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New oscillation criteria are established for the second-order nonlinear neutral functional differ-
ential equations of the form (r(t)|z′(t)|α−1z′(t))

′
+ f(t, x[σ(t)]) = 0, t ≥ t0, where z(t) = x(t) +

p(t)x(τ(t)), p ∈ C1([t0,∞), [0,∞)), and α ≥ 1. Our results improve and extend some known results
in the literature. Some examples are also provided to show the importance of these results.

1. Introduction

This paper is concerned with the oscillation problem of the second-order nonlinear functional
differential equation of the following form:

(
r(t)

∣∣z′(t)∣∣α−1z′(t)
)′

+ f(t, x[σ(t)]) = 0, t ≥ t0, (1.1)

where α ≥ 1 is a constant, z(t) = x(t) + p(t)x[τ(t)].
Throughout this paper, we will assume the following hypotheses:

(A1) r ∈ C1([t0,∞),R), r(t) > 0 for t ≥ t0,

(A2) p ∈ C1([t0,∞), [0,∞)),

(A3) τ ∈ C2([t0,∞),R), τ ′(t) > 0, limt→∞τ(t) = ∞,

(A4) σ ∈ C([t0,∞),R), limt→∞σ(t) = ∞, τ ◦ σ = σ ◦ τ ;
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(A5) f(t, u) ∈ C([t0,∞)×R,R), and there exists a function q ∈ C([t0,∞), [0,∞)) such that

f(t, u) sgn u ≥ q(t)|u|α, for u/= 0, t ≥ t0. (1.2)

By a solution of (1.1), we mean a function x ∈ C([Tx,∞),R) for some Tx ≥ t0 which
has the property that r(t)|z′(t)|α−1z′(t) ∈ C1([Tx,∞),R) and satisfies (1.1) on [Tx,∞). As is
customary, a solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [t0,∞);
otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all of its
nonconstant solutions are oscillatory.

We note that neutral delay differential equations find numerous applications in electric
networks. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines which rise in high-speed computers where the lossless
transmission lines are used to interconnect switching circuits; see [1]. Therefore, there is
constant interest in obtaining new sufficient conditions for the oscillation or nonoscillation
of the solutions of varietal types of the second-order equations, see, e.g., papers [2–17].

Known oscillation criteria require various restrictions on the coefficients of the studied
neutral differential equations.

Agarwal et al. [2], Chern et al. [3], Džurina and Stavroulakis [4], Kusano et al. [5, 6],
Mirzov [7], and Sun and Meng [8] observed some similar properties between

(
r(t)

∣∣x′(t)
∣∣α−1x′(t)

)′
+ q(t)|x[σ(t)]|α−1x[σ(t)] = 0 (1.3)

and the corresponding linear equation

(
r(t)x′(t)

)′ + q(t)x(t) = 0. (1.4)

Liu and Bai [10], Xu and Meng [11, 12], and Dong [13] established some oscillation criteria
for (1.3) with neutral term under the assumption that

∫∞

t0

1
r1/α(t)

dt = ∞. (1.5)

Han et al. [14] examined the oscillation of second-order linear neutral differential
equation

(
r(t)

[
x(t) + p(t)x(τ(t))

]′)′
+ q(t)x[σ(t)] = 0, t ≥ t0, (1.6)

where τ ′(t) = τ0 > 0, 0 ≤ p(t) ≤ p0 < ∞, and obtained some oscillation criteria for (1.6) when

∫∞

t0

1
r(t)

dt = ∞. (1.7)
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Han et al. [15] studied the oscillation of (1.6) under the case 0 ≤ p(t) ≤ 1 and

∫∞

t0

1
r(t)

dt < ∞. (1.8)

Tripathy [16] considered the nonlinear dynamic equation of the form

(
r(t)

[(
x(t) + p(t)x(t − τ)

)Δ]γ)Δ
+ q(t)|x(t − δ)|γ sgnx(t − δ) = 0, (1.9)

where 0 ≤ p(t) ≤ p0 < ∞, γ is a the ratios of two positive odd integers, and obtained some
oscillation criteria under the following conditions:

∫∞

t0

(
1

r(t)

)γ

dt = ∞. (1.10)

Džurina [17] was concerned with the oscillation behavior of the solutions of the
second-order neutral differential equations as follows

(
a(t)

[(
x(t) + p(t)x(τ(t))

)′]γ)′
+ q(t)xβ(σ(t)) = 0, (1.11)

where 0 ≤ p(t) ≤ p0 < ∞, γ is a the ratios of two positive odd integers, and obtained some
new results under the following conditions

∫∞

t0

(
1

a(t)

)γ

dt = ∞. (1.12)

Our purpose of this paper is to establish some new oscillation criteria for (1.1), and we
will also consider the cases (1.5) and

∫∞

t0

1
r1/α(t)

dt < ∞. (1.13)

To the best of my knowledge, there is no result for the oscillation of (1.1) under the
conditions both 0 ≤ p(t) ≤ p0 < ∞ and (1.13).

In this paper, we will use a new inequality to establish some oscillation criteria for
(1.1) for the first time. Some examples will be given to show the importance of these results.
In Sections 3 and 4, for the sake of convenience, we denote that

Q(t) := min
{
q(t), q[τ(t)]

}
, d+(t) := max{0, d(t)}, ξ(t) :=

αp′[σ(t)]σ ′(t)
p[σ(t)]

− τ ′′(t)
τ ′(t)

,

ζ(t) :=

(
ρ′(t)

)
+

ρ(t)
+ ξ(t), ϕ(t) :=

(
ρ′+(t)
ρ(t)

)α+1

+
pα[σ(t)](ζ+(t))

α+1

τ ′(t)
, δ(t) :=

∫∞

η(t)

ds
r1/α(s)

.

(1.14)
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2. Lemma

In this section, we give the following lemma, which we will use in the proofs of our main
results.

Lemma 2.1. Assume that α ≥ 1, a, b ∈ R. If a ≥ 0, b ≥ 0, then one has

aα + bα ≥ 1
2α−1

(a + b)α. (2.1)

Proof. (i) Suppose that a = 0 or b = 0. Then we have (2.1). (ii) Suppose that a > 0, b > 0.
Define the function g by g(x) = xα, x ∈ (0,∞). Then g ′′(x) = α(α − 1)xα−2 ≥ 0 for x > 0. Thus,
g is a convex function. By the definition of convex function, for λ = 1/2, a, b ∈ (0,∞), we
have

g

(
a + b

2

)
≤ g(a) + g(b)

2
, (2.2)

that is,

aα + bα ≥ 1
2α−1

(a + b)α. (2.3)

This completes the proof.

3. Oscillation Criteria for the Case (1.5)

In this section, we will establish some oscillation criteria for (1.1) under the case (1.5).

Theorem 3.1. Suppose that (1.5) holds, σ ∈ C([t0,∞),R), σ ′(t) > 0, σ(t) ≤ t, and σ(t) ≤ τ(t)
for t ≥ t0. Furthermore, assume that there exists a function ρ ∈ C([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

ρ(s)

{
Q(s)
2α−1

− r[σ(s)]ϕ(s)

(α + 1)α+1(σ ′(s))α

}
ds = ∞. (3.1)

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. By applying
(1.1), for all sufficiently large t, we obtain that

(
r(t)

∣∣z′(t)∣∣α−1z′(t)
)′

+ q(t)xα[σ(t)] + q[τ(t)]pα[σ(t)]xα(σ[τ(t)])

+
pα[σ(t)]
τ ′(t)

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1z′[τ(t)]
)′ ≤ 0.

(3.2)
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Using (2.1) and the definition of z, we conclude that

(
r(t)

∣∣z′(t)∣∣α−1z′(t)
)′

+
1

2α−1
Q(t)zα[σ(t)] +

pα[σ(t)]
τ ′(t)

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1z′[τ(t)]
)′ ≤ 0. (3.3)

In view of (1.1), we obtain that

(
r(t)

∣∣z′(t)∣∣α−1z′(t)
)′ ≤ −q(t)xα[σ(t)] ≤ 0, t ≥ t1. (3.4)

Thus, r(t)|z′(t)|α−1z′(t) is decreasing function. Now we have two possible cases for z′(t) :
(i) z′(t) < 0 eventually and (ii) z′(t) > 0 eventually.

(i) Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. Then, from (3.4), we get

r(t)
∣∣z′(t)∣∣α−1z′(t) ≤ r(t2)

∣∣z′(t2)
∣∣α−1z′(t2), t ≥ t2, (3.5)

which implies that

z(t) ≤ z(t2) − r1/α(t2)
∣∣z′(t2)

∣∣
∫ t

t2

r−1/α(s)ds. (3.6)

Letting t → ∞, by (1.5), we find z(t) → −∞, which is a contradiction.
(ii) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. We define a Riccati substitution

ω(t) = ρ(t)
r(t)(z′(t))α

(z[σ(t)])α
, t ≥ t2. (3.7)

Then ω(t) > 0. From (3.4), we have

z′[σ(t)] ≥
(

r(t)
r[σ(t)]

)1/α

z′(t). (3.8)

Differentiating (3.7), we find that

ω′(t) = ρ′(t)
r(t)(z′(t))α

(z[σ(t)])α
+ ρ(t)

(
r(t)(z′(t))α

)′
(z[σ(t)])α

− αρ(t)
r(t)(z′(t))αzα−1[σ(t)]z′[σ(t)]σ ′(t)

(z[σ(t)])2α
.

(3.9)

Therefore, by (3.7), (3.8), and (3.9), we see that

ω′(t) ≤ ρ′(t)
ρ(t)

ω(t) + ρ(t)

(
r(t)(z′(t))α

)′
(z[σ(t)])α

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t). (3.10)
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Similarly, we introduce a Riccati substitution

υ(t) = ρ(t)
r[τ(t)](z′[τ(t)])α

(z[σ(t)])α
, t ≥ t2. (3.11)

Then υ(t) > 0. From (3.4), we have

z′[σ(t)] ≥
(
r[τ(t)]
r[σ(t)]

)1/α

z′[τ(t)]. (3.12)

Differentiating (3.11), we find that

υ′(t) = ρ′(t)
r[τ(t)](z′[τ(t)])α

(z[σ(t)])α
+ ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[σ(t)])α

− αρ(t)
r[τ(t)](z′[τ(t)])αzα−1[σ(t)]z′[σ(t)]σ ′(t)

(z[σ(t)])2α
.

(3.13)

Therefore, by (3.11), (3.12), and (3.13), we see that

υ′(t) ≤ ρ′(t)
ρ(t)

υ(t) + ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[σ(t)])α

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t). (3.14)

Thus, from (3.10) and (3.14), we have

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ ρ(t)

{(
r(t)(z′(t))α

)′
(z[σ(t)])α

+
pα[σ(t)]
τ ′(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[σ(t)])α

}
+
ρ′(t)
ρ(t)

ω(t)

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t).

(3.15)

It is follows from (3.3) that

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ − 1
2α−1

ρ(t)Q(t) +
ρ′+(t)
ρ(t)

ω(t)

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′+(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t).

(3.16)
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Integrating the above inequality from t2 to t, we obtain that

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

1
2α−1

ρ(s)Q(s)ds

+
∫ t

t2

[
ρ′+(s)
ρ(s)

ω(s) − ασ ′(s)
ρ1/α(s)r1/α[σ(s)]

ω(α+1)/α(s)

]
ds

+
∫ t

t2

pα[σ(s)]
τ ′(s)

{[
ρ′+(s)
ρ(s)

+ ξ(s)
]

+
υ(s) − ασ ′(s)

ρ1/α(s)r1/α[σ(s)]
υ(α+1)/α(s)

}
ds.

(3.17)

Define

A :=

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]α/(α+1)

ω(t), B :=

⎡
⎣ρ′+(t)

ρ(t)
α

α + 1

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]−α/(α+1)⎤
⎦

α

.

(3.18)

Using the following inequality:

α + 1
α

AB1/α −A(α+1)/α ≤ 1
α
B(α+1)/α, for A ≥ 0, B ≥ 0 are constants, (3.19)

we have

ρ′+(t)
ρ(t)

ω(t) − ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t) ≤ 1

(α + 1)α+1
r[σ(t)]

(
ρ′+(t)

)α+1
(
ρ(t)σ ′(t)

)α . (3.20)

On the other hand, define

A :=

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]α/(α+1)

υ(t), B :=

⎡
⎣ζ+(t) α

α + 1

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]−α/(α+1)⎤
⎦

α

.

(3.21)

So we have

ζ+(t)υ(t) − ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t) ≤ 1

(α + 1)α+1
r[σ(t)](ζ+(t))

α+1ρ(t)
(σ ′(t))α

. (3.22)
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Thus, from (3.17), we get

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

ρ(s)

{
Q(s)
2α−1

− r[σ(s)]

(α + 1)α+1(σ ′(s))α

[(
ρ′+(s)
ρ(s)

)α+1

+
pα[σ(s)](ζ+(s))

α+1

τ ′(s)

]}
ds,

(3.23)

which contradicts (3.1). This completes the proof.

When p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, where p0, τ0 are constants, we obtain the following
result.

Theorem 3.2. Suppose that (1.5) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, σ ∈ C([t0,∞),R), σ ′(t) >
0, σ(t) ≤ t, σ(t) ≤ τ(t) for t ≥ t0. Further, assume that there exists a function ρ ∈ C([t0,∞), (0,∞))
such that

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[σ(s)]

(
ρ′+(s)

)α+1
(
ρ(s)σ ′(s)

)α
]
ds = ∞. (3.24)

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Using (1.1), for
all sufficiently large t, we obtain that

(
r(t)

∣∣z′(t)∣∣α−1z′(t)
)′

+ q(t)xα[σ(t)] + pα0q[τ(t)]x
α(σ[τ(t)])

+
pα0
τ0

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1z′[τ(t)]
)′ ≤ 0.

(3.25)

By applying (2.1) and the definition of z, we conclude that

(
r(t)

∣∣z′(t)∣∣α−1z′(t)
)′

+
1

2α−1
Q(t)zα[σ(t)]

+
pα0
τ0

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1z′[τ(t)]
)′ ≤ 0.

(3.26)

The remainder of the proof is similar to that of Theorem 3.1 and hence is omitted.

Theorem 3.3. Suppose that (1.5) holds, τ(t) ≤ t, σ(t) ≥ τ(t) for t ≥ t0. Furthermore, assume that
there exists a function ρ ∈ C([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

ρ(s)

{
Q(s)
2α−1

− r[τ(s)]ϕ(s)

(α + 1)α+1(τ ′(s))α

}
ds = ∞. (3.27)

Then (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Proceeding
as in the proof of Theorem 3.1, we get (3.3) and (3.4). In view of (3.4), r(t)|z′(t)|α−1z′(t) is
decreasing function. Now we have two possible cases for z′(t) : (i) z′(t) < 0 eventually and
(ii) z′(t) > 0 eventually.

(i) Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. Then, similar to the proof of case (i) of
Theorem 3.1, we obtain a contradiction.

(ii) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. We define a Riccati substitution

ω(t) = ρ(t)
r(t)(z′(t))α

(z[τ(t)])α
, t ≥ t2. (3.28)

Then ω(t) > 0. From (3.4), we have

z′[τ(t)] ≥
(

r(t)
r[τ(t)]

)1/α

z′(t). (3.29)

Differentiating (3.28), we find that

ω′(t) = ρ′(t)
r(t)(z′(t))α

(z[τ(t)])α
+ ρ(t)

(
r(t)(z′(t))α

)′
(z[τ(t)])α

− αρ(t)
r(t)(z′(t))αzα−1[τ(t)]z′[τ(t)]τ ′(t)

(z[τ(t)])2α
.

(3.30)

Therefore, by (3.28), (3.29), and (3.30), we see that

ω′(t) ≤ ρ′(t)
ρ(t)

ω(t) + ρ(t)

(
r(t)(z′(t))α

)′
(z[τ(t)])α

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t). (3.31)

Similarly, we introduce a Riccati substitution

υ(t) = ρ(t)
r[τ(t)](z′[τ(t)])α

(z[τ(t)])α
, t ≥ t2. (3.32)

Then υ(t) > 0. Differentiating (3.32), we find that

υ′(t) = ρ′(t)
r[τ(t)](z′[τ(t)])α

(z[τ(t)])α
+ ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[τ(t)])α

− αρ(t)
r[τ(t)](z′[τ(t)])αzα−1[τ(t)]z′[τ(t)]τ ′(t)

(z[τ(t)])2α
.

(3.33)

Therefore, by (3.32) and (3.33), we see that

υ′(t) =
ρ′(t)
ρ(t)

υ(t) + ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[τ(t)])α

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t). (3.34)
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Thus, from (3.31) and (3.33), we have

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ ρ(t)

{(
r(t)(z′(t))α

)′
(z[τ(t)])α

+
pα[σ(t)]
τ ′(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[τ(t)])α

}
+
ρ′(t)
ρ(t)

ω(t)

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t).

(3.35)

It follows from (3.3) that

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ − 1
2α−1

ρ(t)Q(t) +
ρ′+(t)
ρ(t)

ω(t)

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′+(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t).

(3.36)

Integrating the above inequality from t2 to t, we obtain that

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

1
2α−1

ρ(s)Q(s)ds

+
∫ t

t2

[
ρ′+(s)
ρ(s)

ω(s) − ατ ′(s)
ρ1/α(s)r1/α[τ(s)]

ω(α+1)/α(s)

]
ds

+
∫ t

t2

pα[σ(s)]
τ ′(s)

{[
ρ′+(s)
ρ(s)

+ ξ(s)
]

+
υ(s) − ατ ′(s)

ρ1/α(s)r1/α[τ(s)]
υ(α+1)/α(s)

}
ds.

(3.37)

Define

A :=

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]α/(α+1)

ω(t), B :=

⎡
⎣ρ′+(t)

ρ(t)
α

α + 1

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]−α/(α+1)⎤
⎦

α

.

(3.38)
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Using (3.19), we have

ρ′+(t)
ρ(t)

ω(t) − ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t) ≤ 1

(α + 1)α+1
r[τ(t)]

(
ρ′+(t)

)α+1
(
ρ(t)τ ′(t)

)α . (3.39)

On the other hand, define

A :=

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]α/(α+1)

υ(t), B :=

⎡
⎣ζ+(t) α

α + 1

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]−α/(α+1)⎤
⎦

α

.

(3.40)

So we have

ζ+(t)υ(t) − ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t) ≤ 1

(α + 1)α+1
r[τ(t)](ζ+(t))

α+1ρ(t)
(τ ′(t))α

. (3.41)

Thus, from (3.37), we get

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

ρ(s)

{
Q(s)
2α−1

− r[τ(s)]

(α + 1)α+1(τ ′(s))α

[(
ρ′+(s)
ρ(s)

)α+1

+
pα[σ(s)](ζ+(s))

α+1

τ ′(s)

]}
ds,

(3.42)

which contradicts (3.27). This completes the proof.

When p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, where p0, τ0 are constants, we obtain the following
result.

Theorem 3.4. Suppose that (1.5) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, τ(t) ≤ t, σ(t) ≥ τ(t) for
t ≥ t0. Furthermore, assume that there exists a function ρ ∈ C([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[τ(s)]

(
ρ′+(s)

)α+1
(
τ0ρ(s)

)α
]
ds = ∞. (3.43)

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Using (1.1)
and the definition of z, we obtain (3.26) for all sufficiently large t. The remainder of the proof
is similar to that of Theorem 3.3 and hence is omitted.

4. Oscillation Criteria for the Case (1.13)

In this section, we will establish some oscillation criteria for (1.1) under the case (1.13).
In the following, we assume that p0, τ0 are constants.
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Theorem 4.1. Suppose that (1.13) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, σ(t) ≤ t, σ ∈
C([t0,∞),R), σ ′(t) > 0, σ(t) ≤ τ(t) for t ≥ t0. Further, assume that there exists a function
ρ ∈ C([t0,∞), (0,∞)) such that (3.24) holds. If there exists a function η ∈ C1([t0,∞),R), η(t) ≥
t, η′(t) > 0 for t ≥ t0 such that

lim sup
t′ →∞

∫ t′

t0

[
Q(s)
2α−1

δα(s) −
(
1 +

pα0
τ0

)( α

α + 1

)α+1 η′(s)
δ(s)r1/α

[
η(s)

]
]
ds = ∞, (4.1)

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Proceeding as in
the proof of Theorem 3.2, we get (3.26). In view of (1.1), we have (3.4). Thus, r(t)|z′(t)|α−1z′(t)
is decreasing function. Now we have two possible cases for z′(t) : (i) z′(t) < 0 eventually and
(ii) z′(t) > 0 eventually.

(i) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. Then, by Theorem 3.2, we obtain a
contradiction with (3.24).

(ii) Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. We define the function u by

u(t) = −r(t)(−z
′(t))α

zα
[
η(t)

] , t ≥ t2. (4.2)

Then u(t) < 0. Noting that r(t)(−z′(t))α is increasing, we get

r1/α(s)z′(s) ≤ r1/α(t)z′(t), s ≥ t ≥ t2. (4.3)

Dividing the above inequality by r1/α(s), and integrating it from η(t) to t′, we obtain that

z
(
t′
) ≤ z

[
η(t)

]
+ r1/α(t)z′(t)

∫ t′

η(t)

ds
r1/α(s)

. (4.4)

Letting t′ → ∞, we have

0 ≤ z
[
η(t)

]
+ r1/α(t)z′(t)δ(t), (4.5)

that is,

−δ(t)r
1/α(t)z′(t)
z
[
η(t)

] ≤ 1. (4.6)

Hence, by (4.2), we get

−δα(t)u(t) ≤ 1. (4.7)
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Similarly, we define the function v by

v(t) = −r[τ(t)](−z
′[τ(t)])α

zα
[
η(t)

] , t ≥ t2. (4.8)

Then v(t) < 0. Noting that r(t)(−z′(t))α is increasing, we get the following:

r(t)
(−z′(t))α ≥ r[τ(t)]

(−z′[τ(t)])α. (4.9)

Thus 0 < −v(t) ≤ −u(t). So by (4.7), we see that

−δα(t)v(t) ≤ 1. (4.10)

Differentiating (4.2), we obtain that

u′(t) =

(−r(t)(−z′(t))α)′zα[η(t)] + αr(t)(−z′(t))αzα−1[η(t)]z′[η(t)]η′(t)

z2α
[
η(t)

] , (4.11)

by (3.4), and we have z′[η(t)] ≤ (r(t)/r[η(t)])1/αz′(t), so

u′(t) ≤
(−r(t)(−z′(t))α)′

zα
[
η(t)

] − α
η′(t)

r1/α
[
η(t)

](−u(t))(α+1)/α. (4.12)

Similarly, we see that

v′(t) ≤
(−r[τ(t)](−z′[τ(t)])α)′

zα
[
η(t)

] − α
η′(t)

r1/α
[
η(t)

](−v(t))(α+1)/α. (4.13)

Therefore, by (4.12) and (4.13), we get the following:

u′(t) +
pα0
τ0

v′(t) ≤
(−r(t)(−z′(t))α)′

zα
[
η(t)

] +
pα0
τ0

(−r[τ(t)](−z′[τ(t)])α)′
zα

[
η(t)

]

− α
η′(t)

r1/α
[
η(t)

](−u(t))(α+1)/α − αpα0
τ0

η′(t)
r1/α

[
η(t)

] (−v(t))(α+1)/α.
(4.14)

Using (3.26) and (4.14), we obtain that

u′(t) +
pα0
τ0

v′(t) ≤ −Q(t)
2α−1

− α
η′(t)

r1/α
[
η(t)

](−u(t))(α+1)/α − αpα0
τ0

η′(t)
r1/α

[
η(t)

] (−v(t))(α+1)/α. (4.15)
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Multiplying (4.15) by δα(t), and integrating it from t2 to t′, we have

u
(
t′
)
δα(t′) − u(t2)δα(t2) + α

∫ t′

t2

δα−1(s)η′(s)u(s)
r1/α

[
η(s)

] ds + α

∫ t′

t2

η′(s)δα(s)
r1/α

[
η(s)

] (−u(s))(α+1)/αds

+
pα0
τ0

v
(
t′
)
δα(t′) − pα0

τ0
v(t2)δα(t2) +

αpα0
τ0

∫ t′

t2

δα−1(s)η′(s)v(s)
r1/α

[
η(s)

] ds

+
αpα0
τ0

∫ t′

t2

η′(s)δα(s)
r1/α

[
η(s)

](−v(s))(α+1)/αds +
∫ t′

t2

Q(s)
2α−1

δα(s)ds ≤ 0.

(4.16)

Using (3.19), (4.7), and (4.10), we find that

∫ t′

t2

[
Q(s)
2α−1

δα(s) −
(
1 +

pα0
τ0

)( α

α + 1

)α+1 η′(s)
δ(s)r1/α

[
η(s)

]
]
ds ≤ u(t2)δα(t2) +

pα0
τ0

v(t2)δα(t2)

+ 1 +
pα0
τ0

.

(4.17)

Letting t′ → ∞, we obtain a contradiction with (4.1). This completes the proof.

From Theorems 3.4 and 4.1, we have the following result.

Theorem 4.2. Suppose that (1.13) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, τ(t) ≤ t, σ(t) ≥ τ(t) for
t ≥ t0. Further, assume that there exists a function ρ ∈ C([t0,∞), (0,∞)) such that (3.43) holds. If
there exists a function η ∈ C1([t0,∞),R), η(t) ≥ t, η′(t) > 0, σ(t) ≤ η(t) for t ≥ t0 such that (4.1)
holds, then (1.1) is oscillatory.

5. Examples

In this section, we will give some examples to illustrate the main results.

Example 5.1. Study the second-order neutral differential equation

[∣∣(x(t) + tx(t − λ1))
′∣∣α−1(x(t) + tx(t − λ1))

′
]′
+ β|x(t − λ2)|α−1x(t − λ2) = 0, t ≥ t0, (5.1)

where α ≥ 1, 0 < λ1 ≤ λ2 < 1, β > 0 are constants.

Let r(t) = 1, p(t) = t, ρ(t) = 1. It is easy to see that all the conditions of Theorem 3.1
hold. Hence, (5.1) is oscillatory.

Example 5.2. Consider the second-order quasilinear neutral differential equation

[∣∣∣(x(t) + p(t)x(λ1t)
)′∣∣∣

α−1(
x(t) + p(t)x(λ1t)

)′]′ + β

tα+1
|x(λ2t)|α−1x(λ2t) = 0, t ≥ t0, (5.2)

where α ≥ 1, β > 0 are constants, λ1, λ2 ∈ (0, 1), λ2 ≤ λ1.
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Let r(t) = 1, 0 ≤ p(t) ≤ p0 < ∞, q(t) = β/tα+1, τ(t) = λ1t, σ(t) = λ2t, and ρ(t) = tα.
Then, we have

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[σ(s)]

(
(ρ′(s)+

)α+1
(
ρ(s)σ ′(s)

)α
]
ds

=

[
β

2α−1
− αα+1

(α + 1)α+1λα2

(
1 +

pα0
λ1

)]
lim sup

t→∞

∫ t

t0

ds
s

= ∞,

(5.3)

if β > 2α−1αα+1(1 + pα0/λ1)/[(α + 1)α+1λα2]. Hence, by Theorem 3.2, (5.2) is oscillatory if

β >
2α−1αα+1

(α + 1)α+1λα2

(
1 +

pα0
λ1

)
. (5.4)

Example 5.3. Investigate the second-order neutral differential equation

[
x(t) +

(t − 1)(t − 4π)
t

x(t − 4π)
]′′

+ (t − 2π)x(t − 2π) = 0, t ≥ t0. (5.5)

Let r(t) = 1, p(t) = (t − 1)(t − 4π)/t, q(t) = t − 2π, and ρ(t) = 1. It is easy to see that
all the conditions of Theorem 3.3 hold. Hence, (5.5) is oscillatory, for example, x(t) = sin t/t
is a solution of (5.5).

Example 5.4. Discuss the second-order quasilinear neutral differential equation

[∣∣∣(x(t) + p(t)x(λ1t)
)′∣∣∣

α−1(
x(t) + p(t)x(λ1t)

)′]′ + β

tα+1
|x(λ2t)|α−1x(λ2t) = 0, t ≥ t0, (5.6)

where α ≥ 1, β > 0 are constants, λ1 ∈ (0, 1), λ2 ∈ [λ1,∞).

Let r(t) = 1, 0 ≤ p(t) ≤ p0 < ∞, q(t) = β/tα+1, τ(t) = λ1t, σ(t) = λ2t, ρ(t) = tα. Then,
we have

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[τ(s)]

(
ρ′(s)+

)α+1

τ0
(
ρ(s)

)α
]
ds

=

[
β

2α−1
− αα+1

(α + 1)α+1λα1

(
1 +

pα0
λ1

)]
lim sup

t→∞

∫ t

t0

ds
s

= ∞
(5.7)

if β > 2α−1αα+1(1 + pα0/λ1)/[(α + 1)α+1λα1]. Hence, by Theorem 3.4, (5.6) is oscillatory if

β >
2α−1αα+1

(α + 1)α+1λα1

(
1 +

pα0
λ1

)
. (5.8)
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Example 5.5. Examine the second-order quasilinear neutral differential equation

[
t2α

∣∣∣(x(t) + p(t)x(λ1t)
)′∣∣∣

α−1(
x(t) + p(t)x(λ1t)

)′]′ + βtα−1|x(λ2t)|α−1x(λ2t) = 0, t ≥ t0, (5.9)

where α ≥ 1, β > 0 are constants, λ1, λ2 ∈ (0, 1), λ2 ≤ λ1.

Let r(t) = t2α, 0 ≤ p(t) ≤ p0 < ∞, q(t) = βtα−1, τ(t) = λ1t, σ(t) = λ2t, and ρ(t) = 1.
Then, Q(t) = βλα−11 tα−1. It is easy to see that (3.24) holds. On the other hand, taking η(t) = t,
then δ(t) = 1/t. Therefore, one has

lim sup
t′ →∞

∫ t′

t0

[
Q(s)
2α−1

δα(s) −
(
1 +

pα0
τ0

)( α

α + 1

)α+1 η′(s)
δ(s)r1/α

[
η(s)

]
]
ds

=
[

β

2α−1
λα−11 − 1

2

(
1 +

pα0
λ1

)( α

α + 1

)α+1
]
lim sup
t′ →∞

∫ t′

t0

ds
s

= ∞
(5.10)

if β > 2α−2(1 + pα0/λ1)(α/α + 1)α+1/λα−11 . Thus, by Theorem 4.1, (5.9) oscillates if

β >
2α−2

λα−11

(
1 +

pα0
λ1

)( α

α + 1

)α+1
. (5.11)

6. Conclusions

Inequality technique plays an important role in studying the oscillatory behavior of
differential equations; in this paper, we establish a new inequality (2.1); by using (2.1) and
Riccati substitution, we establish some new oscillation criteria for (1.1). Theorem 3.1 can
be applied to the case τ(t) ≥ t. Specially, taking α = 1, our results include and improve
the results in [15]; for example, and Theorem 4.1 includes [15, Theorem 3.1], Theorem 4.2
includes [15, Theorem 3.2]. The method can be applied on the second-order Emden-Fowler
neutral differential equations

[
r(t)

(
x(t) + p(t)x(τ(t))

)′]′ + q(t)|x(δ(t))|α−1x(δ(t)) = 0, t ≥ t0, (6.1)

where α ≥ 1. It would be interesting to find another method to investigate (1.1) when τ ◦
σ /≡σ ◦ τ .
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Computation, vol. 174, no. 2, pp. 1634–1641, 2006.

[9] M. T. Senel and T. Candan, “Oscillation of second order nonlinear neutral differential equation,”
Journal of Computational Analysis and Applications, vol. 14, no. 6, pp. 1112–1117, 2012.

[10] L. Liu and Y. Bai, “New oscillation criteria for second-order nonlinear neutral delay differential
equations,” Journal of Computational and Applied Mathematics, vol. 231, no. 2, pp. 657–663, 2009.

[11] R. Xu and F. Meng, “Some new oscillation criteria for second order quasi-linear neutral delay
differential equations,” Applied Mathematics and Computation, vol. 182, no. 1, pp. 797–803, 2006.

[12] R. Xu and F. Meng, “Oscillation criteria for second order quasi-linear neutral delay differential
equations,” Applied Mathematics and Computation, vol. 192, no. 1, pp. 216–222, 2007.

[13] J.-G. Dong, “Oscillation behavior of second order nonlinear neutral differential equations with
deviating arguments,” Computers and Mathematics with Applications, vol. 59, no. 12, pp. 3710–3717,
2010.

[14] Z. Han, T. Li, S. Sun, and W. Chen, “On the oscillation of second-order neutral delay differential
equations,” Advances in Difference Equations, Article ID 289340, 8 pages, 2010.

[15] Z. Han, T. Li, S. Sun, and Y. Sun, “Remarks on the paper,” Applied Mathematics and Computation, vol.
215, no. 11, pp. 3998–4007, 2010.

[16] A. K. Tripathy, “Some oscillation results for second order nonlinear dynamic equations of neutral
type,” Nonlinear Analysis. Theory, Methods and Applications A, vol. 71, no. 12, pp. e1727–e1735, 2009.
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