" T(a) )4

p-1 —t ti

) , (ti = 5)" | f(s,u(s)) - f(s,0(s))|ds

L (ti =) | f(s,u(s)) - f(s,v(s))|ds

Zz(li(_t) N (ti =) | f(s,u(s)) - f(s,v(s))|ds

t:

_’ (ti - )™ 2| f(s,u(s)) — f(s,0(s))|ds

1

1
Z(lrtfi—(tz)t)ft (t =) | f(s,u(s)) = f(s5,0(s)) |ds

Po(1-t,)* (i
+ ;2(1“(“ f)z) o (ti =) | f(s,u(s)) - f(s,0(s))|ds

m-1

m-1
+ 3 Bltw — )L (uts)) — I <v<t)>|+Z |I< (1)) - I} (v(t:))|
i=1

i=1

m m-1
+ 281 = ) [Li(u(ts)) = Lo (t))| + D B0 = t) (b — 8) [T} (u(t)) = I} (0(1)) ]
i=1 i=1

Zﬁ(’l tn)? |7 (u(ts)) - I (0 (1)) + Z(t — )| Li(u(t;)) — Li(o(t:))|

i=1

p_l(tp_ti)z * * 4
+ D | T ) = I ()| + X (1= b)) Tu(t) — Ti(o(t:)|

i=1 i=1

+Z(l_tp)(tp_ti)|1i(u(ti))_Ii(v(ti))|+Z 5 | I (u(t:) - I (v(t))|
i=1 i=1
2+p(1-n*) [(p+ 1K1 (2p-1)K:i  (4p-3)Ky 3
S A gy {F(a+1) @ T arae1n T I)K”(z*’ )KB}
x |lu-o
< Allu-ol.

(3.24)
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Thus, ||Au - Av|| < Allu -]

As A <1, therefore, A is a contraction. Thus, the conclusion of the theorem follows by
the contraction mapping principle. O

4. Examples

Example 4.1. Consider the following nonlinear impulsive fractional differential equations:

a tcos®u(t) 1
p _ecos u( 1 1
u(t) —1+u2(t)’ O<t< ,t;éz,
1\ 5+3ut(1/2) s , 1 (4.1)
Ay (=)= 749 A (2 = Z
“(3) Trw/2) (3)=3snu(3)

u(0) =u'(0) =0, pu(n)=u(l),

where2<a <3, 0<n<1, 1#1/2, 0<pf<1/n?* andp=1.
Obviously, for L = e, L, =5, and L3 = 3, it is easy to verify condition of Theorem 3.2
holds. Hence, by Theorem 3.2, we can get that the above equation (4.1) has at least one solu-

tion.

Example 4.2. Consider the following fractional impulsive the three-point boundary value pro-
blem:

Stcos® [Bu(t) + €] 2sin(2t 1
CDu(t) = < cos’[Bu(t) + &™) | 2sin( S wor, 0<t<l, t#y,

L+t () NeFS7a0)
1
«(3)

! 1 _ 2 2 1 1
Au <4>—3+2cos [ln<1+8u <4>> +3cosu<4>
2 ) P2
Au”<1> _ 1 . 5+2u=(1/4) + 301/ u(%) )

u(0) =u'(0) =0, Pu(n) =u(l),

pl

7

(4.2)

4) 27 21 u2(1/4)

where2 <a <3, 0<n<1, n#1/4, O<ﬁ<1/112,andp=1.

Obviously a = e, b=2a, =5, b = aj = bj = 3. Itis easy to verify that for 0 <
p, Pr, Px < 1, the conditions of Theorem 3.3 hold. Therefore, by Theorem 3.3, the impulsive
the three-point fractional boundary value problem (4.2) has at least one solution.
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Example 4.3. Consider the following nonlinear impulsive fractional differential equations:

CD“u(t) = t2u?(t) + u(t) arctan u(t), 0<t<1, t# %,

(1N _ w1 (1Y 3w(1/3) (4.3)
Au <3) e <3> A <3> 1+24°(1/3)
u(0) =w(0) =0, pu(y) = u(l),

where2<a <3, 0<n<1, n#1/3, 0<p<1/n? andp=1.

Clearly, all the assumptions of Theorem 3.5 hold. Thus, by the conclusion of Theo-
rem 3.5 we can get that (4.3) has at least one solution.

5. Conclusion

The existence and uniqueness of solutions to a three-point boundary value problem for
fractional nonlinear differential equation with impulses have been discussed. We apply the
concepts of fractional calculus together with fixed point theorems to establish the existence
results. First of all, we investigate a linear three-point boundary value problem involving
fractional derivatives and impulses, which in fact provides the platform to prove the existence
of solutions for the associated nonlinear fractional equation with impulses. It is worth
mentioning that the conditions of our theorems are easily to verify and that our approach
is simple, so they are applicable to a variety of real world problems.
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